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Abstract

We propose procedures designed to uncover structural breaks in the co-movements of
financial markets. A reduced form approach is introduced that can be considered as a
two-stage method for reducing the dimensionality of multivariate heteroskedastic condi-
tional volatility models through marginalization. The main advantage is that one can use
returns normalized by volatility filters that are purely data-driven and construct general
conditional covariance dynamic specifications. The main thrust of our procedure is to
examine change-points in the co-movements of normalized returns. The tests allow for
strong and weak dependent as well as leptokurtic processes. We document, using a ten
year period of two representative high frequency FX series, that regression models with
non-Gaussian errors describe adequately their co-movements. Change-points are detected
in the conditional covariance of the DM/US$ and YN/US$ normalized returns over the
decade 1986-1996.
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1 Introduction

There are many circumstances where one may expect that the co-movements between financial

assets undergo fundamental changes. For example, portfolio holders may worry about the im-

pact of the deregulation of an industry on their optimal allocation of assets which depends on

conditional covariances (in a mean-variance setting). The deregulation may cause fundamental

shifts in the (conditional) correlations across the asset holdings. Likewise, hedging strategies

involving foreign exchange may be adversely affected by central bank policy shifts. Emerging

markets is another example where the potential of breaks in co-movements may occur. The

world equity markets liberalization and integration may represent an example of structural

changes in the relationship of these markets. Similarly, the recent evidence of the Asian and

Russian financial crises, transmitted across markets, have serious effects for investors, corpo-

rations and countries. The global character of financial markets presents an additional reason

for examining the transmission of breaks and their effects in the co-movements between fi-

nancial as well as real assets. Most financial asset pricing theories and models assume that

covariances between assets are stable (possibly time varying) whereas more recent empirical

approaches recognize the presence of time heterogeneity such as regime changes (e.g. Bollen,

Gray and Whaley, 2000), institutional changes (e.g. Garcia and Ghysels, 1998, Bekaert, Harvey

and Lumsdaine, 2002) and extreme events (e.g. Hartmann, Straetmans and de Vries, 2000).

Pastor and Stambaugh (2001) have also recently shown that structural breaks could contribute

to the equity premium puzzle.

We propose procedures designed to uncover structural changes in multivariate conditional

covariance dynamics of asset returns. The procedures are based on testing for breaks in the

conditional correlations involving normalized returns which are defined as the returns stan-

dardized by the conditional variance process. Hence the conditional correlation is equivalent

to the conditional covariance process of normalized returns that may exhibit a general form of

dependence (e.g. φ− or α−mixing) as well as heavy tails. We start from a multivariate dy-

namic heteroskedastic asset return process. Instead of trying to explore the co-movements via

a parametric specification and test for structural change in the parameters, we adopt a reduced
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form approach which consists of testing for structural change in static or dynamic relationships

involving marginalizations of the multivariate process. Our approach relates to a large class

of multivariate ARCH-type models with constant or dynamic conditional correlation (see, for

instance Bollerslev, Engle and Nelson, 1994). Although there is some loss of information when

we look at the individual normalized returns and their relationships, these losses are offset by

gains in reducing the overparameterized multivariate GARCH type models and by focusing on

the conditional covariance specification. The latter being our focus in this paper. In addition

this approach provides a simple and computationally efficient framework for testing and es-

timating the unknown (multiple) breaks in the co-movements of volatility and allows general

forms of dependence as well as heavy tails without having to explicitly estimate their form.

The choice of standardized returns as an object of interest is motivated by both finance and

statistics arguments. From the finance point of view the standardized returns represent the

fundamental measure of reward-to-risk consistent with conventional mean-variance analysis.

The statistical arguments are a bit more involved. Our approach can be viewed as a two-stage

method for reducing the dimensionality of multivariate heteroskedastic conditional volatility

models to a framework involving returns normalized by purely data-driven volatility filters in

the first stage and cross products of normalized returns in the second stage. Recently, En-

gle (2002), Engle and Sheppard (2001) and Tse and Tsui (2002) rely on a similar two-stage

procedure to handle multivariate GARCH models. Their stages are both parametric whereas

ours involve a first stage that is purely nonparametric. Our reduction approach does not aim

in presenting alternative specification or estimation methods of multivariate GARCH models.

Instead, we adopt this two stage approach as a method to perform change-point tests in multi-

variate heteroskedastic models. The approach here is semiparametric since the second stage can

allow for general types of dependence, data-driven spot and quadratic volatility measures as

well as leptokurtic or asymmetric distributions. More specifically, let r(m),t := log pt − log pt−m

be the discretely observed time series of continuously compounded returns with m measur-

ing the time span between discrete observations. We compute X(m),t := r(m),t/σ̂(m),t involving

purely data-driven estimators σ̂(m),t. Foster and Nelson (1996) proposed several rolling sam-
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ple type estimators. Their setup applies to ARCH as well as discrete and continuous time SV

models (which are in our application marginalizations of multivariate processes). In addition to

the Foster and Nelson rolling volatility filters we also consider high-frequency volatility filters,

following the recent work of Andersen, Bollerslev, Diebold and Labys (2001), Andreou and Ghy-

sels (2002a), Barndorff-Nielsen and Shephard (2002), among others. The data-driven measures

of normalized returns provide the estimation of the first stage in multivariate heteroskedastic

returns models. Moreover, keeping the first stage data-driven has the advantage that we do not

specify, and therefore also not potentially misspecify, a parametric model for volatility. This

may eliminate potential sources of misspecification and avoid erroneous inference on the pres-

ence of structural breaks. The second stage deals with the conditional covariance defined as the

cross-product of normalized returns, say Y12,(m),t := X1,(m),tX2,(m),t, for a pair of assets given by

the vector (1, 2)′. This process may exhibit constant, weak or strong dependence (as in multi-

variate constant or dynamic correlation GARCH and Factor models, respectively) as well as a

general functional form driven by a heavy tailed distribution. In addition, auxiliary regression

models for normalized returns are employed to study the homogeneity of their comovements.

The simulation and empirical results in the paper show that risk adjusted returns, using various

volatility filters, are in most cases non-Gaussian with different types of temporal dependence

structure. The paper extends the application of recent change-point tests in Kokoszka and Lei-

pus (1998, 2000) and Lavielle and Moulines (2000) to the conditional covariance of Multivariate

GARCH (M-GARCH) models, using the above two stage procedure for detecting breaks in the

co-movements of normalized returns.

The paper is organized as follows. In section 2 we discuss the general multivariate conditional

volatility models and the transformations of the data that form the basis of the testing proce-

dure. Section 3 discusses the recent change-point tests, developed in a univariate context, and

a method to apply them to the conditional covariance processes of multivariate heteroskedastic

models. The fourth section presents a brief Monte Carlo experiment that examines the sta-

tistical properties of normalized returns and provides a justification for the testing strategies

adopted. The size and power of the aforementioned tests are also investigated. In the empirical
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section we document using a ten year period of two representative high frequency FX series,

YN/US$ and DM/US$, that the conditional covariance specified by regression models of daily

risk-adjusted returns with non-Gaussian errors describe adequately their co-movements. The

main thrust of our procedure is then to examine breaks in the co-movements of normalized

returns using CUSUM and least-squares methods for detecting and dating the change-points.

A final section concludes the paper.

2 Models and filters

It has long been recognized that there are gains from modeling the volatility co-movements.

In practice one stumbles on the obvious constraint that any multivariate model is hopelessly

overparameterized if one does not impose any type of restriction (see for instance, Engle (2001)

for some of the open questions in multivariate volatility models). Bollerslev, Engle and Nelson

(1994) provide an elaborate discussion of various multivariate ARCH type models and review

the different restrictions which have been adopted to make multivariate volatility models em-

pirically feasible. Ghysels, Harvey and Renault (1996) discuss various multivariate SV models,

both in discrete and continuous time. In this section we describe the classes of multivariate

heteroskedastic models that fall within the context of our statistical procedures for change-

point tests in the dynamic co-movements of asset returns. Broadly speaking there are two

classes of multivariate volatility models, both being among the most widely applied parametric

specifications. These are (1) multivariate factor models, see for instance Diebold and Nerlove

(1989), Engle, Ng and Rotschild (1990), Harvey, Ruiz and Shephard (1994), Ng, Engle and

Rotschild (1992) and many others and (2) the conditional correlation models, see for instance

Bollerslev, Engle and Wooldridge (1988), Bollerslev (1990), Bolleslev, Engle and Nelson (1994)

and more recently Engle (2002), Engle and Sheppard (2001) and Tse and Tsui (2002). Since

the statistical procedures adopted here share many features with the latter we will devote the

first subsection to the conditional correlation volatility specification. The second subsection

describes various volatility filters which are adopted for dynamic heteroskedastic series.
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2.1 Multivariate conditional correlation volatility models

The statistics developed in this paper apply to a two-step procedure that shares several fea-

tures with the recent work on Dynamic Conditional Correlation (henceforth DCC) of Engle

(2002), Engle and Sheppard (2001) and Tse and Tsui (2002). The appeal of DCC models is

that they feature the flexibility and simplicity of univariate ARCH models but not the com-

plexity of typical multivariate specifications. This decomposition also presents an advantage

for change-point detection in multivariate heteroskedastic settings, discussed further in section

3. The statistical inference procedures proposed apply to several multivariate specifications

given that the conditional covariance process satisfies some general regularity conditions. It

will be convenient to start with a discrete time framework and to set notation we assume that

an n-vector of returns Rt is observed. In the empirical applications n will be equal to 2, but our

techniques extend to n > 2. Consider the ratio Xi,t := ri,t/σi,t where ri,t and σi,t is the return

and conditional volatility (standard deviation) of the ith return process, respectively, using the

univariate filtration of each series separately. Then the conditional correlation between pairs

of assets, e.g. (1, 2)′ is: ρ12,t = Et−1(X1,tX2,t) := Et−1(Y12,t) where we denote Y12,t := X1,tX2,t.

The original specification of Bollerslev (1990) assumed that ρ12,t := ρ12, yielding a CCC model,

i.e. a Constant Conditional Correlation multivariate specification. It was noted that the CCC

specification offered many computational advantages, but the assumption of constant ρ12 did

not share much empirical support (see e.g. Engle (2002) Engle and Sheppard (2001) and Tse

and Tsui (2002) for further discussion).

The procedures proposed in this paper also involve the X1,t, X2,t and Y12,t processes. How-

ever, these processes are obtained in a much more general context not involving a parametric

specification for the conditional standard deviation σi,t for i = 1, 2. Engle (2002), Engle and

Sheppard (2001) and Tse and Tsui (2002) assume that σi,t follows a GARCH(1,1) model. We

adopt a purely data-driven specification for σi,t, and this has several advantages. First this

approach covers processes more general than the GARCH specification some of which can ac-

count for asymmetries as well as jumps (given the results in Foster and Nelson (1996), Andersen,

Bollerslev, Diebold and Labys (2001) and Andreou and Ghysels (2002a)). The purely data-
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driven first stage also has the advantage that we do not potentially misspecify the parametric

model for volatility. Moreover, this approach may avoid some potential sources of misspecifica-

tion and erroneous inference on the presence of structural breaks. This is related to the second

advantage of the method proposed in that it yields a semi-parametric setup for the second stage

of the test procedure that also allows for general innovation distributions.

In the remainder of this subsection we will discuss only the basic underpinnings of filtering

σi,t. The notation will be simplified here by dropping the subscript i pertaining to a particular

return series, i.e. instead of ri,t we will simply write rt because we will adopt mainly a univariate

framework. The computation of rt/σt with data-driven σt is valid in a diffusion context as

well as various discrete time processes such as various ARCH type models including GARCH,

EGARCH, SV and other specifications. The setup is deliberately closely related to the work

of Foster and Nelson (1996) on rolling sample volatility estimators. Consider the following

discrete time dynamics:

r(m),t = µ(m),tm
−1
+M(m),t −M(m),t−m ≡ µ(m),tm

−1
+∆(m)M(m),t (2.1)

which correspond to the so called Doob-Meyer decomposition of the m horizon returns into a

predictable component µ(m),t and a local martingale difference sequence. The decomposition

is a natural starting point when returns are generated by a standard diffusion process with

stochastic volatility. The decomposition in (2.1) is also the starting point for discrete time

ARCH type processes. Conditional expectations and variances with respect to the (univariate)

filtration {F(m),t} will be denoted as E(m),t(·) and V ar(m),t(·) respectively, whereas unconditional

moments follow a similar notation, E(m)(·) and V ar(m)(·). Consequently:

V ar(m),t(r(m),t) ≡ E[(∆(m)M(m),t)
2|F(m),t] = σ

2
(m),tm

−1 (2.2)

where σ2
(m),t measures the conditional variance per unit of time. We will consider various data-
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driven estimators for σ2
(m),t which can generically be written as:

σ̂
2
(m),t =

∑nL

τ=1
w(τ−t)(r(m),t+1−τ − µ̂(m),t)

2 (2.3)

where w(τ−t) is a weighting scheme, nL is the lag length of the rolling window and µ̂(m),t is a

(rolling sample) estimate of the drift. The optimal window length and weights are discussed in

Andreou and Ghysels (2002a) and applied in the empirical section.

2.2 Transformations of returns using data-driven volatilities

The test statistics discussed in the next section are based on functions of normalized returns

computed as (r(m),t − µ̂(m),t)/σ̂(m),t, for some estimator of µ̂(m),t and σ̂(m),t, i.e. some sampling

frequency m and weighting scheme w(τ−t) in (2.3). The empirical setting that will be used

involves very short spans of data with high frequency sampling. We can deal with the local

drift either by estimating it as a local average sum of returns or, following the arguments in

Merton (1980) among others, ignore any possible drift and set it to zero, i.e. µ̂(m),t ≡ 0. For

simplicity of our presentation, we will adopt the latter, i.e. set the drift to zero.

The setup in (2.1) and (2.2) is the same as Foster and Nelson (1996) who derive a continuous

record asymptotic theory which assumes that a fixed span of data is sampled at ever finer

intervals. The basic intuition driving the results is that normalized returns, r(m),t/σ(m),t, over

short intervals appear like approximately i.i.d. with zero conditional mean and finite conditional

variance and have regular tail behavior which make the application of Central Limit Theorems

possible. Foster and Nelson impose several fairly mild regularity conditions such that the local

behavior of the ratio r(m),t/σ(m),t becomes approximately i.i.d. with fat tails (and eventually

Gaussian for large m). In their setup local cuts of the data exhibit a relatively stable variance,

which is why σ̂(m),t catches up with the latent true σ(m),t with judicious choices of the weighting

scheme and in particular the data window chosen to estimate the local volatility. The tests allow

for some local dependence in the data and do not rely on Normality of the ratio r(m),t/σ̂(m),t.

The empirical evidence of the Normality of r(m),t/σ̂(m),t is mixed at the daily level at least.
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Zhou (1996) and Andersen, Bollerslev, Diebold and Labys (2000) report near-normality for

daily sampling frequencies. We find that different classes of volatility filters yield different

distributional properties for the normalized returns process, X(m),t.

A number of alternative volatility filters, σ̂i,(m),t, are considered below which differ in terms of

the estimation method, sampling frequency and information set (further evaluated in Foster and

Nelson, 1996, Andersen and Bollerslev, 1998, Andersen, Bollerslev, Diebold and Labys, 2001,

and Andreou and Ghysels, 2002a). These data-driven variance filters belong to two classes of

volatilities. First, the interday volatilities are: (i) The Exponentially Weighted Moving Average

Volatility defined following the industry standard introduced by J.P. Morgan (see Riskmetrics

Manual, 1995) as: σ̂RM,t = λσ̂RM,t−1 + (1− λ) r2t , t = 1, ..., Tdays,where λ = 0.94 for daily

data, rt is the daily return and Tdays is the number of trading days. (ii) One-sided Rolling

daily window Volatility defined as: σ̂RV,t =
∑nL

j=1wjr
2
t+1−j, t = 1, ..., Tdays, where nL is the

lag length of the rolling window in days. When the weights wj are equal to n−1L then one

considers flat weights. In our simulations we will consider nL = 26 and 52 days to conform

with the optimality in Foster and Nelson and the common practice of taking (roughly) one

month worth of data (see e.g. Schwert (1989) among others). These interday volatilities are

denoted as σ̂i,t where i = RM , RV 26, RV 52. The second class of intraday volatility filters is

based on the quadratic variation of returns (see Andreou and Ghysels (2002a) for more details)

and includes: (i) One-day Quadratic Variation of the process also called Integrated Volatility

(e.g. Andersen and Bollerslev, 1998) is defined as the sum of squared log returns r(m),t for

different values of m, to produce the daily volatility measure: σ̂QV 1,t =
∑m

j=1 r
2
(m),t+1−j/m,

t = 1, ..., ndays, where for the 5-minute sampling frequency the lag length is m = 288 for

financial markets open 24 hours per day (e.g. FX markets). (ii) One-day Historical Quadratic

Variation (introduced in Andreou and Ghysels, 2002a) defined as the sum of m rolling QV 1

estimates: σ̂HQV 1,t = 1/m
∑m

j=1 σ̂QV 1,(m),t+1−j/m, t = 1, ..., Tdays. The intraday volatilities are

denoted as σ̂i,t where i = QV k,HQV k, for window lengths k = 1,2, 3, in the 5-minute sampling

frequency case. For window lengths k > 1 the intraday volatility filters (H)QV k are simple

averages of (H)QV 1 for k days.
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3 Tests for structural breaks in co-movements

There is a substantial literature on testing for the presence of breaks in i.i.d. processes and more

recent work in the context of linearly dependent stochastic processes (see for instance, Liu, Wu

and Zidek (1997) Bai and Perron (1998) interalia). Nevertheless, high frequency financial

asset returns series are strongly dependent processes satisfying β−mixing. Chen and Carrasco

(2001) provide a comprehensive analysis of such univariate processes and Bussama (2001),

Chen and Hansen (2002) have shown that multivariate ARCH and diffusion processes are also

β-mixing. This result precludes the application of many aforementioned tests for structural

breaks that require a much stronger mixing condition. Following Kokoszka and Leipus (1998,

2000) and Lavielle and Moulines (2000) we explore recent advances in the theory of change-

point estimation for strongly dependent processes. These papers have shown the consistency of

CUSUM and least squares type change-point estimators, respectively, for detecting and dating

change-points. The tests are not model-specific and apply to a large class of weakly and strongly

dependent (e.g. ARCH and SV type) specifications. So far only limited simulation and empirical

evidence is reported about these tests. Andreou and Ghysels (2002b) enlarged the scope of

applicability by suggesting several improvements that enhance the practical implementation of

the proposed tests. They also find via simulations that the VARHAC estimator proposed by

den Haan and Levin (1997) yields good properties for the CUSUM-type estimator of Kokoszka

and Leipus (2000).

The Lavielle and Moulines (2000) and Kokoszka and Leipus (2000) studies can handle

univariate processes while here we investigate multivariate processes via the two-step setup.

It is demonstrated that the two-stage approach adopted here for multivariate models can be

considered as a simple reduced form and computationally efficient method for the detection of

structural breaks tests in multivariate heteroskedastic settings. The procedures proposed apply

to the empirical process Y12,t := X1,tX2,t for pairs of assets normalized returns of M-GARCH

type models, where Xi,t := ri,t/σi,t, i = 1, 2, is obtained via the application of a data-driven

filter described in the previous section. The β-mixing property of multivariate GARCH and

diffusion processes (Bussamma, 2001, Chen and Hansen, 2002) implies that Y12,t is β-mixing
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too. This is valid for the M-GARCH with dynamic conditional correlation specifications. For

instance, according to the M-GARCH-DCC (Engle, 2002) Y12,t has a GARCH specification

which implies β-mixing. The exemption being the M-GARCH-CCC according to which Y12,t is

assumed to be constant. Last but not least, we note that in dynamic correlation M-GARCH

models the quadratic transformations such as |Y12,t|
d
d = 1,2 are also β-mixing since they are

measurable functions of mixing processes, which are β-mixing and of the same size (see White

(1984, Theorem 3.49 and Proposition 3.23)).

The analysis focuses on the bivariate case for ease of exposition. This two-step approach

can be easily extended to the multivariate n number of assets in the M-GARCH framework for

which n(n − 1)/2 cross-covariances, Yij,t, would present the processes for testing the change-

point hypothesis in pairs of assets. Netherless, it is worth noting that when n gets large this

framework becomes useful if we impose some additional restrictions. For instance, in the M-

GARCH-CCC model when n gets large we can test the null hypothesis of joint homogeneity

in the correlation coefficients in the pairs of normalized returns, ρij, versus the alternative that

there is an unknown change-point in the any of these cross-correlations. A similar approach for

n−dependent processes can be found in Horváth, Kokoszka and Steinebach (1999) which can

be adapted to the conditional covariances of an M-GARCH-CCC model. In the remainder of

this section we discuss the specifics of the testing procedures.

3.1 CUSUM type tests

Without an explicit specification of a multivariate ARCH, the tests discussed in this section

will examine whether there is evidence of structural breaks in the data generating process of

Y12,t. To test for breaks Kokoszka and Leipus (1998, 2000) consider the following process:

UN (k) =
(
1/
√
N
∑k

j=1
Zj − k/(N

√
N )
∑N

j=1
Zj

)
(3.1)

for 0 < k < N where Zt = |Y12,t|
d
d = 1, 2 in (3.1) represents the absolute and squared

normalized returns in an ARCH(∞) process. When the conditional covariance process exhibits
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an ARCH-type specification, like in most dynamic conditional correlation M-GARCH models,

we need not specify the explicit functional form of Y12,t. Kokoszka and Leipus (1998, 2000)

assume that ARCH(∞) processes are (i) stationary with short memory i.e. the coefficients

decay exponentially fast, and (ii) the errors are not assumed Gaussian but merely that they

have a finite fourth moment. Horváth (1997) and Kokoszka and Leipus (1998) show that (3.1)

holds if now the process Zt := Y12,t is linearly dependent. The above moment conditions need

also apply to M-GARCH processes. The CUSUM type estimators are defined as:

k̂ = min{k : |UN (k)| = max
1≤j≤N

|UN(j)|} (3.2)

The estimate k̂ is the point at which there is maximal sample evidence for a break in the Zt

process. To decide whether there is actually a break, one has also to derive the asymptotic dis-

tribution of sup0≤k≤N UN(k) or related processes such as
∫
1

0
U

2

N
(t)dt. Moreover, in the presence

of a single break k̂ is a consistent estimator of k∗. Under the null hypothesis of no break:

UN (k)→D[0,1] σZB(k) (3.3)

where B(k) is a Brownian bridge and σ
2
Z =

∑
∞

j=−∞ Cov(Zj , Z0). Consequently, using an esti-

mator σ̂Z, one can establish that under the null:

sup{|UN(k)|}/σ̂Z →D[0,1] sup{B(k) : kε[0, 1]} (3.4)

which establishes a Kolmogorov-Smirnov type asymptotic distribution. Further details about

the computation of the statistics and its application to multiple breaks in a univariate GARCH

context can be found in Andreou and Ghysels (2002b).

3.2 Least Squares type tests

Liu, Wu and Zidek (1997) and Bai and Perron (1998) have proposed a least squares estimation

procedure to determine the number and location of breaks in the mean of linear processes with
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weakly dependent errors. Their key result is the use of a Hájek-Rényi inequality to establish the

asymptotic distribution of the test procedure. Recent work by Lavielle and Moulines (2000) has

greatly increased the scope of testing for multiple breaks. They obtain similar inequality results

for weakly as well as strongly dependent processes. The number of breaks is estimated via a

penalized least-squares approach similar to Yao (1988). In particular, Lavielle and Moulines

(2000) show that an appropriately modified version of the Schwarz criterion yields a consistent

estimator of the number of change-points. In the present analysis we apply this test to the

following generic model:

Y12,t = µ
∗

k
+ εt t∗

k−1
≤ t ≤ t∗

k
1 ≤ k ≤ r (3.5)

where t∗
0
= 0 and t∗r+1 = T, the sample size. The indices of the breakpoint and mean values µ∗

k,

k = 1, . . . , r are unknown. It is worth recalling that Y12,t is a generic stand-in process. In our

application, equation (3.5) applies to the cross-products of normalized returns for examining

the change-point hypothesis in the conditional covariance of M-GARCH-CCC and -DCC type

models. For dynamic conditional correlation models (3.5) can be augmented to

Y12,t = θ12 + η12Y12,t−1 + v12,t. (3.6)

When the M-GARCH conditional correlation is assumed constant or when dealing with a single

observed factor model (e.g. the market CAPM) with constant correlation, another auxiliary

equation that may yield power for testing the structural breaks hypothesis is the regression

between normalized returns e.g. X1,t = θ′

12
+ η′

12
X2,t + v12,t. Note that this regression is not

strictly equivalent to (3.5) for the conditional covariance that is derived from the M-GARCH-

CCC reduction approach. Nevertheless, it can be considered as another auxiliary regression

that relates to the conditional co-movements between assets in factor models as well as most

conditional mean asset pricing theories. A useful example of this approach can be considered

in the context of the one factor model that is used to model the market CAPM model. Let

rM,t and ri,t be the demeaned returns on the market (indexed by M ) and on the individual firm
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stock i at time t :

rM,t = σM,tuM,t (3.7)

ri,t = βi,trM,t + σi,tui,t (3.8)

where uM,t and ui,t are uncorrelated i.i.d.(0,1) processes, σM,t, σi,t and βi,t are, respectively, the

conditional variance of rM,t, the firm specific variance of ri,t, and the conditional beta of ri,t

with respect to rM,t. Beta is expressed in the following way:

βi,t = Et−1(ri,trM,t)/Et−1(r
2

M,t) := σiM,t/σ
2

M,t (3.9)

In the market CAPM equation (3.8), we divide by the idiosyncratic risk, σi,t, and write ex-

plicitly beta to obtain: ri,t/σi,t = (σiM,t/(σM,tσi,t)(rM,t/σM,t)) + (σi,tzi,t)/σi,t. If we define

the normalized returns by Xi,t and XM,t, then the following regression type model arises:

Xi,t = (σiM,t/(σM,tσi,t))XM,t + zi,t or

Xi,t = ρiM,tXM,t + zi,t (3.10)

where ρiM,t represents the conditional correlation between the returns of the two assets. Two

interesting cases arise in the context of (3.10). If ρiM,t = ρiM then constant conditional correla-

tion implies the process (3.10) is φ−mixing. If ρiM,t is a dynamic conditional correlation then

(3.10) is β−mixing. In both cases the Lavielle and Moulines test can be applied. Note that the

above example is restricted to observable factors and can be extended to n risky assets to obtain

n regressions of normalized returns with the risk adjusted market portfolio. The change-point

could be performed to each equation (3.10) to assess the stability of the co-movements of risky

stocks with the market portfolio.

The Lavielle and Moulines tests are based on the following least-squares computation:

QT (t) = min
µ∗
k
,k=1,...,r

∑r+1

k=1

∑tk

t=tk−1+1
(Y12,k − µk)

2 (3.11)
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Estimation of the number of break points involves the use of the Schwarz or Bayesian infor-

mation criterion (BIC) and hence a penalized criterion QT (t) + βT r, where βT r is a penalty

function to avoid over-segmentation with r being the number of changes and {βT} a decreasing

sequence of positive real numbers. We examine the properties of this test using both the BIC

and the information criterion proposed in Liu, Wu and Zidek (1997) (denoted as LWZ). It is

shown under mild conditions that the change-point estimator is strongly consistent with T rate

of convergence.

4 Monte Carlo Design and Results

In this section we discuss the Monte Carlo study which examines the properties of normalized

returns in univariate and multivariate heteroskedastic parameterizations as well as the proper-

ties of the Kokoszka and Leipus (1998, 2000) and Lavielle and Moulines (2000) change-point

tests applied in a multivariate heteroskedastic setting. The design and results complement the

findings of Andreou and Ghysels (2002 a,b) who propose extensions of the continuous record

asymptotic analysis for rolling sample variance estimators and examine the aforementioned

tests for testing breaks in the dynamics of univariate volatility models.

4.1 Simulation design

The simulated returns processes are generated from the following two types of DGPs: (i) a

univariate GARCH process with Normal and Student’s t errors, and (ii) a multivariate GARCH

process with constant correlation (M-GARCH-CCC) (Bollerslev, 1990) as well as dynamic

correlation such as the vech diagonal specification proposed in Bollerslev, Engle andWooldridge

(1988) (M-GARCH-VDC). The choice of the M-GARCH-CCC and M-GARCH-VDC models

is mainly due to their simplicity and parsimony for simulation and parameterization purposes.

Moreover, the former multivariate design is most closely related to the univariate GARCH for

which the Kokoszka and Leipus (2000) test has been derived. More specifically, the DGPs

examined are:
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(i) Univariate GARCH process:

rq,t = uq,t(σq,t)
1/2, σq,t = ωq + aqr

2

q,t−1 + βqσq,t−1, (4.1)

where rq,t is the returns process generated by the product of the error uq,t which is i.i.d.(0, 1)

with Normal or Student’s t distribution function and the volatility process, σq,t that has a

GARCH(1,1) specification. The process without change points is denoted by q = 0 whereas a

break in any of the parameters of the process is symbolized by q = 1 to denote the null and

the alternative hypotheses, respectively, outlined below.

(ii) Multivariate GARCH process for a pair of assets denoted by (1, 2):

r1,q,t = r1,q,t(h11,q,t)
1/2 + u2,q,th12,q,t (4.2)

r2,q,t = r2,q,t(h22,q,t)
1/2 + u1,q,th12,q,t, t = 1, ..., T and q = 0, 1.

where r1,q,t and r2,q,t are the returns processes that are generated by u1,q,t and u2,q,t i.i.d.(0, 1)

processes and M-GARCH conditional variances:

h11,q,t = ω11,q + a11,qr
2

1,q,t−1 + β11,qh11,q,t−1 (4.3)

h22,q,t = ω22,q + a22,qr
2

2,q,t−1 + β22,qh22,q,t−1

The conditional covariance in the M-GARCH-CCC (Bollerslev, 1990) is given by:

h12,q,t = ρ12,q(h11,q,th22,q,t)
1/2. (4.4)

Similarly the conditional covariance in the M-GARCH-VDC (Bollerslev, Engle and Wooldridge,

1988) is given by:

h12,q,t = ω12,q + a12,qr1,q,t−1r2,q,t−1 + β12,qh12,q,t−1. (4.5)

The models used in the simulation study are representative of financial markets data with a set

of parameters that capture a range of degrees of volatility persistence measured by δ = a+ β.
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The vector parameters (ω, a,β) in (4.1) describes the following Data Generating Processes:

DGP1 has (0.4, 0.1, 0.5) and DGP2 has (0.1, 0.1, 0.7) and are characterized by low and high

volatility persistence, respectively. In order to control the multivariate simulation experiment

the volatility processes in the M-GARCH equations in (4.3) are assumed to have the same

parameterization. The sample sizes of N = 500 and 1000 are chosen so as to examine not only

the asymptotic behavior but also the small sample properties of the tests for realistic samples

in financial time series. For simplicity and conciseness the simulation design is restricted to the

bivariate case whereas it can be extended to n > 2 assets and the tests are applied to the pair

combinations just as in the bivariate model.

The models in (i) and (ii) without breaks (q = 0) denote the processes under the null

hypothesis for which the simulation design provides evidence for the size of the K&L and L&M

tests. The simulation results are discussed in the section that follows. Under the alternative

hypothesis the returns process is assumed to exhibit breaks. Four cases are considered to

evaluate the power of the tests. The simulation study focuses on the single change-point

hypothesis and can be extended to the multiple breaks framework (see for instance, Andreou

and Ghysels, 2002b). In the context of (4.1) we study breaks in the conditional variance

hq,t which can also be thought as permanent regime shifts in volatility at change points πN

(π = .3, .5, .7). Such breaks may have the following sources: HA
1

: A change in the volatility

dynamics, βq. H
B
1

: A change in the intercept, ωq. H
C
1

: A change in the conditional correlation,

given by ρ12,q in (4.4) or by HD
1

: ω12,q or β12,q in (4.5).

The simulation investigation is organized as follows. First we examine some of the proba-

bilistic properties of the normalized returns series generated from univariate and multivariate

GARCH models. Second we investigate the performance of the K&L and L&M tests using the

multivariate normalized returns framework. We test for breaks in the cross-product of nor-

malized returns or the regression of normalized returns. The simulation as well as empirical

analysis is performed using the GAUSS programming language.
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4.2 The standardized returns processes

The statistical properties of daily returns standardized by the volatility filters outlined in sec-

tion (2.3) are discussed in the context of univariate and bivariate dynamic heteroskedastic

structures described above. For the intraday volatility filters and for the purpose of simula-

tion and parameter selection we take the univariate representation of each GARCH process for

alternative sampling frequencies following Drost and Werker (1996, Corollary 3.2) who derive

the mappings between GARCH parameters corresponding to processes with r(m),t sampled with

different values of m. Obviously the Drost and Werker formulae do not apply in multivariate

settings, but they are used here for the marginal process, producing potentially an approxima-

tion error as the marginal processes are not exactly weak GARCH(1,1). Using the estimated

GARCH parameters for daily data with m = 1, one can compute the corresponding parameters

ω(m), α(m), β(m), for any other frequency m. The models used for the simulation study are

representative of the FX financial markets, popular candidates of which are taken to be returns

on DM/US$, YN/US$ exchange rates. We take the daily results of Andersen and Bollerslev

(1998) and compute the implied GARCH(1,1) parameters ω(m), α(m) and β(m) for 1-minute and

5-minutes frequency, m = 1440 and 288, respectively, using the software available from Drost

and Nijman (1993).

The normalized returns transformation is the process of interest following the discussion

in section 2. According to the univariate GARCH process, (4.1), the standardized returns

process Xi,(m) := ri,(m),t/σi,(m),t is by definition i.i.d.(0, 1). The ‘true’ standardized returns of

the univariate GARCH is given for the 1-minute sampling frequency and the corresponding pa-

rameters found in Andreou and Ghysels (2002a). The quadratic variation intraday estimators

defined in section 2.3 are specified by aggregating the ‘true’ squared returns process for 5-, 30-

and 60-minutes sampling frequency. The remaining volatility filters in section 2.3 are the spot

volatilities which are specified here using daily frequencies. The simulation results in Table 1

summarize the statistical properties of the daily returns standardized by the alternative volatil-

ity filters (defined in section 2.2) with respect to their distributional and temporal dependence

dynamic properties. We focus on the univariate GARCH process since it is expected that the
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normalized returns from an M-GARCH process will exhibit second-order dependence due to

unmodelled conditional covariance dynamics. The Normality test results show that in the case

of the Normal GARCH process, there is general simulation evidence that does not support

the Normality hypothesis for most standardized returns series (at the 5% significance level)

except for XQV 1,t and XQV 2,t. Similarly, under the more realistic assumption of a t-GARCH,

arising from the heavy-tailed high-frequency data, we do not find supportive evidence of the

Normality hypothesis in all series except XQV 1,t. Table 1 also presents the simulation results

from testing any remaining ARCH effects in normalized returns. We find evidence in favor

of no remaining second-order dynamics in all risk-adjusted returns by interday and intraday

volatility filters, under both Normal and Student’s t univariate GARCH processes. The results

present evidence that univariate returns process normalized by optimal volatility filters yield an

approximately independent series with a distribution that has different tail behavior depending

on the standardizing filter employed.

4.3 Simulation results of change-point tests

In section 2 we discuss the reduced form approach adopted for M-GARCH models. The first

stage involves the univariate specification and estimation of conditional variance dynamics

which yields the normalized returns process for each asset, X1,t and X2,t. The second stage

involves the specification of the conditional covariance dynamics. For M-GARCH processes the

conditional covariance is specified as the cross-product of pairs of normalized returns for assets

1 and 2 given by Y12,t = X1,tX2,t. The equations for Y12,t which we use for change-point testing

are given by (3.5) and (3.6) which represent the constant and dynamic conditional correlation of

M-GARCH-CCC and M-GARCH-VDC models, respectively. The specification in (3.6) for the

conditional correlation as well its ARMA generalizations have been discussed in Engle (2002)

and Tse and Tsui (2002). The simulation test results focus on N = 1000 and π = 0.5 for

conciseness purposes.

The simulation results for the properties of the Kokoszka and Leipus (K&L) test are reported

in Table 2. We consider the cross product of normalized returns X1,tX2,t (using volatility
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estimators) as well as the ‘true’ simulated cross product of normalized returns given by u1,tu2,t

in (4.2). We focus on the XRV 26,t andXRM,t series which are applicable in a broader sense given

their daily sampling frequency as well as the relationship of the RiskMetricks with IGARCH

models. Note that the empirical analysis considers all volatility filters discussed in section 2.2.

The representative simulation results in Table 2 show that although the K&L test has good size

properties for simulated cross product of normalized returns, u1,tu2,t, it is, however, seriously

undersized for the estimated normalized returns, X1,tX2,t, using either σ̂RV 26,t and σ̂RM,t. The

main result from Table 2 is that the cross-product Y12,t := X1,tX2,t (as opposed to its quadratic

and absolute transformations) as well as σRMY12 yield the highest power under the hypotheses of

change points in the volatility coefficients (HA
1
and HB

1
) as well as the conditional covariance

parameters (HC
1
and HD

1
). It is important to clarify that the normalized returns cross product

process Y12,t has lower power than the true simulated process and has relatively more power in

detecting large change points in the context of the GARCH-CCC than GARCH-VDC model.

The change-point hypothesis in multivariate conditional volatility models is also examined

using the Lavielle and Moulines (L&M) test. Table 3 shows the L&M least squares regression

test results for pairs of normalized returns: X1,t = θ′

12
+ η′

12
X2,t + v12,t, in the context of

the M-GARCH-CCC. The highlighted results show that the BIC yields more power than the

LWZ criterion for the L&M test which detects breaks in both directions and DGPs except

when those are small in size (e.g. a 0.1 parameter change). The results regarding the remaining

alternative hypotheses (HA
1
andHB

1
) show that the L&M test also detects breaks in the bivariate

relationship of normalized returns when the source of these change-points rests in the univariate

GARCH dynamics as well as breaks in the co-movements (HC
1
). The above results also hold

if the simulated process is an M-GARCH-VDC shown in Table 4, except that the size of the

change-point needs to be even larger in either the conditional variance or covariance dynamics

for the test to exhibit power. It is also interesting to note that in comparing the normalizing

volatility filters we find that the regression involving XRM,t yields more power in detecting

change-points in the conditional covariance of the M-GARCH-VDC whereas for the M-GARCH-

CCC both XRM,t and XRV 26,t yield similar power properties.
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5 Empirical Analysis

5.1 Co-movements of FX normalized returns

The empirical section of the paper investigates the bivariate relationship between the daily

YN/US$ and DM/US$ risk adjusted returns over a decade and tests for structural breaks in

their co-movements. The empirical results complement the Monte Carlo analysis by examining

further the stochastic properties of risk-adjusted FX returns and investigate the presence of

structural breaks. The discussion is organized as follows. First, we test the hypotheses of

Normality and independence for all YN/US$ and DM/US$ standardized returns as well as

the statistical adequacy of their regression representation. Second, we examine the stability of

this bivariate relationship by testing for change-points using the Kokoszka and Leipus (2000),

Horváth (1997) as well and Lavielle and Moulines (2000) tests which are valid for heavy tailed

as well as weakly and strongly dependent processes. The timing and numbers of breaks are also

estimated. The data source is Olsen and Associates. The original sample for a decade, from

1/12/1986 to 30/11/1996, is 1,052,064 five-minute return observations (2,653 days · 288 five-

minute intervals per day). The returns for some days were removed from the sample to avoid

having regular and predictable market closures which affect the characterization of the volatility

dynamics. A description of the data removed is found in Andersen, Bollerslev, Diebold and

Labys (2001). The final sample includes 705,024 five-minute returns reflecting 2,448 trading

days.

The statistical properties of daily returns normalized by a number of volatility filters are

examined for the two FX series. First we focus on the temporal dependence and distributional

properties of normalized returns. It is a well documented stylized fact that daily asset returns

are characterized by a martingale difference with second-order temporal dynamics and a dis-

tribution that exhibits heavy-tails. Therefore it would be interesting to examine whether these

purely data-driven volatility filters also adequately capture the second-order dynamics of asset

returns. This is examined by testing the hypothesis of remaining ARCH effects in normalized

returns. The empirical results reported in Table 5 for the YN/US$ and DM/US$ show two
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interesting features. First, for the 5-minute sampling frequency there are no remaining ARCH

effects in any of the standardized returns series which implies that all volatility filters for both

FX series appear equally efficient in capturing the non-linear dynamics. The second and most

important finding is that this result does not extend to lower intraday sampling frequencies such

as 30-minutes as shown by the remaining results in the same tables. Note that the same result

applies to the 60-minute frequency filters which are not reported in the tables merely for concise-

ness purposes. The presence of ARCH effects in most of the lower frequency normalized returns

suggests that the volatility filter and in particular its window length and estimation method are

important in yielding a normalized returns process that captures all the nonlinear dynamics.

The continuous record asymptotic analysis for the efficiency of rolling volatility filters in Foster

and Nelson (1996) yields the optimal window length for different intraday sampling frequencies

as discussed in Andreou and Ghysels (2002a). These theoretical asymptotic predictions of effi-

ciency gain empirical support in Table 5 for the 30-minute sampling frequencies and both FX

series. In particular, we find that the normalized returns based on rolling intraday volatility

filters given by XHQV i,t, i = k, �, where k = 4, 8 and � = 6, 12 days for the 30- and 60-minutes

frequencies, respectively, capture the second-order dynamics exhibited by the FX returns at

the 5% significance level. The spot volatility filters XRM,t, XRV 26,t and XRV 52,t present mixed

empirical evidence regarding the nonlinear temporal dependence at the 5% significance level.

Yet at the 10% level the first two filters provide support for the null of no ARCH. Similar mixed

results are obtained in Table 6 regarding the linear temporal dynamics for FX returns. Sum-

marizing, the empirical results in Tables 5 and 6 show that the temporal dependence properties

of normalized returns depend on the window length and estimation method of the volatility

filter for intraday sampling frequencies. The normalized returns series XHQV i,t, i = k, �, where

k = 4, 8 and � = 6, 12 days, for 30- and 60-minutes, respectively, present empirical support for

no remaining linear or second-order dependence especially for the YN/US$ normalized returns.

The nonlinear and linear dependence results for spot volatilities and XQV 1,k,�, especially for the

DM/US$, provide evidence of weak and strong temporal dependence.

The distributional properties of normalized returns are assessed in Table 7 for the YN/US$
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and DM/US$. Both the Jarque and Bera (1980) and Anderson and Darling (1954) test results

provide no empirical support of the Normality hypothesis (at the 10% significance level) for

any of the daily standardized returns series, mainly due to excess kurtosis in both the spot

volatility (SV ) normalized returns, XSV,t, as well as the X(H)QV,t series. The exception to

this result is XQV 1,t which appears to support the Normality hypothesis only for the 5-minute

sampling frequency. Nevertheless at the lower sampling frequencies XQV 1,t is also non-Normal.

At the 5-minute sampling frequency the sample skewness and kurtosis coefficients suggest that

the empirical distributions for all standardized returns are leptokurtic except for XQV 1,t which

actually appears to be platykurtic with sample kurtosis coefficient below 3 for all intraday

frequencies. Moreover, it is interesting to note that a longer window length beyond one day in

QV filters as well as rolling instead of block sampling estimation methods yield excess kurtosis

in the empirical distribution. It is worth noting that the daily and most intraday volatility

filters result in non-Normality due to both excess kurtosis and in most cases asymmetry. This

result may be due to an underlying non-Normal distribution and/or the presence of jumps and

breaks in the risk adjusted returns process.

Summarizing, the univariate empirical analysis of the standardized returns presents the

following four results. First, the efficiency of volatility filters plays an important role in terms

of capturing all the second-order dynamics exhibited by returns. This efficiency depends on

the sampling frequency, window length and estimation method. The combination of rolling

estimation and optimal window produces nearly independent standardized FX returns series.

Second, temporal aggregation of intraday returns requires a longer lag of volatility so as to

capture the dependence in normalized returns and the empirical findings support the continuous

record asymptotics of the efficiency of volatility filters. Third, the empirical tail behavior

implied by XQV,t and XHQV,t differ and the latter are found to be relatively more leptokurtic.

Moreover, as the window length increases for both QV and SV filters, the distribution of the

respective standardized returns becomes more leptokurtic.

The above results suggest that the ratio transformation of daily returns-to-volatility based

on data-driven volatility filters can yield a process with a relatively simple statistical structure.
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Hence we proceed to examine the multivariate relationship of normalized returns in a regres-

sion context. First we examine the dynamic structure of risk adjusted returns using Granger

causality tests and the existence of a linear regression relationship for YN/US$ and DM/US$

normalized returns. Table 6 also presents these results for the bidirectional causality between

the YN/US$ and DM/US$ risk adjusted returns. It is shown that there is no significant empir-

ical evidence of a lead-lag relationship between the co-movements of the two FX series. This

result appears robust to the different specifications of volatility and sampling frequencies, the

choice of lag length in the VAR(p) representation for studying the causality relationship as well

as when that is augmented by the contemporaneous regressor. In contrast to the inexistence of

a dynamic relationship between risk adjusted returns there is significant correlation between the

YN/US$ and DM/US$ standardized returns. This is examined using two methods. The first

method applies the Tse (2000) test (which has good properties in the presence of non-normality)

for which the two FX standardized returns provide empirical evidence that supports that null

hypothesis of constant conditional correlation. The second method examines the relationship

of the two normalized FX returns using the simple linear regression OLS results in Table 8

for the 5- and 30-minute frequencies. In all cases the estimated regression coefficient is highly

significant and ranges from 0.6 to 0.75 as representing the contemporaneous covariance struc-

ture of standardized returns in the DM and YN vis-a-vis the US$. The statistical adequacy of

this regression relationship is examined and the reported residual misspecifications tests. All

regression results forXSV,t andX(H)QV,t support the independence hypothesis (except XQV 1,t in

the 30-minute sampling frequency). Similarly, the empirical results show that the static regres-

sions exhibit non-Normal conditional distribution for the two FX risk adjusted returns. These

results open the route for regression type techniques in detecting change-points and suggest

that the empirical conditional covariance process does not exhibit significant dynamics.

5.2 Empirical evidence for breaks in FX co-movements

The above empirical regularities of the DM/US$ and YN/US$ normalized returns satisfy the

conditions of the least squares methods in Bai and Perron (1998) and Lavielle and Moulines
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(2000) as well as the CUSUM test of Horváth (1997) and Kokoszka and Leipus (1998, 2000)

discussed in section 3.

The K&L change-point test results for the conditional covariance between the DM/US$

and YN/US$ are reported in Table 9. The results show that the univariate normalized returns

(using any volatility filter transformation) appear to be time-homogeneous processes. However,

for the cross-product of the two FX normalized returns the K&L test shows that there is strong

evidence of a change-point in their co-movements. The breaks are detected in all specifications

of normalized returns and they occur at the same point in time, namely at 23/3/1995 at which

the sequential statistic first exceeds the 5% control limit. This event is related to a period of

high uncertainty and a series of bilateral interventions by the Bank of Japan and the Fed (see

for instance the Asian Wall Street Journal). It is worth mentioning the parametric CUSUMSQ

test (Brown, Durbin and Evans, 1975) also presents empirical evidence for the instability in the

linear regression of the two FX risk adjusted returns. However, we emphasize that these results

are based on the statistical adequacy of the Normal, linear regression model. The presence

of heavy tailed distributions in normalized returns (or generally deviations from Normality)

requires more efficient statistical inference methods for testing the existence of breaks. Similarly,

although the parametric CUSUM is robust to deviations from Normality this result does not

extend to the CUSUM of squares (Ploberger and Kramer, 1986). Note that an application of

the parametric CUSUM does not detect any change-points.

These results are complemented by testing for multiple breaks using the L&M regression

method and the two information criteria, BIC and LWZ, also reported in Table 9. Given the

empirical results in the previous section which support a static regression framework for the

two FX normalized returns, we apply the L&M test in the context of equation (3.10). The

number and timing of breaks detected (reported in Table 9) not only vary depending on the

information criterion but also on the specification of normalized returns. The general result is

that the tests choose between zero, one and two change-points and the break dates are relatively

more consistent for X(H)QV,t using both criteria. This is also related to the empirical results

comparing the different normalizations. The two change-points detected are associated with
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the events of the US stock market crash in October 1987 and the period before the repeated

bilateral FX market interventions in March 1995. From the simulation results we learn that the

BIC criterion is relatively more powerful and this is complemented by the empirical evidence

which in most cases detects two change-points. Concluding we find that the co-movements

in YN/US$ and DM/US$ risk adjusted returns for the most efficient class of filters present

evidence for change-points using the recent CUSUM and least-squares methods in K&L and

L&M, respectively. Both approaches yield consistent results about the change-points in the

co-movements whereas the latter procedure complements the former by detecting an additional

break in the sample.

6 Conclusions

We propose reduced form procedures designed to uncover breaks in the co-movements of finan-

cial markets via testing for change-points in linear relationships involving returns normalized

by conditional volatility. There are several advantages to using normalized returns. Among

the advantages we noted that (1) the covariance of normalized returns capture conditional

correlations, (2) they reduce the complexity of multivariate volatility models along the same

lines as Engle (2002), Engle and Sheppard (2002) and Tse and Tsui (2002), (3) they enable

us to adopt two-stage procedure consisting of a purely data-driven nonparametric first stage

and a semiparametric second stage. Though our procedures shares some features with the

two-stage estimation procedure of DCC models, we take a reduced form view that suffices for

the change-point test purpose. Since the parametric structure of the volatility co-movements

are largely left unspecified we cover a larger class of multivariate specifications, including fac-

tor ARCH models. Another main advantage of employing the two-step procedure is that the

statistical inference methods allow for departures from normality and therefore are robust to

heavy tailed distributions. It should also be noted that the returns-to-volatility process and

related measures are used often to appraise portfolio performance. Such measures include the

Treynor ratio which is the square of the Sharpe ratio (Treynor and Black, 1973). Our two-stage
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procedure also applies to various alternative functional forms of normalized returns. Hence,

we can examine structural breaks in Treynor-Black and other measures, and again not require

normality assumptions to do so (similar to the Jobson and Korkie (1980,1981) approach for the

Normal case).

We document, using a ten year period from 1986 to 1996 of YN/US$ and DM/US$ series,

that regression models with non-Gaussian errors describe adequately their co-movements. We

find that the co-movements in YN/US$ and DM/US$ risk adjusted returns for the most efficient

class of filters present evidence for change-points using both the Kokoszka and Leipus (2000)

and Lavielle and Moulines (2000) tests. These structural breaks are associated with the 1987

stock market crisis as well as the 1995 bilateral FX interventions of the Bank of Japan and the

Fed.

In the paper we restrict the simulation and empirical investigations in bivariate models.

Extensions to the multidimensional vector of n assets are routes for further research. The

methods proposed can be adapted to examine the n−homogeneity of the conditional correla-

tion of the cross-section of assets when n is large in the context of M-GARCH-CCC models

in a similar way to Horváth, Kokoszka and Steinebach (1999) for the mean of n-dependent

observations. In addition, the nonparametric testing approach presented here can be comple-

mented with parametric methods for identifying the different sources of structural change in the

variance-covariance dynamics. Further research in a system of conditional covariance equations

for testing change-points is a useful extension of the present analysis.
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Table 1: Monte Carlo Simulations of MSEs and MAEs Ratios, Normality and Second-order Dependence
Test Results for Daily FX Xi=Returns/Volatilitiesi of YN/US$

calculated at the 5-minute frequency
Jarque Bera Normality Test

N-GARCH t-GARCH

JB JB

X(RM) 113.8 3254

(0.000) (0.000)

X(RV26) 266.7 2735

(0.000) (0.000)

X(RV52) 1368 13587

(0.000) (0.000)

X(QV1) 2.132 4.169

(0.447) (0.215)

X(QV2) 6.514 19.15

(0.190) (0.010)

X(QV3) 24.48 100.9

(0.006) (0.000)

X(HQV1) 388.4 9056

(0.018) (0.000)

X(HQV2) 555.3 26687

(0.000) (0.000)

X(HQV3) 1253 38579

(0.000) (0.000)

ARCH Test

N-GARCH t-GARCH

ARCH(5) ARCH(5)

0.921 0.623

(0.536) (0.701)

0.921 0.623

(0.536) (0.701)

0.705 0.599

(0.730) (0.730)

0.986 1.030

(0.496) (0.491)

1.262 1.886

(0.392) (0.210)

1.354 2.063

(0.366) (0.166)

1.354 1.324

(0.358) (0.470)

1.550 1.367

(0.369) (0.474)

1.350 1.155

(0.407) (0.497)

Note: The simulation design is described in section 3. We consider Normal and Student’s t (with 6 degrees of freedom) GARCH processes. The volatility filters are

defined in the end of section 2.2. The standardized returns are tested for Normality using the Jarque-Bera (JB) test. We examine any remaining second-order

temporal dependence in standardized returns using the ARCH test with the corresponding lag length in the parenthesis. Similar results were obtained for alternative

lag lengths. p-values are reported below the test statistics in the parenthesis. The total sample size is 2500 observations which is adjusted for the subsample of 2250

due to the standardized returns by rolling volatilities.



Table 2: Size and Power of the Kokoszka and Leipus (2000) test for a change-point in the comovements of
normalized returns

Statistic: Umax/σVARHAC Sample: N = 1000 Change-point timing:π = 0.5

Processes True errors X1RV26 ∗ X2RV26 X1RM ∗ X2RM

Transformations u1,tu2,t u1,tu2,t 
2 |u1,tu2,t | X1,tX2,t X1,tX2,t 

2 |X1,tX2,t | X1,tX2,t X1,tX2,t 
2 |X1,tX2,t | σX1,tX2,t

RM

Bivariate GARCH with Constant Conditional Correlation

H0 : ω i,0,α i,0,β i,0 

DGP1: (0.4, 0.1, 0.5) 0.053 0.044 0.049 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DGP2: (0.1, 0.1, 0.8) 0.086 0.063 0.081 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H1
A : Break in the dynamics of volatility, β i,j,0, β i,j,1, i, j = 1,2

DGP1: (0.5, 0.8) 0.999 0.910 0.998 0.622 0.069 0.068 0.792 0.052 0.076 0.128

DGP1: (0.5, 0.1) 0.387 0.751 0.478 0.279 0.014 0.000 0.400 0.022 0.002 0.504

DGP2: (0.8, 0.5) 0.999 0.830 0.889 0.998 0.401 0.263 0.508 1.000 0.422 0.669

H1
B : Break in the constant of volatility, ω i,j,0,ω i,j,1, i, j = 1,2

DGP1: (0.4, 0.2) 0.745 0.369 0.466 0.281 0.017 0.001 0.402 0.016 0.002 0.490

DGP2: (0.1, 0.2) 0.812 0.541 0.707 0.058 0.006 0.000 0.097 0.004 0.000 0.036

H1
C : Break in the correlation coefficient, ρ12,0,ρ12,1

DGP1: (0.5,0.8) 0.965 0.807 0.933 0.155 0.007 0.000 0.296 0.005 0.004 0.103

DGP1: (0.5,0.3) 0.958 0.652 0.702 0.915 0.085 0.003 0.913 0.094 0.010 0.849

DGP2: (0.5,0.3) 0.961 0.620 0.733 0.890 0.090 0.009 0.925 0.088 0.016 0.407

DGP2: (0.5,0.8) 0.961 0.796 0.908 0.176 0.017 0.003 0.293 0.009 0.003 0.070

Bivariate GARCH with time Varying Conditional Correlation

H1
D : Break in the covariance dynamics, β12,0, β12,1

DGP1: (0.5,0.1) 0.989 0.961 0.995 0.000 0.000 0.000 0.000 0.000 0.000 0.014

DGP2: (0.8,0.4) 1.000 0.967 0.997 0.007 0.050 0.001 0.153 0.005 0.003 0.283

Note: (1) The Kokoszka and Leipus (2000) test statistic is Uk =
1
T
∑j=1

k Xj
2
−

k
T

1
T
∑j=1

T Xj
2 . The maxUTk is standardized by the VARHAC

estimator, σVARHAC, which is applied to the Xt transformation from the multivariate GARCH model. The normalized statistic Umax/σVARHAC converges to the

sup of a Brownian Bridge with asymptotic critical value 1.36 at the 5% significance level. (2) The simulated bivariate GARCH models refer to the

GARCH-CCC (Constant Conditional Correlation) in equations (4.2), (4.3), (4.4) and the GARCH-VDC (Varying Conditional Correlation) in equations (4.2),

(4.3), (4.5). The model is simulated (1,000 replications) where the superscirpts 1 and 0 in the variables and coefficients in the Table denote the cases with and

without change-points, respectively. Under the alternative hypotheses H1
A, H1

B the change in parameters refer to both GARCH processes. Under the

alternative hypotheses H1
C, H1

D we assess the change in the conditional covariance.



Table 3: Size, Power and Frequency Distribution of the number of change-points obtained with the Lavielle
and Moulines (2000) test when there is a single break in a M-GARCH with constant conditional correlation.

Samples, T = 1000 and change point, π = 0.5 and Segments, tk = 5

Normalized returns regression Xσi,t
k  = a + bX σj,t

k
+ ut

Volatility Filter, σi,t
k σt

RV26 σt
RM

Lavielle & Moulines BIC LWZ BIC LWZ

Number of Breaks 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2

H0 : ωi,0,αi,0,βi,0

DGP1: (0.4, 0.1, 0.5) 1.00 0.00 0.00 1.00 0.00 0.00 0.98 0.02 0.00 1.00 0.00 0.00

DGP2: (0.1, 0.1, 0.8) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

H1
A : Break in the dynamics of volatility with parameters β0,β1

DGP1: 0.5,0.8 0.00 1.00 0.00 0.44 0.56 0.00 0.00 0.98 0.02 0.38 0.62 0.00

DGP1: 0.5,0.1 0.70 0.30 0.00 1.00 0.00 0.00 0.48 0.52 0.00 1.00 0.00 0.00

DGP2: 0.8,0.7 0.02 0.96 0.02 0.98 0.02 0.00 0.88 0.12 0.00 1.00 0.00 0.00

DGP2: 0.8,0.5 0.02 0.96 0.02 0.98 0.02 0.00 0.04 0.94 0.02 0.94 0.06 0.00

H1
B : Break in the constant of volatility with parameters ω0,ω1

DGP1: 0.4,0.1 0.04 0.96 0.00 0.92 0.08 0.00 0.06 0.94 0.00 0.94 0.06 0.00

DGP1: 0.4,0.8 0.10 0.90 0.00 1.00 0.00 0.00 0.20 0.80 0.00 1.00 0.00 0.00

DGP2: 0.1,0.3 0.10 0.90 0.00 1.00 0.00 0.00 0.96 0.04 0.00 1.00 0.00 0.00

H1
D : Break in the correlation coefficient ρ12,0,ρ12,1

DGP1: 0.5,0.3 0.00 1.00 0.00 0.88 0.12 0.00 0.00 1.00 0.00 0.78 0.22 0.00

DGP1: 0.5,0.8 0.00 1.00 0.00 0.26 0.74 0.00 0.00 0.95 0.05 0.35 0.65 0.00

DGP2: 0.5,0.3 0.02 0.98 0.00 0.92 0.08 0.00 0.00 0.98 0.02 0.88 0.12 0.00

DGP2: 0.5,0.8 0.00 1.00 0.00 0.30 0.70 0.00 0.88 0.12 0.04 1.00 0.00 0.00

Notes: The Lavielle and Moulines (2000) test is described in section 1.2. The Bayesian Information Criterion (BIC) and its modification by Liu et al. (1997)

denoted as LWZ are used. The simulations focus on DGP1, DGP2, T = 1000 for 500 trials. For comparison purposes the alternative hypotheses of change

points are similar to the K&L simulations (Table 2) and extended to larger breaks. Reported is the frequency distribution of the breaks detected. The

highlighted numbers refer to the true number of change-points in the simulated process. The simulated model is given by equations (4.2), (4.3), (4.4).



Table 4: Size, Power and Frequency Distribution of the number of change-points obtained with the Lavielle
and Moulines (2000) test when there is a single break in a M-GARCH with dynamic conditional covariance.

Samples, T = 1000 and change point, π = 0.5

Normalized returns regression Xσi,t
k  = a + bX σj,t

k
+ ut

Volatility Filter, σi,t
k σt

RV26 σt
RM

Lavielle & Moulines BIC LWZ BIC LWZ

Segments, tk = 5

Number of Breaks 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2

H0 : ωi,0,αi,0,βi,0

DGP1: (0.4, 0.1, 0.5) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP2: (0.1, 0.1, 0.8) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

H1
A : Break in the dynamics of volatility with parameters β0,β1

DGP1: 0.5,0.8 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.95 0.05 0.00

DGP1: 0.5,0.1 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP2: 0.8,0.7 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP2: 0.8,0.5 0.54 0.46 0.00 1.00 0.00 0.00 0.59 0.41 0.00 1.00 0.00 0.00

H1
B : Break in the constant of volatility with parameters ω0,ω1

DGP1: 0.4,0.5 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP1: 0.4,0.8 0.80 0.20 0.00 1.00 0.00 0.00 0.44 0.56 0.00 1.00 0.00 0.00

DGP2: 0.1,0.3 0.14 0.86 0.00 1.00 0.00 0.00 0.01 0.99 0.00 1.00 0.00 0.00

DGP2: 0.1,0.2 0.96 0.04 0.00 1.00 0.00 0.00 0.98 0.02 0.00 1.00 0.00 0.00

H1
C : Break in the constant of the conditional covariance coefficient ω12,0,ω12,1

DGP1: 0.4,0.1 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.26 0.74 0.00

DGP1: 0.4,0.8 0.80 0.20 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.22 0.78 0.00

DGP2: 0.1,0.3 0.10 0.90 0.00 1.00 0.00 0.00 0.96 0.04 0.00 1.00 0.00 0.00

H1
D : Break in the dynamics of the conditional covariance coefficient b12,0,b12,1

DGP1: 0.5,0.8 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.94 0.06 0.00

DGP1: 0.5,0.1 1.00 0.00 0.00 1.00 0.00 0.00 0.42 0.58 0.00 1.00 0.00 0.00

DGP2: 0.8,0.5 0.00 1.00 0.00 0.92 0.08 0.00 0.00 1.00 0.00 0.66 0.34 0.00

Notes: As in the notes of Table 3. The simulated model is given by equations (4.2), (4.3), (4.5).



Table 5: Nonlinear Dependence Test Results for Daily YN/US$ and DM/US$ Standardized Returns
based on various intraday sampling frequencies

YN/US$

5min. frequency 30min. frequency

X(i) ARCH(1) ARCH(5) ARCH(1) ARCH(5)

p-value p-value p-value p-value

X(RM) 0.361 0.257 3.072 0.868

(0.548) (0.936) (0.079) (0.501)

X(RV26) 0.387 1.278 5.736 1.938

(0.534) (0.270) (0.017) (0.085)

X(RV52) 0.026 0.257 13.326 4.229

(0.872) (0.936) (0.000) (0.001)

X(QV1) 2.314 0.921 4.099 1.553

(0.128) (0.466) (0.043) (0.170)

X(QVk) 2.254 0.900 5.266 2.169

(0.133) (0.480) (0.022) (0.055)

X(QVℓ) -0.011 0.741 0.105 0.929

(0.553) (0.593) (0.745) (0.461)

X(HQV1) 4.801 1.604 8.037 3.074

(0.029) (0.155) (0.005) (0.009)

X(HQVk) 0.836 1.197 0.035 1.705

(0.361) (0.308) (0.851) (0.130)

X(HQVℓ) 0.006 1.008 0.542 1.006

(0.936) (0.412) (0.462) (0.412)

DM/US$

5min. frequency 30min. frequency

ARCH(1) ARCH(5) ARCH(1) ARCH(5)

p-value p-value p-value p-value

0.039 0.199 3.972 2.860

(0.843) (0.963) (0.049) (0.014)

1.601 0.843 4.375 2.126

(0.206) (0.519) (0.037) (0.059)

1.120 2.491 10.772 2.974

(0.289) (0.029) (0.001) (0.011)

6.517 2.535 9.001 3.330

(0.011) (0.027) (0.003) (0.005)

5.271 2.392 9.284 4.078

(0.022) (0.036) (0.002) (0.001)

1.143 2.453 5.738 2.421

(0.285) (0.032) (0.017) (0.034)

7.173 2.654 13.274 4.446

(0.008) (0.021) (0.000) (0.000)

2.074 2.338 1.193 3.099

(0.149) (0.039) (0.275) (0.009)

0.855 2.494 0.074 1.067

(0.355) (0.029) (0.786) (0.377)

Note: The volatility filters are defined in section 2.2. The data set refers to the 5-minute YN/US$ from 1/12/86 to 30/11/96 which yields a daily sample size of T=2446 days

and is adjusted for a subsample of 2346, excluding the first 100 observations as a result of the rolling volatility estimators. The window lengths k=2,4,6 and l=3,8,12 days for the 5-,

30- and 60-minutes frequency, respectively. The ARCH test for alternative lag lengths and respective p-values in parentheses are reported.



Table 6: Linear Dependence and Granger Causality Test Results for Daily YN/US$ and DM/US$
Standardized Returns based on various intraday sampling frequencies

YN/US$

5min. frequency 30min. frequency

Xi LM(1) LM(5) LM(20) LM(1) LM(5) LM(20)

XRM 0.361 0.674 1.283 7.347 3.048 2.417

(0.548) (0.644) (0.179) (0.007) (0.009) (0.000)

XRV26 0.114 0.813 1.253 8.244 3.307 2.397

(0.735) (0.540) (0.201) (0.004) (0.006) (0.001)

XRV52 0.376 0.473 1.365 9.779 3.557 2.386

(0.539) (0.797) (0.129) (0.002) (0.003) (0.000)

XQV1 2.007 1.298 1.949 2.353 1.511 2.068

(0.157) (0.262) (0.021) (0.125) (0.183) (0.004)

XQVk 0.716 0.824 1.585 0.807 0.891 1.622

(0.398) (0.532) (0.048) (0.369) (0.486) (0.039)

XQVℓ 0.559 1.191 1.482 0.154 1.048 0.074

(0.454) (0.311) (0.077) (0.695) (0.387) (0.785)

XHQV1 0.782 0.773 1.455 0.699 0.629 1.536

(0.377) (0.569) (0.087) (0.403) (0.678) (0.060)

XHQVk 0.522 0.674 1.455 0.393 0.624 1.420

(0.470) (0.643) (0.087) (0.531) (0.682) (0.102)

XHQVℓ 0.452 0.596 1.427 0.075 0.628 1.208

(0.502) (0.703) (0.099) (0.784) (0.679) (0.237)

DM/US$

5min. frequency 30min. frequency

LM(1) LM(5) LM(20) LM(1) LM(5) LM(20)

0.326 1.127 0.792 5.093 1.604 1.805

(0.568) (0.344) (0.726) (0.024) (0.156) (0.016)

0.682 1.197 0.847 5.745 1.687 1.755

(0.409) (0.308) (0.657) (0.017) (0.134) (0.020)

0.183 1.255 0.759 4.913 1.341 1.832

(0.669) (0.281) (0.765) (0.027) (0.244) (0.014)

0.098 1.311 0.883 0.278 1.556 1.112

(0.754) (0.257) (0.610) (0.598) (0.169) (0.328)

0.003 1.088 0.876 0.010 1.217 0.918

(0.955) (0.365) (0.619) (0.919) (0.299) (0.564)

0.239 1.242 0.907 0.005 1.194 0.917

(0.625) (0.287) (0.579) (0.944) (0.308) (0.563)

0.010 0.951 0.829 0.029 0.974 0.839

(0.919) (0.447) (0.680) (0.864) (0.432) (0.665)

0.167 1.071 0.891 0.849 1.209 0.922

(0.683) (0.375) (0.599) (0.357) (0.302) (0.559)

0.568 1.054 1.227 0.622 1.271 0.928

(0.451) (0.384) (0.221) (0.430) (0.274) (0.550)

Granger Causality Test Results between

YN(.) and DM(.) Normalized Returns

Direction of Causality 5-minute 30-minute

F-test p-value F-test p-value

YN(RM_1), DM(RM) 0.315 (0.575) 0.038 (0.846)

2.807 (0.094) 4.659 (0.031)

YN(RV26_1), DM(RV26) 0.099 (0.753) 0.003 (0.959)

2.694 (0.101) 4.135 (0.042)

YN(RV52_1), DM(RV52) 0.436 (0.509) 0.050 (0.822)

3.434 (0.064) 4.034 (0.045)

YN(QV1_1), DM(QV1) 0.678 (0.400) 0.255 (0.614)

3.278 (0.070) 3.669 (0.056)

YN(QVk_1), DM(QVk) 0.927 (0.336) 0.688 (0.407)

3.159 (0.079) 2.766 (0.096)

YN(QVℓ_1), DM(QVℓ) 0.492 (0.482) 0.163 (0.686)

2.743 (0.098) 1.799 (0.179)

YN(HQV1_1), DM(HQV1) 1.203 (0.273) 0.974 (0.324)

2.975 (0.085) 2.467 (0.117)

YN(HQVk_1), DM(HQVk) 0.849 (0.357) 0.789 (0.374)

3.202 (0.074) 2.452 (0.117)

YN(HQVℓ_1), DM(HQVℓ) 0.734 (0.392) 0.259 (0.611)

3.063 (0.080) 2.253 (0.134)

Note: The volatility filters are defined in section 2.2. The data set refers to the 5-minute YN/US$ from 1/12/86 to 30/11/96 which yields a daily sample size of T=2446 days and is adjusted for a subsample of 2346, excluding the first 100 observations as a

result of the rolling volatility estimators. The window lengths k=2,4,6 and l=3,8,12 days for the 5-, 30- and 60-minutes frequency, respectively. The sample linear dependence hypothesis is examined using Lagrange Multiplier (LM) tests for alternative lag

lengths along with their respective p-values. The normalized returns YN(.) and DM(.) denote the YN/US$ and DM/US$ risk adjusted returns, respectively. The direction of noncausality runs from the lagged variable to the contemporaneous one. The reverse

causality for each case is given by the second line of each pair of normalized returns.



Table 7: Normality Test Results for Daily YN/US$ Standardized Returns
based on various intraday sampling frequencies

YN/US$

5min. frequency 30min. frequency

Xi Sk. AD BJ Sk. AD BJ

Kr. p-value p-value Kr. p-value p-value

XRM -0.215 4.305 51.511 -0.174 9.062 167.08

3.585 (0.000) (0.000) 4.260 (0.000) (0.000)

XRV26 -0.251 7.566 148.74 -0.226 15.403 446.74

4.127 (0.000) (0.000) 5.089 (0.000) (0.000)

XRV52 -0.309 11.196 327.21 -0.380 25.022 1471.9

4.722 (0.000) (0.000) 6.805 (0.000) (0.000)

XQV1 -0.030 0.558 1.064 -0.055 1.029 10.407

2.915 (0.149) (0.588) 2.693 (0.010) (0.000)

XQVk -0.091 2.720 35.943 -0.093 1.384 12.914

3.579 (0.000) (0.000) 3.312 (0.001) (0.000)

XQVℓ -0.113 5.598 105.5 -0.192 7.459 151.9

3.992 (0.000) (0.000) 4.193 (0.000) (0.000)

XHQV1 -0.138 5.248 120.04 -0.134 3.355 59.811

4.073 (0.000) (0.000) 3.736 (0.000) (0.000)

XHQVk -0.191 8.683 245.61 -0.149 9.976 314.04

4.539 (0.000) (0.000) 4.769 (0.000) (0.000)

XHQVℓ -0.202 10.719 327.82 -0.179 11.298 380.72

4.787 (0.000) (0.000) 4.943 (0.000) (0.000)

DM/US$

5min. frequency 30min. frequency

Sk. AD BJ Sk AD BJ

Kr. p-value p-value Kr. p-value p-value

-0.012 1.890 8.210 0.142 7.589 170.59

3.289 (0.000) (0.017) 4.290 (0.000) (0.000)

-0.019 4.233 55.713 0.256 12.430 451.08

3.754 (0.000) (0.000) 5.086 (0.000) (0.000)

-0.030 6.788 132.50 0.277 19.598 1359.3

3.989 (0.000) (0.000) 6.688 (0.000) (0.000)

-0.011 0.418 6.605 -0.012 1.214 17.845

2.741 (0.328) (0.037) 2.573 (0.004) (0.000)

-0.005 0.880 2.479 -0.004 0.491 0.256

3.159 (0.024) (0.289) 3.051 (0.219) (0.880)

-0.021 1.945 3.292 0.009 3.215 3.699

3.359 (0.000) (0.001) 3.194 (0.000) (0.157)

-0.110 2.942 132.12 -0.092 2.676 82.549

4.142 (0.000) (0.000) 3.902 (0.000) (0.000)

-0.082 4.649 151.52 -0.059 5.664 132.39

4.235 (0.000) (0.000) 4.159 (0.000) (0.000)

-0.054 5.555 154.06 -0.099 6.671 280.06

4.251 (0.000) (0.000) 4.683 (0.000) (0.000)

Note: The volatility filters are defined in section 2.2. The data set refers to the 5-minute YN/US$ from 1/12/86 to 30/11/96 which yields a daily sample size of T=2446 days and is adjusted for a subsample of 2346, excluding the first 100 observations as a

result of the rolling volatility estimators. The window lengths k=2,4,6 and l=3,8,12 days for the 5-, 30- and 60-minutes frequency, respectively. The sample Skewness and Kurtosis (Sk and Kr., respectively) are reported. The test statistics reported refer to the

Anderson-Darling (AD), Bera-Jarque (BJ) along with their respective p-values.



Table 8: Linear Regression Results of Daily YM/US$ on DM/US$ Standardized Returns based on Intra-day Sampling Frequencies
5-minute sampling frequency

OLS results Residual Misspecification results

X⋅ const. beta BJ Sk. ARCH(1) ARCH(5) LM(1) LM(5)

p-value p-value p-value Kr. p-value p-value p-value p-value

XRM -0.017 0.603 601.95 -0.566 2.468 1.115 1.220 0.702

(0.276) (0.000) (0.000) 5.209 (0.116) (0.350) (0.269) (0.622)

XRV26 -0.021 0.604 884.21 -0.597 1.847 1.091 1.298 0.917

(0.208) (0.000) (0.000) 5.760 (0.174) (0.363) (0.225) (0.469)

XRV52 -0.023 0.603 1542.4 -0.766 4.217 1.987 1.619 0.729

(0.172) (0.000) (0.000) 6.664 (0.040) (0.078) (0.203) (0.601)

XQV1 0.004 0.605 54.153 -0.223 1.508 3.238 0.394 0.440

(0.759) (0.000) (0.000) 3.595 (0.219) (0.006) (0.530) (0.821)

XQV2 -0.004 0.607 284.72 -0.400 0.507 1.524 1.603 1.524

(0.784) (0.000) (0.000) 4.507 (0.476) (0.179) (0.206) (0.179)

XQV3 -0.003 0.609 283.44 -0.397 0.513 1.538 1.540 0.588

(0.821) (0.000) (0.000) 4.505 (0.474) (0.175) (0.215) (0.709)

XHQV1 -0.0002 0.607 442.81 -0.422 0.069 0.959 2.335 0.599

(0.861) (0.000) (0.000) 4.902 (0.793) (0.442) (0.127) (0.701)

XHQV2 -0.0003 0.603 1117.7 -0.614 0.174 0.675 2.418 0.607

(0.611) (0.000) (0.000) 6.152 (0.676) (0.643) (0.120) (0.694)

XHQV3 -0.0003 0.602 1435.1 -0.662 0.420 0.679 2.274 0.598

(0.530) (0.000) (0.000) 6.597 (0.517) (0.639) (0.132) (0.702)

30-minute sampling frequency

OLS results Residual Misspecification results

const. beta BJ Sk. ARCH(1) ARCH(5) LM(1) LM(5)

p-value p-value p-value Kr. p-value p-value p-value p-value

-0.032 0.746 52786 -2.068 0.010 0.073 1.749 2.569

(0.011) (0.000) (0.000) 25.862 (0.919) (0.996) (0.186) (0.025)

-0.032 0.743 84087 2.463 0.022 0.044 0.854 2.345

(0.024) (0.000) (0.000) 31.907 (0.883) (0.999) (0.355) (0.039)

-0.038 0.722 175997 -3.336 1.229 0.039 1.229 2.051

(0.009) (0.000) (0.000) 44.895 (0.268) (0.999) (0.268) (0.069)

0.007 0.600 31.273 -0.193 0.786 3.492 0.180 0.459

(0.659) (0.000) (0.000) 3.414 (0.375) (0.004) (0.671) (0.807)

0.0006 0.607 183.84 -0.329 0.475 1.789 1.281 0.523

(0.971) (0.000) (0.000) 4.204 (0.491) (0.112) (0.258) (0.759)

-0.016 0.618 609.2 -0.485 1.535 0.350 1.028 0.499

(0.016) (0.016) (0.000) 5.244 (0.215) (0.882) (0.311) (0.777)

0.0002 0.605 201.57 -0.325 0.031 1.208 1.465 0.352

(0.938) (0.000) (0.000) 4.282 (0.861) (0.303) (0.226) (0.881)

-0.0006 0.632 803.44 -0.514 1.223 0.716 1.679 0.485

(0.648) (0.000) (0.000) 5.681 (0.269) (0.612) (0.195) (0.788)

-0.0007 0.609 1187.5 -0.572 0.777 0.196 1.618 0.474

(0.407) (0.000) (0.000) 6.297 (0.574) (0.964) (0.204) (0.796)

Note: The notes in Tables IV, VI and VIII apply.



Table 9: Change-point Test Results of Daily YM/US$ on DM/US$ Standardized Returns based on 30 minute Intra-day Sampling Frequency

Kokoszka and Leipus Change-point Test

Normalized Returns Comovements Break Dates

YNσ i,t
k  DM σ j,t

k YNσ i,t
k  ∗ DM σ j,t

k k∗

Umax


σVARHAC

Umax


σVARHAC

Umax


σVARHAC

X(RM) 0.706 0.839 5.215* Mar.95

X(RV26) 0.810 0.788 1.413* Oct.87

X(RV52) 0.806 0.856 1.178 -

X(QV1) 1.106 0.937 3.503* Oct.87

X(QV4) 1.133 0.929 2.980* Oct.87

X(QV8) 1.184 0.914 2.245* Oct.87

X(HQV1) 1.086 0.879 2.453* Oct.87

X(HQV4) 1.128 1.003 1.984* Oct.87

X(HQV8) 1.149 0.945 1.818* Oct.87

Lavielle and Moulines Multiple Breaks Test

Normalized Returns Comovements Break Dates

YNσ i,t
k  DM σ j,t

k YNσ i,t
k  = a + bDM σ j,t

k
+ ut k∗

SIC(k) LWZ(k) SIC(k) LWZ(k) SIC(k) LWZ(k) SIC(k) LWZ(k)

-0.042 (0) -0.041 (0) -0.028 (0) -0.027 (0) -0.298 (1) -0.301 (2) -0.285 (1) -0.184 (0) Oct.87, Mar.95 Mar.95

-0.014 (0) -0.013 (0) -0.004 (0) -0.004 (0) -0.497 (1) -0.496 (0) 0.495 (0) Oct.87 -

0.037 (0) 0.037 (0) 0.032 (0) 0.033 (0) -0.438 (2) -0.437 (1) -0.435 (0) Oct.87, Mar.95 -

-0.067 (0) -0.066 (0) -0.004 (0) -0.004 (0) -0.529 (2) -0.528 (1) -0.515 (1) -0.512 (0) Oct.87, Mar.95 Oct.87

0.015 (0) 0.015 (0) 0.066 (0) 0.066 (0) -0.469 (2) -0.467 (1) -0.454 (1) -0.452 (0) Oct.87, Mar.95 Oct.87

0.060 (0) 0.060 (0) 0.078 (0) 0.079 (0) -0.438 (2) -0.435 (1) -0.426 (0) Oct.87, Mar.95 -

-3.684 (0) -3.684 (0) -3.766 (0) -3.765 (0) -4.309 (1) -4.286 (0) -4.295 (1) -4.285 (0) Oct.87 Oct.87

-5.085 (0) -5.085 (0) -5.110 (0) -5.109 (0) -5.629 (2) -5.628 (1) -5.614 (1) -5.611 (0) Oct.87, Mar.95 Oct.87, Mar.95

-5.803 (0) -5.802 (0) -5.827 (0) -5.827 (0) -6.337 (2) -6.336 (1) -6.323 (2) -6.321 (1) Oct.87, Mar.95 Oct.87, Mar.95

Note: The break dates of returns standardized by the class of quadratic variation filters X((H)QV) results in more consistent results. Hence we focus our discussion on these specifications.


