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Abstract

We propose procedures designed to uncover structural breaks in the co-movements of
financial markets. A reduced form approach is introduced that can be considered as a
two-stage method for reducing the dimensionality of multivariate heteroskedastic condi-
tional volatility models through marginalization. The main advantage is that one can use
returns normalized by volatility filters that are purely data-driven and construct general
conditional covariance dynamic specifications. The main thrust of our procedure is to
examine change-points in the co-movements of normalized returns. The tests allow for
strong and weak dependent as well as leptokurtic processes. We document, using a ten
year period of two representative high frequency FX series, that regression models with
non-Gaussian errors describe adequately their co-movements. Change-points are detected
in the conditional covariance of the DM/US$ and YN/US$ normalized returns over the
decade 1986-1996.
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1 Introduction

There are many circumstances where one may expect that the co-movements between financial
assets undergo fundamental changes. For example, portfolio holders may worry about the im-
pact of the deregulation of an industry on their optimal allocation of assets which depends on
conditional covariances (in a mean-variance setting). The deregulation may cause fundamental
shifts in the (conditional) correlations across the asset holdings. Likewise, hedging strategies
involving foreign exchange may be adversely affected by central bank policy shifts. Emerging
markets is another example where the potential of breaks in co-movements may occur. The
world equity markets liberalization and integration may represent an example of structural
changes in the relationship of these markets. Similarly, the recent evidence of the Asian and
Russian financial crises, transmitted across markets, have serious effects for investors, corpo-
rations and countries. The global character of financial markets presents an additional reason
for examining the transmission of breaks and their effects in the co-movements between fi-
nancial as well as real assets. Most financial asset pricing theories and models assume that
covariances between assets are stable (possibly time varying) whereas more recent empirical
approaches recognize the presence of time heterogeneity such as regime changes (e.g. Bollen,
Gray and Whaley, 2000), institutional changes (e.g. Garcia and Ghysels, 1998, Bekaert, Harvey
and Lumsdaine, 2002) and extreme events (e.g. Hartmann, Stractmans and de Vries, 2000).
Pastor and Stambaugh (2001) have also recently shown that structural breaks could contribute
to the equity premium puzzle.

We propose procedures designed to uncover structural changes in multivariate conditional
covariance dynamics of asset returns. The procedures are based on testing for breaks in the
conditional correlations involving normalized returns which are defined as the returns stan-
dardized by the conditional variance process. Hence the conditional correlation is equivalent
to the conditional covariance process of normalized returns that may exhibit a general form of
dependence (e.g. ¢— or a—mixing) as well as heavy tails. We start from a multivariate dy-
namic heteroskedastic asset return process. Instead of trying to explore the co-movements via

a parametric specification and test for structural change in the parameters, we adopt a reduced



form approach which consists of testing for structural change in static or dynamic relationships
involving marginalizations of the multivariate process. Our approach relates to a large class
of multivariate ARCH-type models with constant or dynamic conditional correlation (see, for
instance Bollerslev, Engle and Nelson, 1994). Although there is some loss of information when
we look at the individual normalized returns and their relationships, these losses are offset by
gains in reducing the overparameterized multivariate GARCH type models and by focusing on
the conditional covariance specification. The latter being our focus in this paper. In addition
this approach provides a simple and computationally efficient framework for testing and es-
timating the unknown (multiple) breaks in the co-movements of volatility and allows general
forms of dependence as well as heavy tails without having to explicitly estimate their form.
The choice of standardized returns as an object of interest is motivated by both finance and
statistics arguments. From the finance point of view the standardized returns represent the
fundamental measure of reward-to-risk consistent with conventional mean-variance analysis.
The statistical arguments are a bit more involved. Our approach can be viewed as a two-stage
method for reducing the dimensionality of multivariate heteroskedastic conditional volatility
models to a framework involving returns normalized by purely data-driven volatility filters in
the first stage and cross products of normalized returns in the second stage. Recently, Fn-
gle (2002), Engle and Sheppard (2001) and Tse and Tsui (2002) rely on a similar two-stage
procedure to handle multivariate GARCH models. Their stages are both parametric whereas
ours involve a first stage that is purely nonparametric. Our reduction approach does not aim
in presenting alternative specification or estimation methods of multivariate GARCH models.
Instead, we adopt this two stage approach as a method to perform change-point tests in multi-
variate heteroskedastic models. The approach here is semiparametric since the second stage can
allow for general types of dependence, data-driven spot and quadratic volatility measures as
well as leptokurtic or asymmetric distributions. More specifically, let 7y := log p; — log pi—m
be the discretely observed time series of continuously compounded returns with m measur-
ing the time span between discrete observations. We compute Xn) ¢ 1= r(m)¢ / 0 (m),t Involving

purely data-driven estimators Gm). Foster and Nelson (1996) proposed several rolling sam-



ple type estimators. Their setup applies to ARCH as well as discrete and continuous time SV
models (which are in our application marginalizations of multivariate processes). In addition to
the Foster and Nelson rolling volatility filters we also consider high-frequency volatility filters,
following the recent work of Andersen, Bollerslev, Diebold and Labys (2001), Andreou and Ghy-
sels (2002a), BarndorfI-Nielsen and Shephard (2002), among others. The data-driven measures
of normalized returns provide the estimation of the first stage in multivariate heteroskedastic
returns models. Moreover, keeping the first stage data-driven has the advantage that we do not
specify, and therefore also not potentially misspecify, a parametric model for volatility. This
may eliminate potential sources of misspecification and avoid erroneous inference on the pres-
ence of structural breaks. The second stage deals with the conditional covariance defined as the
cross-product of normalized returns, say Y19 (m),: := X1,(m),tX2,(m),, for a pair of assets given by
the vector (1,2)". This process may exhibit constant, weak or strong dependence (as in multi-
variate constant or dynamic correlation GARCII and Factor models, respectively) as well as a
general functional form driven by a heavy tailed distribution. In addition, auxiliary regression
models for normalized returns are employed to study the homogeneity of their comovements.
The simulation and empirical results in the paper show that risk adjusted returns, using various
volatility filters, are in most cases non-Gaussian with different types of temporal dependence
structure. The paper extends the application of recent change-point tests in Kokoszka and Lei-
pus (1998, 2000) and Lavielle and Moulines (2000) to the conditional covariance of Multivariate
GARCH (M-GARCH) models, using the above two stage procedure for detecting breaks in the
co-movements of normalized returns.

The paper is organized as follows. In section 2 we discuss the general multivariate conditional
volatility models and the transformations of the data that form the basis of the testing proce-
dure. Section 3 discusses the recent change-point tests, developed in a univariate context, and
a method to apply them to the conditional covariance processes of multivariate heteroskedastic
models. The fourth section presents a brief Monte Carlo experiment that examines the sta-
tistical properties of normalized returns and provides a justification for the testing strategies

adopted. The size and power of the aforementioned tests are also investigated. In the empirical



section we document using a ten year period of two representative high frequency FX series,
YN/US$ and DM/USS, that the conditional covariance specified by regression models of daily
risk-adjusted returns with non-Gaussian errors describe adequately their co-movements. The
main thrust of our procedure is then to examine breaks in the co-movements of normalized
returns using CUSUM and least-squares methods for detecting and dating the change-points.

A final section concludes the paper.

2 Models and filters

It has long been recognized that there are gains from modeling the volatility co-movements.
In practice one stumbles on the obvious constraint that any multivariate model is hopelessly
overparameterized if one does not impose any type of restriction (see for instance, Engle (2001)
for some of the open questions in multivariate volatility models). Bollerslev, Engle and Nelson
(1994) provide an elaborate discussion of various multivariate ARCH type models and review
the different restrictions which have been adopted to make multivariate volatility models em-
pirically feasible. Ghysels, Harvey and Renault (1996) discuss various multivariate SV models,
both in discrete and continuous time. In this section we describe the classes of multivariate
heteroskedastic models that fall within the context of our statistical procedures for change-
point tests in the dynamic co-movements of asset returns. Broadly speaking there are two
classes of multivariate volatility models, both being among the most widely applied parametric
specifications. These are (1) multivariate factor models, see for instance Diebold and Nerlove
(1989), Engle, Ng and Rotschild (1990), Harvey, Ruiz and Shephard (1994), Ng, Engle and
Rotschild (1992) and many others and (2) the conditional correlation models, see for instance
Bollerslev, Fngle and Wooldridge (1988), Bollerslev (1990), Bolleslev, Engle and Nelson (1994)
and more recently Engle (2002), Fngle and Sheppard (2001) and Tse and Tsui (2002). Since
the statistical procedures adopted here share many features with the latter we will devote the
first subsection to the conditional correlation volatility specification. The second subsection

describes various volatility filters which are adopted for dynamic heteroskedastic series.



2.1 Multivariate conditional correlation volatility models

The statistics developed in this paper apply to a two-step procedure that shares several fea-
tures with the recent work on Dynamic Conditional Correlation (henceforth DCC) of Engle
(2002), Engle and Sheppard (2001) and Tse and Tsui (2002). The appeal of DCC models is
that they feature the flexibility and simplicity of univariate ARCH models but not the com-
plexity of typical multivariate specifications. This decomposition also presents an advantage
for change-point detection in multivariate heteroskedastic settings, discussed further in section
3. The statistical inference procedures proposed apply to several multivariate specifications
given that the conditional covariance process satisfies some general regularity conditions. It
will be convenient to start with a discrete time framework and to set notation we assume that
an n-vector of returns R; is observed. In the empirical applications n will be equal to 2, but our
techniques extend to n > 2. Consider the ratio X, := r;,/0;+ where 7;; and 0, is the return
and conditional volatility (standard deviation) of the i"" return process, respectively, using the
univariate filtration of each series separately. Then the conditional correlation between pairs
of assets, e.g. (1,2)" is: p1oy = By 1 (X1, Xo ) := By 1(Y12) where we denote Y9, 1= X, ;X5 ;.
The original specification of Bollerslev (1990) assumed that pia; := p12, yielding a CCC model,
i.e. a Constant Conditional Correlation multivariate specification. It was noted that the CCC
specification offered many computational advantages, but the assumption of constant pis did
not share much empirical support (see e.g. Engle (2002) Engle and Sheppard (2001) and Tse
and Tsui (2002) for further discussion).

The procedures proposed in this paper also involve the X, Xy, and Y9, processes. How-
ever, these processes are obtained in a much more general context not involving a parametric
specification for the conditional standard deviation o;; for i = 1,2. Engle (2002), Engle and
Sheppard (2001) and Tse and Tsui (2002) assume that o;; follows a GARCH(1,1) model. We
adopt a purely data-driven specification for o;;, and this has several advantages. First this
approach covers processes more general than the GARCH specification some of which can ac-
count for asymmetries as well as jumps (given the results in Foster and Nelson (1996), Andersen,

Bollerslev, Diebold and Labys (2001) and Andreou and Ghysels (2002a)). The purely data-



driven first stage also has the advantage that we do not potentially misspecify the parametric
model for volatility. Moreover, this approach may avoid some potential sources of misspecifica-
tion and erroneous inference on the presence of structural breaks. This is related to the second
advantage of the method proposed in that it yields a semi-parametric setup for the second stage
of the test procedure that also allows for general innovation distributions.

In the remainder of this subsection we will discuss only the basic underpinnings of filtering
0;¢. The notation will be simplified here by dropping the subscript ¢ pertaining to a particular
return series, 1.e. instead of 7; ; we will simply write r; because we will adopt mainly a univariate
framework. The computation of r;/0; with data-driven oy is valid in a diffusion context as
well as various discrete time processes such as various ARCH type models including GARCH,
EGARCH, SV and other specifications. The setup is deliberately closely related to the work
of Foster and Nelson (1996) on rolling sample volatility estimators. Consider the following

discrete time dynamics:
Tmyt = Pomyam "+ Mamye = Mamyiom = pm)m "+ Ay M) (2.1)

which correspond to the so called Doob-Meyer decomposition of the m horizon returns into a
predictable component gy and a local martingale difference sequence. The decomposition
is a natural starting point when returns are generated by a standard diffusion process with
stochastic volatility. The decomposition in (2.1) is also the starting point for discrete time
ARCH type processes. Conditional expectations and variances with respect to the (univariate)
filtration { Fm),:} will be denoted as Fm) +() and Varg,) +(+) respectively, whereas unconditional

moments follow a similar notation, Fy)(-) and Vary)(:). Consequently:
Var my,o(rmye) = E(A gy Mmy,t) 2| Famyi) = 0y m ™ (2.2)

where U(Qm) . measures the conditional variance per unit of time. We will consider various data-



driven estimators for U(Qm) . Which can generically be written as:

6%’”),15 - Z § W(r—t) (T(m),tJrlfT - /l(m),t)2 (23)

T=1

where w(; ¢ is a weighting scheme, ny, is the lag length of the rolling window and fi,,, is a
(rolling sample) estimate of the drift. The optimal window length and weights are discussed in

Andreou and Ghysels (2002a) and applied in the empirical section.

2.2 Transformations of returns using data-driven volatilities

The test statistics discussed in the next section are based on functions of normalized returns
computed as (7(m) — /l(m)’t)/ﬁ(m),t, for some estimator of fi,, ; and 6 (m);, i.e. some sampling
frequency m and weighting scheme w(;_¢ in (2.3). The empirical setting that will be used
involves very short spans of data with high frequency sampling. We can deal with the local
drift either by estimating it as a local average sum of returns or, following the arguments in
Merton (1980) among others, ignore any possible drift and set it to zero, i.e. Pmye = 0. For
simplicity of our presentation, we will adopt the latter, i.e. set the drift to zero.

The setup in (2.1) and (2.2) is the same as Foster and Nelson (1996) who derive a continuous
record asymptotic theory which assumes that a fixed span of data is sampled at ever finer
intervals. The basic intuition driving the results is that normalized returns, 7). / O (m),¢; OVer
short intervals appear like approzimately i.i.d. with zero conditional mean and finite conditional
variance and have regular tail behavior which make the application of Central Limit Theorems
possible. Foster and Nelson impose several fairly mild regularity conditions such that the local
behavior of the ratio 7(m).+/0(m) becomes approximately i.i.d. with fat tails (and eventually
Gaussian for large m). In their setup local cuts of the data exhibit a relatively stable variance,
which is why ) catches up with the latent true o(,,); with judicious choices of the weighting
scheme and in particular the data window chosen to estimate the local volatility. The tests allow
for some local dependence in the data and do not rely on Normality of the ratio ), / O (m),t-

The empirical evidence of the Normality of 7y / O(m),c 15 mixed at the daily level at least.



Zhou (1996) and Andersen, Bollerslev, Diebold and Labys (2000) report near-normality for
daily sampling frequencies. We find that different classes of volatility filters yield different
distributional properties for the normalized returns process, Xn). ;.

A number of alternative volatility filters, ; ()¢, are considered below which differ in terms of
the estimation method, sampling frequency and information set (further evaluated in Foster and
Nelson, 1996, Andersen and Bollerslev, 1998, Andersen, Bollerslev, Diebold and Labys, 2001,
and Andreou and Ghysels, 2002a). These data-driven variance filters belong to two classes of
volatilities. First, the interday volatilities are: (i) The Exponentially Weighted Moving Average
Volatility defined following the industry standard introduced by J.P. Morgan (see Riskmetrics
Manual, 1995) as: 6gare = Aogue1 + (1= A) 712, t = 1,..., Tuays, where A = 0.94 for daily
data, r; is the daily return and Tj,,s is the number of trading days. (ii) One-sided Rolling
daily window Volatility defined as: gy = Z?il wjrfﬂfj, t = 1,...,T44ys, Where ny is the
lag length of the rolling window in days. When the weights w; are equal to n;' then one
considers flat weights. In our simulations we will consider ny = 26 and 52 days to conform
with the optimality in Foster and Nelson and the common practice of taking (roughly) one
month worth of data (see e.g. Schwert (1989) among others). These interday volatilities are
denoted as ¢;; where © = RM, RV26, RV52. The second class of intraday volatility filters is
based on the quadratic variation of returns (see Andreou and Ghysels (2002a) for more details)
and includes: (i) One-day Quadratic Variation of the process also called Integrated Volatility
(e.g. Andersen and Bollerslev, 1998) is defined as the sum of squared log returns rgy,), for
different values of m, to produce the daily volatility measure: Ggvie = 312 T(Qm),t 1 j/m
i = 1,...,Ngqys, where for the 5-minute sampling frequency the lag length is m = 288 for
financial markets open 24 hours per day (e.g. FX markets). (i) One-day Historical Quadratic
Variation (introduced in Andreou and Ghysels, 2002a) defined as the sum of m rolling QV'1
estimates: Gpgvie = 1/m Z;”Zl Oovi(m)it+i—j/m, t = 1,..., Taays. The intraday volatilities are
denoted as 6, ; where i = QVk, HQVk, for window lengths k = 1,2, 3, in the 5-minute sampling
frequency case. For window lengths k > 1 the intraday volatility filters (H)QVk are simple
averages of (H)QV'1 for k days.



3 Tests for structural breaks in co-movements

There is a substantial literature on testing for the presence of breaks in i.i.d. processes and more
recent work in the context of linearly dependent stochastic processes (see for instance, Liu, Wu
and Zidek (1997) Bai and Perron (1998) interalia). Nevertheless, high frequency financial
asset returns series are strongly dependent processes satisfying f—mixing. Chen and Carrasco
(2001) provide a comprehensive analysis of such univariate processes and Bussama (2001),
Chen and Hansen (2002) have shown that multivariate ARCH and diffusion processes are also
[-mixing. This result precludes the application of many aforementioned tests for structural
breaks that require a much stronger mixing condition. Following Kokoszka and Leipus (1998,
2000) and Lavielle and Moulines (2000) we explore recent advances in the theory of change-
point estimation for strongly dependent processes. These papers have shown the consistency of
CUSUM and least squares type change-point estimators, respectively, for detecting and dating
change-points. The tests are not model-specific and apply to a large class of weakly and strongly
dependent (e.g. ARCIH and SV type) specifications. So far only limited simulation and empirical
evidence is reported about these tests. Andreou and Ghysels (2002b) enlarged the scope of
applicability by suggesting several improvements that enhance the practical implementation of
the proposed tests. They also find via simulations that the VARHAC estimator proposed by
den Haan and Levin (1997) yields good properties for the CUSUM-type estimator of Kokoszka
and Leipus (2000).

The Lavielle and Moulines (2000) and Kokoszka and Leipus (2000) studies can handle
univariate processes while here we investigate multivariate processes via the two-step setup.
It is demonstrated that the two-stage approach adopted here for multivariate models can be
considered as a simple reduced form and computationally efficient method for the detection of
structural breaks tests in multivariate heteroskedastic settings. The procedures proposed apply
to the empirical process Y19, 1= X; X5, for pairs of assets normalized returns of M-GARCH
type models, where X, ; := r;¢/0;4, i = 1,2, is obtained via the application of a data-driven
filter described in the previous section. The B-mixing property of multivariate GARCH and
diffusion processes (Bussamma, 2001, Chen and Hansen, 2002) implies that Y3y, is S-mixing

9



too. This is valid for the M-GARCH with dynamic conditional correlation specifications. For
instance, according to the M-GARCH-DCC (Engle, 2002) Yi2: has a GARCH specification
which implies -mixing. The exemption being the M-GARCH-CCC according to which Yig; is
assumed to be constant. Last but not least, we note that in dynamic correlation M-GARCH
models the quadratic transformations such as ]Ymtld d = 1,2 are also f-mixing since they are
measurable functions of mixing processes, which are F-mixing and of the same size (sec White
(1984, Theorem 3.49 and Proposition 3.23)).

The analysis focuses on the bivariate case for ease of exposition. This two-step approach
can be easily extended to the multivariate n number of assets in the M-GARCH framework for
which n(n — 1)/2 cross-covariances, Y;;:, would present the processes for testing the change-
point hypothesis in pairs of assets. Netherless, it is worth noting that when n gets large this
framework becomes useful if we impose some additional restrictions. For instance, in the M-
GARCH-CCC model when n gets large we can test the null hypothesis of joint homogeneity
in the correlation coefficients in the pairs of normalized returns, p;;, versus the alternative that
there is an unknown change-point in the any of these cross-correlations. A similar approach for
n—dependent processes can be found in Horvdth, Kokoszka and Steinebach (1999) which can
be adapted to the conditional covariances of an M-GARCH-CCC model. In the remainder of

this section we discuss the specifics of the testing procedures.

3.1 CUSUM type tests

Without an explicit specification of a multivariate ARCH, the tests discussed in this section
will examine whether there is evidence of structural breaks in the data generating process of

Yi2+. To test for breaks Kokoszka and Leipus (1998 2000) consider the following process:
k N
Un (k) = (1 IVNY . Zi—k/(NVN)Y Zj> (3.1)

for 0 < &k < N where Z; = ]Ymtld d = 1,2 in (3.1) represents the absolute and squared

normalized returns in an ARCH(co) process. When the conditional covariance process exhibits
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an ARCH-type specification, like in most dynamic conditional correlation M-GARCH models,
we need not specify the explicit functional form of Yis;. Kokoszka and Leipus (1998, 2000)
assume that ARCH(oo) processes are (i) stationary with short memory i.e. the coefficients
decay exponentially fast, and (ii) the errors are not assumed Gaussian but merely that they
have a finite fourth moment. Horvath (1997) and Kokoszka and Leipus (1998) show that (3.1)
holds if now the process Z; := Y9, is linearly dependent. The above moment conditions need
also apply to M-GARCH processes. The CUSUM type estimators are defined as:

k = min{k : |Uy (k)| = max |Ux(5)|} (3.2)

1<j<N

The estimate k is the point at which there is maximal sample evidence for a break in the Z;
process. To decide whether there is actually a break, one has also to derive the asymptotic dis-
tribution of supg< <y Un (k) or related processes such as fo U2 (t)dt. Moreover, in the presence

of a single break k is a consistent estimator of k*. Under the null hypothesis of no break:

UN(I{?) _>D[0,1] UzB(k‘) (33>

o0
=0

where B(k) is a Brownian bridge and 0% = 3 Cov(Z;, Zp). Consequently, using an esti-

mator &y, one can establish that under the null:
sup{|Un(k)|}/6 2z — pjo1; sup{B(k) : ke[0,1]} (3.4)

which establishes a Kolmogorov-Smirnov type asymptotic distribution. Further details about
the computation of the statistics and its application to multiple breaks in a univariate GARCH

context can be found in Andreou and Ghysels (2002b).

3.2 Least Squares type tests

Liu, Wu and Zidek (1997) and Bai and Perron (1998) have proposed a least squares estimation

procedure to determine the number and location of breaks in the mean of linear processes with
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weakly dependent errors. Their key result is the use of a H4jek-Rényi inequality to establish the
asymptotic distribution of the test procedure. Recent work by Lavielle and Moulines (2000) has
greatly increased the scope of testing for multiple breaks. They obtain similar inequality results
for weakly as well as strongly dependent processes. The number of breaks is estimated via a
penalized least-squares approach similar to Yao (1988). In particular, Lavielle and Moulines
(2000) show that an appropriately modified version of the Schwarz criterion yields a consistent
estimator of the number of change-points. In the present analysis we apply this test to the

following generic model:

Yior=pp+e tp <t<ty 1<k<r (3.5)

where t5 = 0 and t7,; = T, the sample size. The indices of the breakpoint and mean values puj,
k=1,...,r are unknown. It is worth recalling that Yj5, is a generic stand-in process. In our
application, equation (3.5) applies to the cross-products of normalized returns for examining
the change-point hypothesis in the conditional covariance of M-GARCH-CCC and -DCC type

models. For dynamic conditional correlation models (3.5) can be augmented to

Yios = 012 +1m12Y19,0-1 + Vi (3.6)

When the M-GARCH conditional correlation is assumed constant or when dealing with a single
observed factor model (e.g. the market CAPM) with constant correlation, another auxiliary
equation that may yield power for testing the structural breaks hypothesis is the regression
between normalized returns e.g. Xy, = 0}, + 115 Xa+ + v124. Note that this regression is not
strictly equivalent to (3.5) for the conditional covariance that is derived from the M-GARCI-
CCC reduction approach. Nevertheless, it can be considered as another auxiliary regression
that relates to the conditional co-movements between assets in factor models as well as most
conditional mean asset pricing theories. A useful example of this approach can be considered
in the context of the one factor model that is used to model the market CAPM model. Let

rare and ;¢ be the demeaned returns on the market (indexed by M) and on the individual firm
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stock 7 at time t :

TMt = OM UM (3.7)
Tit = BidT e + sy (3.8)

where upr; and ;¢ are uncorrelated i.i.d.(0, 1) processes, o4, ;¢ and (5 are, respectively, the
conditional variance of 774, the firm specific variance of 7,4, and the conditional beta of r;,

with respect to 7). Beta is expressed in the following way:

ﬂz‘,t = Etfl(Ti,tTM,t>/Et71(7"%4,t) = O_iM,t/O_%Lt (39>

In the market CAPM equation (3.8), we divide by the idiosyncratic risk, o;;, and write ex-
plicitly beta to obtain: 7,:/0,+ = (im/(Oamt0i)(Taae/Omze)) + (0irzit)/0ir. If we define
the normalized returns by X,; and X, then the following regression type model arises:

Xit = (Oinae/(On0054)) Xore + 21 OF
Xt = P Xarg + Zig (3.10)

where p;pr: represents the conditional correlation between the returns of the two assets. Two
interesting cases arise in the context of (3.10). If p;are = pinr then constant conditional correla-
tion implies the process (3.10) is ¢—mixing. If p;pr¢ is a dynamic conditional correlation then
(3.10) is f—mixing. In both cases the Lavielle and Moulines test can be applied. Note that the
above example is restricted to observable factors and can be extended to n risky assets to obtain
n regressions of normalized returns with the risk adjusted market portfolio. The change-point
could be performed to each equation (3.10) to assess the stability of the co-movements of risky
stocks with the market portfolio.

The Lavielle and Moulines tests are based on the following least-squares computation:

. r—+1 t
Qrlt) = ji b 2 Ztk:tk—1+1(}/12’k - )’ (3.11)
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Estimation of the number of break points involves the use of the Schwarz or Bayesian infor-
mation criterion (BIC) and hence a penalized criterion Qr(t) + Srr, where O7r is a penalty
function to avoid over-segmentation with r being the number of changes and {r} a decreasing
sequence of positive real numbers. We examine the properties of this test using both the BIC
and the information criterion proposed in Liu, Wu and Zidek (1997) (denoted as TWZ). It is
shown under mild conditions that the change-point estimator is strongly consistent with 1" rate

of convergence.

4 Monte Carlo Design and Results

In this section we discuss the Monte Carlo study which examines the properties of normalized
returns in univariate and multivariate heteroskedastic parameterizations as well as the proper-
ties of the Kokoszka and Teipus (1998, 2000) and Lavielle and Moulines (2000) change-point
tests applied in a multivariate heteroskedastic setting. The design and results complement the
findings of Andreou and Ghysels (2002 a,b) who propose extensions of the continuous record
asymptotic analysis for rolling sample variance estimators and examine the aforementioned

tests for testing breaks in the dynamics of univariate volatility models.

4.1 Simulation design

The simulated returns processes are generated {rom the following two types of DGPs: (i) a
univariate GARCH process with Normal and Student’s ¢ errors, and (ii) a multivariate GARCH
process with constant correlation (M-GARCIH-CCC) (Bollerslev, 1990) as well as dynamic
correlation such as the vech diagonal specification proposed in Bollerslev, Engle and Wooldridge
(1988) (M-GARCH-VDC). The choice of the M-GARCH-CCC and M-GARCH-VDC models
is mainly due to their simplicity and parsimony for simulation and parameterization purposes.
Moreover, the former multivariate design is most closely related to the univariate GARCH for
which the Kokoszka and Leipus (2000) test has been derived. More specifically, the DGPs

examined are:
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(1) Univariate GARCH process:

Tet = uq,t(gq,t)l/Qu Ogt = Wq + aqT;,tfl + B404,t-1, (4.1)

where 7, is the returns process generated by the product of the error u,, which is i.i.d.(0,1)
with Normal or Student’s ¢ distribution function and the volatility process, o,; that has a
GARCI(1,1) specification. The process without change points is denoted by ¢ = 0 whereas a
break in any of the parameters of the process is symbolized by ¢ = 1 to denote the null and
the alternative hypotheses, respectively, outlined below.

(i) Multivariate GARCH process for a pair of assets denoted by (1,2):

Tigt = Tl,q,t(hn,q,t)l/2+U2,q,th12,q,t (4-2>

Poge = Togi(hasg)? +urgihings, t=1,...T and ¢=0,1.

where 7,4 and 7y, are the returns processes that are generated by u; . and g4, 4.7.d.(0, 1)

processes and M-GARCH conditional variances:

2
hitgt = witg+ a11,477 401 + B11,gl11,06-1 (4.3)

_ 2
hosgt = wWaag+ Q22,4754 1+ Pa2,gh22,401

The conditional covariance in the M-GARCIH-CCC (Bollerslev, 1990) is given by:

h12,q,t = /)12,q(h11,q,th22,q,t)1/2- (4-4>

Similarly the conditional covariance in the M-GARCH-VDC (Bollerslev, Engle and Wooldridge,
1988) is given by:

h12,q,t = Wigq + A12,4T1,4,t-172,9,t—1 T+ ﬂlQ,thQ,q,tfl- (4-5>

The models used in the simulation study are representative of financial markets data with a set

of parameters that capture a range of degrees of volatility persistence measured by 6 = a + .
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The vector parameters (w,a,3) in (4.1) describes the following Data Generating Processes:
DGP1 has (0.4,0.1,0.5) and DGP2 has (0.1,0.1,0.7) and are characterized by low and high
volatility persistence, respectively. In order to control the multivariate simulation experiment
the volatility processes in the M-GARCII equations in (4.3) are assumed to have the same
parameterization. The sample sizes of N = 500 and 1000 are chosen so as to examine not only
the asymptotic behavior but also the small sample properties of the tests for realistic samples
in financial time series. For simplicity and conciseness the simulation design is restricted to the
bivariate case whereas it can be extended to n > 2 assets and the tests are applied to the pair
combinations just as in the bivariate model.

The models in (i) and (ii) without breaks (¢ = 0) denote the processes under the null
hypothesis for which the simulation design provides evidence for the size of the K&I. and L&M
tests. The simulation results are discussed in the section that follows. Under the alternative
hypothesis the returns process is assumed to exhibit breaks. Four cases are considered to
evaluate the power of the tests. The simulation study focuses on the single change-point
hypothesis and can be extended to the multiple breaks framework (see for instance, Andreou
and Ghysels, 2002b). In the context of (4.1) we study breaks in the conditional variance
hg+ which can also be thought as permanent regime shifts in volatility at change points w/V
(r = .3,.5,.7). Such breaks may have the following sources: Hi' : A change in the volatility
dynamics, ,. H : A change in the intercept, w,. H{ : A change in the conditional correlation,
given by pia, in (4.4) or by HP Wiz, OF Prgg 1n (4.5).

The simulation investigation is organized as follows. First we examine some of the proba-
bilistic properties of the normalized returns series generated from univariate and multivariate
GARCH models. Second we investigate the performance of the K&I and L&M tests using the
multivariate normalized returns framework. We test for breaks in the cross-product of nor-
malized returns or the regression of normalized returns. The simulation as well as empirical

analysis is performed using the GAUSS programming language.
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4.2 The standardized returns processes

The statistical properties of daily returns standardized by the volatility filters outlined in sec-
tion (2.3) are discussed in the context of univariate and bivariate dynamic heteroskedastic
structures described above. For the intraday volatility filters and for the purpose of simula-
tion and parameter selection we take the univariate representation of each GARCH process for
alternative sampling frequencies following Drost and Werker (1996, Corollary 3.2) who derive
the mappings between GARCH parameters corresponding to processes with (), sampled with
different values of m. Obviously the Drost and Werker formulae do not apply in multivariate
settings, but they are used here for the marginal process, producing potentially an approxima-
tion error as the marginal processes are not exactly weak GARCII(1,1). Using the estimated
GARCH parameters for daily data with m = 1, one can compute the corresponding parameters
Wm)> Q(m), Bm), for any other frequency m. The models used for the simulation study are
representative of the FX financial markets, popular candidates of which are taken to be returns
on DM/US$, YN/US$ exchange rates. We take the daily results of Andersen and Bollerslev
(1998) and compute the implied GARCH(1,1) parameters W(m), 0(m) and () for 1-minute and
S5-minutes frequency, m = 1440 and 288, respectively, using the software available from Drost
and Nijman (1993).

The normalized returns transformation is the process of interest following the discussion
in section 2. According to the univariate GARCH process, (4.1), the standardized returns
process X; ) := Ti(m),t/0i(m), 18 by definition 7.i.d.(0,1). The ‘true’ standardized returns of
the univariate GARCH is given for the 1-minute sampling frequency and the corresponding pa-
rameters found in Andreou and Ghysels (2002a). The quadratic variation intraday estimators
defined in section 2.3 are specified by aggregating the ‘true’ squared returns process for 5-, 30-
and 60-minutes sampling frequency. The remaining volatility filters in section 2.3 are the spot
volatilities which are specified here using daily frequencies. The simulation results in Table 1
summarize the statistical properties of the daily returns standardized by the alternative volatil-
ity filters (defined in section 2.2) with respect to their distributional and temporal dependence

dynamic properties. We focus on the univariate GARCH process since it is expected that the

17



normalized returns from an M-GARCH process will exhibit second-order dependence due to
unmodelled conditional covariance dynamics. The Normality test results show that in the case
of the Normal GARCH process, there is general simulation evidence that does not support
the Normality hypothesis for most standardized returns series (at the 5% significance level)
except for Xgy14 and Xgye,. Similarly, under the more realistic assumption of a -GARCH,
arising from the heavy-tailed high-frequency data, we do not find supportive evidence of the
Normality hypothesis in all series except Xgv1,. Table 1 also presents the simulation results
from testing any remaining ARCH effects in normalized returns. We find evidence in favor
of no remaining second-order dynamics in all risk-adjusted returns by interday and intraday
volatility filters, under both Normal and Student’s ¢ univariate GARCH processes. The results
present evidence that univariate returns process normalized by optimal volatility filters yield an
approximately independent series with a distribution that has different tail behavior depending

on the standardizing filter employed.

4.3 Simulation results of change-point tests

In section 2 we discuss the reduced form approach adopted for M-GARCH models. The first
stage involves the univariate specification and estimation of conditional variance dynamics
which yields the normalized returns process for each asset, X;,; and Xy;. The second stage
involves the specification of the conditional covariance dynamics. For M-GARCH processes the
conditional covariance is specified as the cross-product of pairs of normalized returns for assets
1 and 2 given by Yio; = X7, Xs;. The equations for Y75, which we use for change-point testing
are given by (3.5) and (3.6) which represent the constant and dynamic conditional correlation of
M-GARCH-CCC and M-GARCH-VDC models, respectively. The specification in (3.6) for the
conditional correlation as well its ARMA generalizations have been discussed in Engle (2002)
and Tse and Tsui (2002). The simulation test results focus on N = 1000 and 7 = 0.5 for
conciseness purposes.

The simulation results for the properties of the Kokoszka and Leipus (K&T.) test are reported

in Table 2. We consider the cross product of normalized returns X;;Xo; (using volatility

18



estimators) as well as the ‘true’ simulated cross product of normalized returns given by uy sus
in (4.2). We focus on the X gyae and X pgary series which are applicable in a broader sense given
their daily sampling frequency as well as the relationship of the RiskMetricks with IGARCH
models. Note that the empirical analysis considers all volatility filters discussed in section 2.2.
The representative simulation results in Table 2 show that although the K&I. test has good size
properties for simulated cross product of normalized returns, wu; sus ., it is, however, seriously
undersized for the estimated normalized returns, X Xs,, using either o gves and drare. The
main result from Table 2 is that the cross-product Yia; := X1 X, (as opposed to its quadratic
and absolute transformations) as well as 0)1}21];4 yield the highest power under the hypotheses of
change points in the volatility coefficients (H{* and HP) as well as the conditional covariance
parameters (H{ and HP). Tt is important to clarify that the normalized returns cross product
process Yi9, has lower power than the true simulated process and has relatively more power in
detecting large change points in the context of the GARCH-CCC than GARCH-VDC model.

The change-point hypothesis in multivariate conditional volatility models is also examined
using the Lavielle and Moulines (L&M) test. Table 3 shows the L&M least squares regression
test results for pairs of normalized returns: X, = 0|5 + 119 X2+ + v124, in the context of
the M-GARCH-CCC. The highlighted results show that the BIC yields more power than the
ILWZ criterion for the L&M test which detects breaks in both directions and DGPs except
when those are small in size (e.g. a 0.1 parameter change). The results regarding the remaining
alternative hypotheses (H;' and HP) show that the L&M test also detects breaks in the bivariate
relationship of normalized returns when the source of these change-points rests in the univariate
GARCH dynamics as well as breaks in the co-movements (HC). The above results also hold
if the simulated process is an M-GARCH-VDC shown in Table 4, except that the size of the
change-point needs to be even larger in either the conditional variance or covariance dynamics
for the test to exhibit power. It is also interesting to note that in comparing the normalizing
volatility filters we find that the regression involving Xpgjs; yields more power in detecting
change-points in the conditional covariance of the M-GARCH-VDC whereas for the M-GARCH-
CCC both Xpgae and Xpgyoe, yield similar power properties.
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5 Empirical Analysis

5.1 Co-movements of FX normalized returns

The empirical section of the paper investigates the bivariate relationship between the daily
YN/US$ and DM/USS$ risk adjusted returns over a decade and tests for structural breaks in
their co-movements. The empirical results complement the Monte Carlo analysis by examining
further the stochastic properties of risk-adjusted FX returns and investigate the presence of
structural breaks. The discussion is organized as follows. First, we test the hypotheses of
Normality and independence for all YN/US$ and DM/US$ standardized returns as well as
the statistical adequacy of their regression representation. Second, we examine the stability of
this bivariate relationship by testing for change-points using the Kokoszka and Leipus (2000),
Horvath (1997) as well and Lavielle and Moulines (2000) tests which are valid for heavy tailed
as well as weakly and strongly dependent processes. The timing and numbers of breaks are also
estimated. The data source is Olsen and Associates. The original sample for a decade, from
1/12/1986 to 30/11/1996, is 1,052,064 five-minute return observations (2,653 days - 288 five-
minute intervals per day). The returns for some days were removed from the sample to avoid
having regular and predictable market closures which affect the characterization of the volatility
dynamics. A description of the data removed is found in Andersen, Bollerslev, Diebold and
Labys (2001). The final sample includes 705,024 five-minute returns reflecting 2,448 trading
days.

The statistical properties of daily returns normalized by a number of volatility filters are
examined for the two FX series. First we focus on the temporal dependence and distributional
properties of normalized returns. It is a well documented stylized fact that daily asset returns
are characterized by a martingale difference with second-order temporal dynamics and a dis-
tribution that exhibits heavy-tails. Therefore it would be interesting to examine whether these
purely data-driven volatility filters also adequately capture the second-order dynamics of asset

returns. This is examined by testing the hypothesis of remaining ARCH effects in normalized

returns. The empirical results reported in Table 5 for the YN/US$ and DM/US$ show two
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interesting features. First, for the 5-minute sampling frequency there are no remaining ARCH
effects in any of the standardized returns series which implies that all volatility filters for both
FX series appear equally efficient in capturing the non-linear dynamics. The second and most
important finding is that this result does not extend to lower intraday sampling frequencies such
as 30-minutes as shown by the remaining results in the same tables. Note that the same result
applies to the 60-minute frequency filters which are not reported in the tables merely for concise-
ness purposes. The presence of ARCH effects in most of the lower frequency normalized returns
suggests that the volatility filter and in particular its window length and estimation method are
important in yielding a normalized returns process that captures all the nonlinear dynamics.
The continuous record asymptotic analysis for the efficiency of rolling volatility filters in Foster
and Nelson (1996) yields the optimal window length for different intraday sampling frequencies
as discussed in Andreou and Ghysels (2002a). These theoretical asymptotic predictions of effi-
ciency gain empirical support in Table 5 for the 30-minute sampling frequencies and both FX
series. In particular, we find that the normalized returns based on rolling intraday volatility
filters given by Xpgviy, © = k, ¢, where k = 4,8 and ¢ = 6,12 days for the 30- and 60-minutes
frequencies, respectively, capture the second-order dynamics exhibited by the FX returns at
the 5% significance level. The spot volatility filters Xgars, Xrvoer and Xpgyses present mixed
empirical evidence regarding the nonlinear temporal dependence at the 5% significance level.
Yet at the 10% level the first two filters provide support for the null of no ARCH. Similar mixed
results are obtained in Table 6 regarding the linear temporal dynamics for FX returns. Sum-
marizing, the empirical results in Tables 5 and 6 show that the temporal dependence properties
of normalized returns depend on the window length and estimation method of the volatility
filter for intraday sampling frequencies. The normalized returns series Xggvie, © = k, ¢, where
k=48 and £ = 6,12 days, for 30- and 60-minutes, respectively, present empirical support for
no remaining linear or second-order dependence especially for the YN/US$ normalized returns.
The nonlinear and linear dependence results for spot volatilities and Xy 5, especially for the
DM /USS$, provide evidence of weak and strong temporal dependence.

The distributional properties of normalized returns are assessed in Table 7 for the YN/US$
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and DM/USS. Both the Jarque and Bera (1980) and Anderson and Darling (1954) test results
provide no empirical support of the Normality hypothesis (at the 10% significance level) for
any of the daily standardized returns series, mainly due to excess kurtosis in both the spot
volatility (SV) normalized returns, Xgy,, as well as the X(mygvye series. The exception to
this result is X1+ which appears to support the Normality hypothesis only for the 5-minute
sampling frequency. Nevertheless at the lower sampling frequencies Xy, is also non-Normal.
At the 5-minute sampling frequency the sample skewness and kurtosis coefficients suggest that
the empirical distributions for all standardized returns are leptokurtic except for Xgy1  which
actually appears to be platykurtic with sample kurtosis coefficient below 3 for all intraday
frequencies. Moreover, it is interesting to note that a longer window length beyond one day in
QV filters as well as rolling instead of block sampling estimation methods yield excess kurtosis
in the empirical distribution. It is worth noting that the daily and most intraday volatility
filters result in non-Normality due to both excess kurtosis and in most cases asymmetry. This
result may be due to an underlying non-Normal distribution and/or the presence of jumps and
breaks in the risk adjusted returns process.

Summarizing, the univariate empirical analysis of the standardized returns presents the
following four results. First, the efficiency of volatility filters plays an important role in terms
of capturing all the second-order dynamics exhibited by returns. This efficiency depends on
the sampling frequency, window length and estimation method. The combination of rolling
estimation and optimal window produces nearly independent standardized FX returns series.
Second, temporal aggregation of intraday returns requires a longer lag of volatility so as to
capture the dependence in normalized returns and the empirical findings support the continuous
record asymptotics of the efficiency of volatility filters. Third, the empirical tail behavior
implied by Xgv; and Xggv, differ and the latter are found to be relatively more leptokurtic.
Moreover, as the window length increases for both QV and SV filters, the distribution of the
respective standardized returns becomes more leptokurtic.

The above results suggest that the ratio transformation of daily returns-to-volatility based

on data-driven volatility filters can yield a process with a relatively simple statistical structure.
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Hence we proceed to examine the multivariate relationship of normalized returns in a regres-
sion context. First we examine the dynamic structure of risk adjusted returns using Granger
causality tests and the existence of a linear regression relationship for YN/US$ and DM/US$
normalized returns. Table 6 also presents these results for the bidirectional causality between
the YN /US$ and DM/USS risk adjusted returns. It is shown that there is no significant empir-
ical evidence of a lead-lag relationship between the co-movements of the two FX series. This
result appears robust to the different specifications of volatility and sampling frequencies, the
choice of lag length in the VAR(p) representation for studying the causality relationship as well
as when that is augmented by the contemporaneous regressor. In contrast to the inexistence of
a dynamic relationship between risk adjusted returns there is significant correlation between the
YN/US$ and DM/USS$ standardized returns. This is examined using two methods. The first
method applies the Tse (2000) test (which has good properties in the presence of non-normality)
for which the two FX standardized returns provide empirical evidence that supports that null
hypothesis of constant conditional correlation. The second method examines the relationship
of the two normalized FX returns using the simple linear regression OLS results in Table 8
for the 5- and 30-minute frequencies. In all cases the estimated regression coefficient is highly
significant and ranges from 0.6 to 0.75 as representing the contemporaneous covariance struc-
ture of standardized returns in the DM and YN vis-a-vis the US$. The statistical adequacy of
this regression relationship is examined and the reported residual misspecifications tests. All
regression results for Xgv; and X (g)ov,s support the independence hypothesis (except Xovie in
the 30-minute sampling frequency). Similarly, the empirical results show that the static regres-
sions exhibit non-Normal conditional distribution for the two FX risk adjusted returns. These
results open the route for regression type techniques in detecting change-points and suggest

that the empirical conditional covariance process does not exhibit significant dynamics.

5.2 Empirical evidence for breaks in FX co-movements

The above empirical regularities of the DM/US$ and YN/US$ normalized returns satisfy the

conditions of the least squares methods in Bai and Perron (1998) and Lavielle and Moulines
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(2000) as well as the CUSUM test of Horvdth (1997) and Kokoszka and Leipus (1998, 2000)
discussed in section 3.

The K&I. change-point test results for the conditional covariance between the DM/US$
and YN/USS$ are reported in Table 9. The results show that the univariate normalized returns
(using any volatility filter transformation) appear to be time-homogeneous processes. However,
for the cross-product of the two FX normalized returns the K& test shows that there is strong
evidence of a change-point in their co-movements. The breaks are detected in all specifications
of normalized returns and they occur at the same point in time, namely at 23/3/1995 at which
the sequential statistic first exceeds the 5% control limit. This event is related to a period of
high uncertainty and a series of bilateral interventions by the Bank of Japan and the Fed (see
for instance the Asian Wall Street Journal). It is worth mentioning the parametric CUSUMSQ
test (Brown, Durbin and FEvans, 1975) also presents empirical evidence for the instability in the
linear regression of the two FX risk adjusted returns. However, we emphasize that these results
are based on the statistical adequacy of the Normal, linear regression model. The presence
of heavy tailed distributions in normalized returns (or generally deviations from Normality)
requires more efficient statistical inference methods for testing the existence of breaks. Similarly,
although the parametric CUSUM is robust to deviations from Normality this result does not
extend to the CUSUM of squares (Ploberger and Kramer, 1986). Note that an application of
the parametric CUSUM does not detect any change-points.

These results are complemented by testing for multiple breaks using the L&M regression
method and the two information criteria, BIC and WY, also reported in Table 9. Given the
empirical results in the previous section which support a static regression framework for the
two FX normalized returns, we apply the L&M test in the context of equation (3.10). The
number and timing of breaks detected (reported in Table 9) not only vary depending on the
information criterion but also on the specification of normalized returns. The general result is
that the tests choose between zero, one and two change-points and the break dates are relatively
more consistent for Xmyov,s using both criteria. This is also related to the empirical results

comparing the different normalizations. The two change-points detected are associated with
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the events of the US stock market crash in October 1987 and the period before the repeated
bilateral F'X market interventions in March 1995. From the simulation results we learn that the
BIC criterion is relatively more powerful and this is complemented by the empirical evidence
which in most cases detects two change-points. Concluding we find that the co-movements
in YN/USS$ and DM/USS risk adjusted returns for the most efficient class of filters present
evidence for change-points using the recent CUSUM and least-squares methods in K& and
L&M, respectively. Both approaches yield consistent results about the change-points in the
co-movements whereas the latter procedure complements the former by detecting an additional

break in the sample.

6 Conclusions

We propose reduced form procedures designed to uncover breaks in the co-movements of finan-
cial markets via testing for change-points in linear relationships involving returns normalized
by conditional volatility. There are several advantages to using normalized returns. Among
the advantages we noted that (1) the covariance of normalized returns capture conditional
correlations, (2) they reduce the complexity of multivariate volatility models along the same
lines as Engle (2002), Engle and Sheppard (2002) and Tse and Tsui (2002), (3) they enable
us to adopt two-stage procedure consisting of a purely data-driven nonparametric first stage
and a semiparametric second stage. Though our procedures shares some features with the
two-stage estimation procedure of DCC models, we take a reduced form view that suffices for
the change-point test purpose. Since the parametric structure of the volatility co-movements
are largely left unspecified we cover a larger class of multivariate specifications, including fac-
tor ARCH models. Another main advantage of employing the two-step procedure is that the
statistical inference methods allow for departures from normality and therefore are robust to
heavy tailed distributions. It should also be noted that the returns-to-volatility process and
related measures are used often to appraise portfolio performance. Such measures include the

Treynor ratio which is the square of the Sharpe ratio (Treynor and Black, 1973). Our two-stage
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procedure also applies to various alternative functional forms of normalized returns. Hence,
we can examine structural breaks in Treynor-Black and other measures, and again not require
normality assumptions to do so (similar to the Jobson and Korkie (1980,1981) approach for the
Normal case).

We document, using a ten year period from 1986 to 1996 of YN/USS$ and DM/USS$ series,
that regression models with non-Gaussian errors describe adequately their co-movements. We
find that the co-movements in YN/USS$ and DM /USS risk adjusted returns for the most efficient
class of filters present evidence for change-points using both the Kokoszka and Leipus (2000)
and Lavielle and Moulines (2000) tests. These structural breaks are associated with the 1987
stock market crisis as well as the 1995 bilateral FX interventions of the Bank of Japan and the
Fed.

In the paper we restrict the simulation and empirical investigations in bivariate models.
Extensions to the multidimensional vector of n assets are routes for further research. The
methods proposed can be adapted to examine the n—homogeneity of the conditional correla-
tion of the cross-section of assets when n is large in the context of M-GARCH-CCC models
in a similar way to Horvdth, Kokoszka and Steinebach (1999) for the mean of n-dependent
observations. In addition, the nonparametric testing approach presented here can be comple-
mented with parametric methods for identifying the different sources of structural change in the
variance-covariance dynamics. Further research in a system of conditional covariance equations

for testing change-points is a useful extension of the present analysis.
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Table 1: Monte Carlo Simulations of MSEsand MAEs Ratios, Normality and Second-order Dependence
Test Resultsfor Daily FX X(i)=Returns/Volatilities(i) of YN/US$
calculated at the 5-minute frequency

Jarque Bera Normality Test ARCH Test
N-GARCH {-GARCH N-GARCH {-GARCH
JB JB ARCH(5) ARCH(5)
X(RM) 113.8 3254 0.921 0.623
(0.000) (0.000) (0.536) (0.701)
X(RV26) 266.7 2735 0.921 0.623
(0.000) (0.000) (0.536) (0.701)
X(RV52) 1368 13587 0.705 0.599
(0.000) (0.000) (0.730) (0.730)
X(QV1) 2132 4.169 0.986 1.030
(0.447) (0.215) (0.496) (0.491)
X(QV2) 6.514 19.15 1.262 1.886
(0.190) (0.010) (0.392) (0.210)
X(QV3) 24.48 100.9 1.354 2.063
(0.006) (0.000) (0.366) (0.166)
X(HQVY) 388.4 9056 1.354 1.324
(0.018) (0.000) (0.358) (0.470)
X(HQV?2) 555.3 26687 1.550 1.367
(0.000) (0.000) (0.369) (0.474)
X(HQV3) 1253 38579 1.350 1.155
(0.000) (0.000) (0.407) (0.497)

Note: The smulation desgn isdescribed in section 3. We consder Normal and Student’ st (with 6 degrees of freedom) GARCH processes. The volétility filtersare
defined in the end of section 2.2. The standardized returns are tested for Normality using the Jarque-Bera (JB) test. We examine any remai ning second-order
temporal dependence in standardized returns using the ARCH test with the corresponding lag length in the parenthes's. Similar results were obtained for aternative
lag lengths. p-values are reported below the test gatigticsin the parenthess The total sample Sze is 2500 observationswhich is adjusted for the subsample of 2250
due to the standardized returns by rolling volatilities.



Table 2: Sizeand Power of the Kokoszka and L eipus (2000) test for a change-point in the comovements of
normalized returns

statistic: U max/G varnac Sample: N = 1000 Change-poirt timing: 7 = 0.5
Processes True errors X1(RV26) * X2(RV26) X1(RM) x X2(RM)
Transformations Upglze (UneUze)® [UneUze] XeeXer (XueXeo)® KeXeel XoeXor (XaeXon)® XaXor| ofMy,,

Bivariate GARCH with Constant Conditional Correlation
Ho : (@ip,aip,Bip)

DGPI1: (0.4,0.1,05) 0.053 0.044 0.049 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DGP2:(0.1,0.1,0.8) 0.086 0.063 0.081 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H% : Break inthe dynamics of volatility, (Bij.0, Bij1),1,] = 1,2

DGPL: (0.5, 0.8) 0.999 0.910 0.998 0.622 0.069 0.068 0.792 0.052 0.076 0.128
DGPL: (0.5, 0.1) 0.387 0.751 0.478 0.279 0.014 0.000 0.400 0.022 0.002 0.504
DGP2: (0.8, 0.5) 0.999 0.830 0.889 0.998 0.401 0.263 0.508 1.000 0.422 0.669

H¥ : Break inthe constart of volatility, (@i 0, ®ij1),i,j = 1,2

DGP1: (0.4, 0.2) 0.745 0.369 0.466 0.281 0.017 0.001 0.402 0.016 0.002 0.490
DGP2: (0.1, 0.2) 0.812 0.541 0.707 0.058 0.006 0.000 0.097 0.004 0.000 0.036

H$ : Break inthe correlation coefficient, (0120, P12.1)

DGP1: (0.5,0.8) 0.965 0.807 0.933 0.155 0.007 0.000 0.296 0.005 0.004 0.103
DGP1L: (0.5,0.3) 0.958 0.652 0.702 0.915 0.085 0.003 0.913 0.094 0.010 0.849
DGP2: (0.5,0.3) 0.961 0.620 0.733 0.890 0.090 0.009 0.925 0.088 0.016 0.407
DGP2: (0.5,0.8) 0.961 0.796 0.908 0.176 0.017 0.003 0.293 0.009 0.003 0.070

Bivariate GARCH with time Varying Conditional Correlation

H? : Break inthe covariance dyramics, (8120, B12.1)

DGPL: (0.5,0.1) 0.989 0.961 0.995 0.000 0.000 0.000 0.000 0.000 0.000 0.014
DGP2: (0.8,0.4) 1.000 0.967 0.997 0.007 0.050 0.001 0.153 0.005 0.003 0.283

Note: (1) The Kokoszka and L eipus (2000) test statisticis Ux = (£ Tt X2 - £ 37T X?). The maxUr(K) is standardized by the VARHAC
estimator, 6varnac, Which is applied to the X; transformation from the multivariate GARCH model. The normalized statistic U max/6 varnac converges to the
sup of a Brownian Bridge with asymptotic critical value 1.36 at the 5% significance level. (2) The simulated bivariate GARCH models refer to the
GARCH-CCC (Constant Conditional Correlation) in equations (4.2), (4.3), (4.4) and the GARCH-VDC (Varying Conditional Correlation) in equations (4.2),
(4.3), (4.5). The model is simulated (1,000 replications) where the superscirpts 1 and 0 in the variables and coefficients in the Table denote the cases with and
without change-points, respectively. Under the alternative hypotheses H/f, H ? the change in parameters refer to both GARCH processes. Under the

alternative hypotheses HS, HD we assess the change in the conditional covariance.



Table 3: Size, Power and Frequency Distribution of the number of change-points obtained with the Lavielle
and Moulines (2000) test when thereisa single break in a M-GARCH with constant conditional correlation.

Samples, T = 1000 and change point, # = 0.5 and Segments, tx = 5
Normalized returns regression X(o¥,) = a+ bX(of,) + ut

Volatility Filter, O'ik’t oRV26 ofM
Lavielle & Moulines BIC Lwz BIC Lwz
Number of Breaks 0 1 >2 0 1 >2 0 1 >2 0 1 >2

Ho : (@i0,ai0, Bio)
DGP1: (0.4,0.1,0.5) 1.00 0.00 0.00 1.00 0.00 0.00 0.98 0.02 0.00 1.00 0.00 0.00
DGP2: (0.1, 0.1, 0.8) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

H% : Break in the dynamics of volatility with parameters (8o, f1)

DGP1: (0.5,0.8) 0.00 1.00 0.00 0.44 0.56 0.00 0.00 0.98 0.02 0.38 0.62 0.00
DGP1: (0.5,0.1) 0.70 0.30 0.00 1.00 0.00 0.00 0.48 0.52 0.00 1.00 0.00 0.00
DGP2: (0.8,0.7) 0.02 0.96 0.02 0.98 0.02 0.00 0.88 0.12 0.00 1.00 0.00 0.00
DGP2: (0.8,0.5) 0.02 0.96 0.02 0.98 0.02 0.00 0.04 0.94 0.02 0.94 0.06 0.00

H¥ : Break in the constant of volatility with parameters (wo, @1)

DGP1: (0.4,0.1) 0.04 0.96 0.00 0.92 0.08 0.00 0.06 0.94 0.00 0.94 0.06 0.00
DGP1: (0.4,0.8) 0.10 0.90 0.00 1.00 0.00 0.00 0.20 0.80 0.00 1.00 0.00 0.00
DGP2: (0.1,0.3) 0.10 0.90 0.00 1.00 0.00 0.00 0.96 0.04 0.00 1.00 0.00 0.00

HP : Break in the correlation coefficient (p120, p121)

DGP1: (0.5,0.3) 0.00 1.00 0.00 0.88 0.12 0.00 0.00 1.00 0.00 0.78 0.22 0.00
DGP1: (0.5,0.8) 0.00 1.00 0.00 0.26 0.74 0.00 0.00 0.95 0.05 0.35 0.65 0.00
DGP2: (0.5,0.3) 0.02 0.98 0.00 0.92 0.08 0.00 0.00 0.98 0.02 0.88 0.12 0.00
DGP2: (0.5,0.8) 0.00 1.00 0.00 0.30 0.70 0.00 0.88 0.12 0.04 1.00 0.00 0.00

Notes: The Lavielle and Moulines (2000) test is described in section 1.2. The Bayesian Information Criterion (BIC) and its modification by Liu et al. (1997)
denoted as LWZ are used. The simulations focus on DGP1, DGP2, T = 1000 for 500 trials. For comparison purposes the aternative hypotheses of change
points are similar to the K& L simulations (Table 2) and extended to larger breaks. Reported is the frequency distribution of the breaks detected. The
highlighted numbers refer to the true number of change-points in the simulated process. The simulated model is given by equations (4.2), (4.3), (4.4).



Table 4. Size, Power and Frequency Distribution of the number of change-points obtained with the Lavielle
and Moulines (2000) test when thereisa single break in a M-GARCH with dynamic conditional covariance.
Samples, T = 1000 and change point, 7 = 0.5

Normalized returnsregression X(ok,) = a+bX(ol,) +u

Volatility Filter, O'ik’t oRV26 ofM

Lavielle & Moulines BIC Lwz BIC Lwz
Segments, ty = 5

Number of Breaks 0 1 >2 0 1 =2 0 1 >2 0 1 =2

Ho : (@i0,ai0, Bio)
DGP1: (0.4,0.1,0.5) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
DGP2: (0.1,0.1,0.8) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

H% : Break in the dynamics of volatility with parameters (8o, 1)
DGP1: (0.5,0.8) 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.95 0.05 0.00
DGP1: (0.5,0.1) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
DGP2: (0.8,0.7) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
DGP2: (0.8,0.5) 0.54 0.46 0.00 1.00 0.00 0.00 0.59 0.41 0.00 1.00 0.00 0.00

H¥ : Break in the constant of volatility with parameters (wo, @1)
DGP1: (0.4,0.5) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
DGP1: (0.4,0.8) 0.80 0.20 0.00 1.00 0.00 0.00 0.44 0.56 0.00 1.00 0.00 0.00
DGP2: (0.1,0.3) 0.14 0.86 0.00 1.00 0.00 0.00 0.01 0.99 0.00 1.00 0.00 0.00
DGP2: (0.1,0.2) 0.96 0.04 0.00 1.00 0.00 0.00 0.98 0.02 0.00 1.00 0.00 0.00

H$ : Break in the constant of the conditional covariance coefficient (@12,0,®12:1)
DGP1: (0.4,0.1) 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.26 0.74 0.00
DGP1: (0.4,0.8) 0.80 0.20 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.22 0.78 0.00
DGP2: (0.1,0.3) 0.10 0.90 0.00 1.00 0.00 0.00 0.96 0.04 0.00 1.00 0.00 0.00

HP : Break in the dynamics of the conditional covariance coefficient (b120,b121)
DGP1: (0.5,0.8) 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.94 0.06 0.00
DGP1: (0.5,0.1) 1.00 0.00 0.00 1.00 0.00 0.00 0.42 058 0.00 1.00 0.00 0.00
DGP2: (0.8,0.5) 0.00 1.00 0.00 0.92 0.08 0.00 0.00 1.00 0.00 0.66 0.34 0.00

Notes: Asinthe notes of Table 3. The simulated model is given by equations (4.2), (4.3), (4.5).



Table5: Nonlinear Dependence Test Results for Daily YN/US$ and DM/US$ Standar dized Returns
based on various intraday sampling frequencies

YN/US$ DM/US$
5min. frequency 30min. frequency 5min. frequency 30min. frequency
X(i) ARCH(1) ARCH(5) ARCH(1) ARCH(5) ARCH(1) ARCH(5) ARCH(1) ARCH(5)
p-value p-value p-value p-value p-value p-value p-value p-value
X(RM) 0.361 0.257 3.072 0.868 0.039 0.199 3.972 2.860

(0548)  (0936) (0.079) (0.501)  (0.843)  (0.963)  (0.049)  (0.014)
X(RV26) | 0.387 1.278 5.736 1.938 1.601 0.843 4375 2.126
(0534)  (0270)  (0.017)  (0.085)  (0.206)  (0519)  (0.037)  (0.059)
X(RV52) | 0.026 0257 13326 4229 1.120 2491 10772 2974
(0872)  (0936) (0.000)  (0.001)  (0.289)  (0.029)  (0.001)  (0.011)
X(QV1) 2314 0.921 4,099 1.553 6.517 2535 9.001 3.330
(0.128)  (0466) (0.043) (0.170)  (0.011)  (0.027)  (0.003)  (0.005)
X(QVkK) 2.254 0.900 5.266 2.169 5.271 2.392 9.284 4,078
(0133)  (0480)  (0.022)  (0.055)  (0.022)  (0.036)  (0.002)  (0.001)
X@QVvl) | -0011 0741 0.105 0.929 1.143 2.453 5.738 2.421
(0553)  (0593)  (0.745)  (0.461)  (0.285)  (0.032)  (0.017)  (0.034)
X(HQV1) | 4.801 1.604 8.037 3.074 7.173 2654 13274 4446
(0.029) (0155  (0.005)  (0.009)  (0.008)  (0.021)  (0.000)  (0.000)
X(HQVK) | 0.836 1.197 0.035 1.705 2.074 2.338 1.193 3.099
(0.361)  (0.308)  (0.851)  (0.130)  (0.149)  (0.039)  (0.275)  (0.009)
X(HQV() | 0.006 1.008 0.542 1.006 0.855 2.494 0.074 1.067
(0936) (0412) (0.462)  (0412)  (0.355)  (0.029)  (0.786)  (0.377)

Note: The volatility filtersare defined in section 2.2. The data set refersto the 5-minute Y N/US$ from 1/12/86 to 30/11/96 which yieldsa daily sample size of T=2446 days
and isadjusted for a subsample of 2346, excluding the first 100 observationsasaresult of the rolling volatility estimators. The window lengthsk=2,4,6 and 1=3,8,12 daysfor the 5-,
30- and 60-minutes frequency, respectively. The ARCH tet for alternative lag lengths and respective p-valuesin parentheses are reported.



Table 6: Linear Dependence and Granger Causality Test Resultsfor Daily YN/US$ and DM/US$
Standardized Returns based on variousintraday sampling frequencies

YN/US$ DM/US$ Granger Causality Test Results between
5min. frequency 30min. frequency 5min. frequency 30min. frequency YN(.) and DM(.) Normalized Returns
X(@) LM(1) LM(5) LM(20) LM(1) LM(5) LM(20) LM(1) LM(5) LM(20) LM(1) LM(5) LM(20) Direction of Causality 5-minute 30-minute

F-test p-value Ftest p-value

X(RM) 0361 0674 1283 7347 3048 2417 0326 1127 0792 5093 1604 1.805 |YN(RM_1), DM(RM) 0.315 (0.575) 0.038 (0.846)
(0548) (0.644) (0.179) (0.007) (0.009) (0.000) (0.568) (0.344) (0.726) (0.024) (0.156) (0.016) 2807 (0.094) 4.659 (0.031)
X(RV26) | 0114 0813 1253 8244 3307 2397 0682 1197 0847 5745 1687 1755 |YN(RV26_1),DM(RV26) 0.099 (0.753) 0.003 (0.959)
(0.735) (0.540) (0.201) (0.004) (0.006) (0.001) (0.409) (0.308) (0.657) (0.017) (0.134) (0.020) 2694 (0.101) 4.135 (0.042)
X(RV52) | 0376 0473 1365 9779 3557 238 0183 1255 0759 4913 1341 1832 |YN(RV52_1),DM(RV52) 0436 (0.509) 0.050 (0.822)
(0539) (0.797) (0.129) (0.002) (0.003) (0.000) (0.669) (0.281) (0.765) (0.027) (0.244) (0.014) 3434 (0.064) 4.034 (0.045)
X(QV1) | 2007 1298 1949 2353 1511 2068 0098 1311 0883 0278 1556 1112 | YN(QV1_1), DM(QV1) 0.678 (0.400) 0.255 (0.614)
(0.157) (0.262) (0.021) (0.125) (0.183) (0.004) (0.754) (0.257) (0.610) (0.598) (0.169) (0.328) 3278 (0.070) 3.669 (0.056)
X(QVK) 0716 0824 158 0807 0891 1622 0003 1088 0876 0010 1217 0918 |YN(QVk 1), DM(QVK) 0.927 (0.336) 0.688 (0.407)
(0.398) (0.532) (0.048) (0.369) (0.486) (0.039) (0.955) (0.365) (0.619) (0.919) (0.299) (0.564) 3159 (0.079) 2.766 (0.096)
X(QWD) 0559 1191 1482 0154 1048 0074 0239 1242 0907 0005 1194 0917 | YN(QV{_1), DM(QV) 0492 (0.482) 0.163 (0.686)
(0.454) (0.311) (0.077) (0.695) (0.387) (0.785) (0.625) (0.287) (0.579) (0.944) (0.308) (0.563) 2743 (0.098) 1.799 (0.179)
X(HQV1) o782 0773 1455 0699 0629 1536 0010 0951 0829 0029 0974 0839 |YN(HQV1_1),DM(HQV1) 1.203 (0.273) 0974 (0.324)
(0.377) (0.569) (0.087) (0.403) (0.678) (0.060) (0.919) (0.447) (0.680) (0.864) (0.432) (0.665) 2975 (0.085) 2467 (0.117)
X(HQVK) | 0522 0674 1455 0393 0624 1420 0167 1071 0891 0849 1209 0922 |YN(HQVk_1), DM(HQVK) 0.849 (0.357) 0.789 (0.374)
(0.470) (0.643) (0.087) (0.531) (0.682) (0.102) (0.683) (0.375) (0.599) (0.357) (0.302) (0.559) 3202 (0.074) 2452 (0.117)
X(HQWL) | 0452 0596 1427 0075 0628 1208 0568 1.054 1227 0622 1271 0928 | YN(HQVL 1),DM(HQV{) 0734 (0.392) 0.259 (0.611)
(0502) (0.703) (0.099) (0.784) (0.679) (0.237) (0.451) (0.384) (0.221) (0.430) (0.274) (0.550) 3063 (0.080) 2253 (0.134)

Note: The volatility filtersare defined in section 2.2. The data set refersto the 5-minute Y N/US$ from 1/12/86 to 30/11/96 which yields a daily sample size of T=2446 daysand is adjusted for a subsample of 2346, excluding the first 100 observationsasa
reault of the rolling volatility esimators The window lengths k=2,4,6 and 1=3,8,12 daysfor the 5-, 30- and 60-minutes frequency, regpectively. The sample linear dependence hypothesisis examined usng Lagrange Multiplier (LM) testsfor aternative lag
lengths along with their respective p-values The normalized returns'Y N(.) and DM(.) denote the Y N/US$ and DM/USS$ risk adjusted returns, respectively. The direction of noncausality runs from the lagged variable to the contemporaneous one. The reverse
causality for each case isgiven by the second line of each pair of normalized returns.



Table 7: Normality Test Resultsfor Daily YN/US$ Standardized Returns
based on variousintraday sampling frequencies

YN/US$ DM/US$

5min. frequency 30min. frequency 5min. frequency 30min. frequency

X(@) Sk. AD BJ Sk. AD BJ Sk. AD BJ Sk AD BJ

Kr. p-vaue p-value Kr. p-vaue p-value Kr. p-vaue p-value Kr. p-vaue p-vaue

X(RM) 0215 4305 51511 -0.174 9.062 16708 -0012 1890 8210 0142 7589 170.59
3585 (0.000) (0.000) 4.260 (0.000) (0.000) 3.289 (0.000) (0.017) 4.290 (0.000) (0.000)
X(RV26) | -0251 7566 14874 -0226 15403 44674 -0.019 4.233 55713 0256 12430 451.08
4127 (0.000) (0.000) 5.089 (0.000) (0.000) 3.754 (0.000) (0.000) 5.086 (0.000) (0.000)
X(RV52) | -0309 11.196 327.21 -0.380 25022 14719 -0.030 6.788 13250 0277 19598 1359.3
4722 (0.000) (0.000) 6.805 (0.000) (0.000) 3.989 (0.000) (0.000) 6.688 (0.000) (0.000)
X(QV1) |-0030 0558 1064 -0055 1029 10407 -0.011 0418 6605 -0012 1214 17.845
2915 (0.149) (0.588) 2693 (0.010) (0.000) 2741 (0.328) (0.037) 2573 (0.004) (0.000)
X(QVK) | -0091 2720 35943 -0093 1384 12914 -0005 0880 2479 -0.004 0491 0256
3579 (0.000) (0.000) 3.312 (0.001) (0.000) 3159 (0.024) (0.289) 3.051 (0.219) (0.880)
X(QW) | -0113 5598 1055 -0192 7.459 1519 -0.021 1945 3292 0009 3215 3.699
3992 (0.000) (0.000) 4.193 (0.000) (0.000) 3.359 (0.000) (0.001) 3.194 (0.000) (0.157)
X(HQV1) | 0138 5248 120.04 -0.134 3355 59811 -0.110 2942 13212 -0.092 2676 82549
4073 (0.000) (0.000) 3.736 (0.000) (0.000) 4.142 (0.000) (0.000) 3.902 (0.000) (0.000)
X(HQVK) | 0191 8683 24561 -0.149 9976 31404 -0.082 4649 15152 -0.059 5664 13239
4539 (0.000) (0.000) 4.769 (0.000) (0.000) 4.235 (0.000) (0.000) 4.159 (0.000) (0.000)
X(HQW) | 0202 10719 327.82 -0.179 11.298 380.72 -0.054 5555 15406 -0.099 6.671 280.06
4787 (0.000) (0.000) 4.943 (0.000) (0.000) 4.251 (0.000) (0.000) 4.683 (0.000) (0.000)

Note: The volatility filtersare defined in section 2.2. The data set refersto the 5-minute Y N/US$ from 1/12/86 to 30/11/96 which yields a daily sample size of T=2446 daysand is adjusted for a subsample of 2346, excluding the first 100 observationsasa
result of the rolling volatility esimators The window lengthsk=2,4,6 and 1=3,8,12 daysfor the 5-, 30- and 60-minutes frequency, repectively. The sample Skewness and Kurtoss (Sk and Kr., repectively) are reported. The test satigticsreported refer to the
Anderson-Darling (AD), Bera-Jarque (BJ) along with their respective p-values



Table8: Linear Regression Results of Daily YM/US$ on DM/US$ Standardized Returns based on Intra-day Sampling Frequencies

5-minute sampling frequency 30-minute sampling frequency
OLS results Residual Misspecification results OLS results Residual Misspecification results
X(e) const.  beta BJ Sk.  ARCH(1) ARCH(5) LM(1) LM(5) const.  beta BJ Sk.  ARCH(1) ARCH(5 LM(1) LM(5)

p-value p-value p-value Kr. p-value p-value p-value p-vaue p-vaue p-vaue p-vaue Kr. p-value p-value p-vaue p-vaue

X(RM) 0017 0603 60195 -0566  2.468 1115 1220 0702 -0032 0746 52786 -2068  0.010 0073 1749 2569
(0.276) (0.000) (0.000) 5209 (0.116)  (0.350) (0.269) (0.622) (0.011) (0.000) (0.000) 25.862 (0.919)  (0.996) (0.186) (0.025)
X(RV26) | 0021 0604 88421 -0597 1847 1091 1298 0917 -0032 0743 84087 2463  0.022 0044 0854 2345
(0.208) (0.000) (0.000) 5760 (0.174)  (0.363) (0.225) (0.469) (0.024) (0.000) (0.000) 31.907 (0.883)  (0.999) (0.355) (0.039)
X(RV52) | 0023 0603 15424 -0.766 4217 1987 1619 0729 -0038 0722 175997 -3336  1.229 0039 1229 2051
(0.172) (0.000) (0.000) 6.664 (0.040)  (0.078) (0.203) (0.601) (0.009) (0.000) (0.000) 44.895 (0.268)  (0.999) (0.268) (0.069)
X(QV1) | 0004 0605 54153 -0.223 1508 3238 0394 0440 0007 0600 31273 -0193 0.786 3492 0180 0459
(0.759) (0.000) (0.000) 3595 (0.219)  (0.006) (0.530) (0.821) (0.659) (0.000) (0.000) 3414 (0.375)  (0.004) (0.671) (0.807)
X(QV2) | 0004 0607 28472 -0400 0507 1524 1603 1524 00006 0607 18384 -0329 0.475 1789 1281 0523
(0.784) (0.000) (0.000) 4507 (0.476)  (0.179) (0.206) (0.179) (0.971) (0.000) (0.000) 4.204 (0.491)  (0.112) (0.258) (0.759)
X(QV3) | 0003 0609 28344 -0397 0513 1538 1540 0588 -0016 0618 6092 -0485 1535 0350  1.028  0.499
(0.821) (0.000) (0.000) 4505 (0.474)  (0.175) (0.215) (0.709) (0.016) (0.016) (0.000) 5244 (0.215) (0.882) (0.311) (0.777)
X(HQV1) | 00002 0607 44281 -0422  0.069 0959 2335 0599 00002 0605 20157 -0.325 0031 1208 1465 0.352
(0.861) (0.000) (0.000) 4.902 (0.793)  (0.442) (0.127) (0.701) (0.938) (0.000) (0.000) 4.282 (0.861)  (0.303) (0.226) (0.881)
X(HQV2) | -00003 0603 11177 -0614 0174 0675 2418 0607 -0.0006 0632 80344 -0514 1223 0716 1679 0485
(0.611) (0.000) (0.000) 6152 (0.676)  (0.643) (0.120) (0.694) (0.648) (0.000) (0.000) 5.681 (0.269)  (0.612) (0.195) (0.788)
X(HQV3) | 00003 0602 14351 -0.662  0.420 0679 2274 0598 -0.0007 0609 11875 -0572 0.777 0196 1618 0474
(0530) (0.000) (0.000) 6597 (0517)  (0.639) (0.132) (0.702) (0.407) (0.000) (0.000) 6.297 (0.574)  (0.964) (0.204) (0.796)

Note: The notesin TablesIV, VI and VIII apply.



Table 9: Change-point Test Results of Daily YM/US$ on DM/USS$ Standar dized Returns based on 30 minute I ntra-day Sampling Fregquency

Kokoszka and Leipus Change-point Test

Lavielle and Moulines Multiple Breaks Test

Normalized Returns Comovements Break Dates
YN(o ) DM(G}‘I) YN(o ) * DM(G}‘I) k*
U max U max U max
GvARHAC GvARHAC GvARHAC

X(RM) 0.706 0.839 5.215* Mar.95
X(RV26) 0.810 0.788 1.413* Oct.87
X(RV52) 0.806 0.856 1.178 -
X(QV1) 1.106 0.937 3.503* Oct.87
X(QV4) 1.133 0.929 2.980* Oct.87
X(QV8) 1.184 0.914 2.245* Oct.87
X(HQV1) 1.086 0.879 2.453* Oct.87
X(HQV4) 1.128 1.003 1.984* Oct.87
X(HQVS8) 1.149 0.945 1.818* Oct.87

Normalized Returns Comovements Break Dates
YN(o ) DM(G}‘I) YN(of) = a+ bDM(G}ft) + U K*

SIC(k) LWz(k) SIC(k) LWz(k) SIC(k) LWz(k) SIC(k) LwWz(k)
-0.042(0) -0.041(0) -0.028(0) -0.027 (0) -0.298 (1) -0.301 (2) -0.285(1)-0.184(0) Oct.87, Mar.95 Mar.95
-0.014(0) -0.013(0) -0.004(0) -0.004 (0) -0.497 (1) -0.496 (0) 0.495 (0) Oct.87 -
0.037(0) 0.037(0) 0.032(0) 0.033(0) -0.438 (2) -0.437 (1) -0.435 (0) Oct.87, Mar.95 -
-0.067 (0) -0.066 (0) -0.004(0) -0.004 (0) 0529 (2) -0.528 (1) -0.515(1)-0.512(0) Oct.87, Mar.95 Oct.87
0.015(0) 0.015(0) 0.066(0) 0.066 (0) -0.469 (2) -0.467 (1) -0.454 (1) -0.452(0) Oct.87, Mar.95 Oct.87
0.060 (0) 0.060(0) 0.078(0) 0.079 (0) -0.438 (2) -0.435 (1) -0.426 (0) Oct.87, Mar.95 -
3684 (0) -3.684(0) -3.766(0) -3.765 (0) -4.309 (1) -4.286 (0) -4.295 (1) -4.285 (0) Oct.87 Oct.87
-5.085(0) -5.085(0) -5.110(0) -5.109 (0) 5,629 (2) -5.628 (1) -5.614(1)-5.611(0) Oct.87, Mar.95 Oct.87, Mar.95
-5.803(0) -5.802(0) -5.827(0) -5.827(0) -6.337(2) -6.336 (1) -6.323(2)-6.321(1) Oct.87, Mar.95 Oct.87, Mar.95

Note: The break dates of returns standardized by the class of quadratic variation filters X((H)QV) resultsin more cond gtent results. Hence we focus our discussion on these specifications.



