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Abstract

The use of trimmed mean mechanisms in collective decision-making is motivated
by the perception that they constitute a remedy for strategic misreporting. This work
focuses on the strategic calculus of voting under such mechanisms and –contrary to
the above presumption– it demonstrates both formally and experimentally that: a)
voters persistently resort to strategic polarization for all but the most extreme levels
of trimming and b) the outcome is more extreme and closer to the ideal policy of
the median voter compared to when trimming does not take place. These so far
uncharted properties of trimming provide novel insights –and call for caution– regarding
its implementation.
Keywords: trimmed mean; equilibrium; experiment; collective decisions; facility lo-
cation problem
JEL codes: D71, D72

1 Introduction
The need for aggregation is ubiquitous in organizations: groups aggregate preferences to
reach collective decisions; websites aggregate product reviews to inform consumers; commit-
tees aggregate experts’ information to give recommendations; courts aggregate judgements
to reach verdicts. Of course, there is no unique way of performing such an aggregation.
Choosing a mechanism to do so in each of these instances is guided by experience and of-
ten supplemented by the analysis of the experts in aggregation: statisticians. After all,
estimation, which lies at the heart of statistical inference, is typically the aggregation of
∗University of Cyprus
†CNRS & CREST, Ecole Polytechnique.
‡University of Cyprus
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observations in a sample into a single value. Statistical theory has a lot to say about the
properties of different estimators and can tell us, for instance, when using the median of
a distribution instead of the mean will make a difference (see for example Lehmann and
Casella, 2006).

Some caution is required, though, when applying statistical theory to solve aggregation
problems as the ones described. The data generating process giving rise to a statistical
sample is typically independent from the estimation process and generally unaffected by its
result. However, such independence does not hold in many aggregation problems. Consider,
for instance, the problem of a jury that needs to aggregate jurors’ judgments to reach a
verdict as first studied by Condorcet (1785). If we assume that there is an underlying correct
verdict, a decision is taken by majority, and each juror is more likely to have identified the
correct verdict than not, then –by the law of large numbers– it follows that the probability
of a correct majority verdict converges to one as the number of jurors increases. Austen-
Smith and Banks (1996) noted however that this result relies on the seemingly innocuous
assumption that jurors vote sincerely –for what they believe is the correct verdict– and,
famously, argued that sincere voting is rarely rational in such settings. Therefore, it is
not unerring to directly apply standard statistical techniques to understand the asymptotic
likelihood of a correct majority verdict, and a proper equilibrium analysis is warranted.

Notice that in the jury setting the problem arises even when jurors are assumed to have
a common interest in reaching the right decision. This suggests that statistical arguments
relying on sincere behavior may be even less robust in environments where participants
in the aggregation process can have conflicting interests regarding its outcome. A growing
literature at the interface of statistics, economics and computer science studies the properties
of common estimation processes, such as linear regression, in the presence of this kind of
“strategic noise” (see for instance Cai et al., 2015; Caragiannis et al., 2016, and references
therein). One emblematic case where this issue arises is in the one-dimensional preference
aggregation problem (Moulin, 1980).1 Such problems are not only ubiquitous, but also
plagued by the issue of “strategic noise”. It suffices to think of the problem of setting the
air conditioner temperature in a common office space. If the decision coincides with the
mean of the workers’ requests, the colleagues may exaggerate their preferences to achieve a
temperature closer to what they wish for. Indeed, in such cases simple averaging "assigns
voting power to cranks in proportion to their crankiness" (Galton, 1907). But if taking an
average does not work, is there a simple way to overcome this problem?

The use of trimmed means has been proposed as a remedy for these issues. It involves
the calculation of the mean after discarding given parts of a sample at the high and low
end, typically an equal amount of both. For instance, the Olympic mean only discards the

1This is also known in the literature as the one-dimensional “facility location problem”.
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highest and the lowest value.2 The interquartile mean discards the lowest 25% and the
highest 25% and is used extensively in the computation of important financial benchmarks
such as the LIBOR and the EURIBOR. From a statistical perspective, trimming can improve
an estimator’s efficiency, especially for the case of fat-tailed distributions, as the estimate
becomes more robust to outliers.3 It is believed that this statistical property also renders the
trimmed mean immune to manipulation (see for example Eisl et al., 2017). So, for instance,
in figure skating a single judge cannot manipulate the score by giving an extremely high
or low score. While this idea is intuitive, surprisingly, there is no study that characterizes
the equilibrium outcomes of trimmed mean mechanisms while also testing their properties
in empirically relevant settings.4

In this paper we take the first step in this direction, and look at the class of trimmed
mean aggregation mechanisms from a strategic perspective. Namely, we consider the game
in which several players submit some value in the unit interval, the outcome coincides with
the trimmed mean and the players’ payoffs depend negatively on the distance between their
peaks/ideal points and the trimmed mean. Our approach is both theoretical and experimen-
tal. It proceeds as follows:

On the theory side of this work, we show that, each trimmed mechanism leads, essentially,
to a unique equilibrium. Its outcome can be fully characterized by the players’ peaks and the
degree of trimming (i.e., how many reports are trimmed in each extreme of the distribution).
In this equilibrium all players, but possibly one, polarize: they submit extreme reports
independently of whether some reports are trimmed or not. Intriguingly, the equilibrium
outcome becomes more extreme as the degree of trimming becomes higher for every possible
vector of ideal policies. That is, if the players’ ideal policies are drawn from a certain
well-behaved distribution that is symmetric about the center of the unit interval, then the
equilibrium outcome of a trimmed mean mechanism is farther from the population mean (i.e.,
the center of the policy space) compared to the simple mean mechanism. In fact, the more
we trim, the closer to the extremes the equilibrium outcome gets. Moreover, and somewhat
less surprisingly, as the degree of trimming increases the equilibrium outcomes approaches

2This is used in some sports such as figure skating and in Farm Commodity Programs in the US. One is
referred to Schnitkey (2012) for a detailed discussion.

3One is referred to Rothenberg et al. (1964), Bickel (1965) and Huber (1972) for seminal theoretical
contributions and to Andrews and Hampel (2015), Stigler (1977), Hill and Dixon (1982) and Bryan and
Cecchetti (1994) for empirical findings.

4The literature that considers the implications of trimming in a strategic setting is scant. Among them,
the most recent ones are Hurley and Lior (2002) and Rosar (2015). Hurley and Lior (2002) use Monte
Carlo simulations to compare the effect of trimming assuming that strategic voting occurs with a positive
probability. Rosar (2015) compares the median and the average rule in model with interdependent preferences
and incomplete information; yet, the focus of the paper is not on trimming even though some lessons on
trimming with a large number of players are drawn. See also, Bassett Jr and Persky (1994) for a model with
trimmed means, honest voting and Monte Carlo simulations and Yaniv (1997) for a description of heuristics
in judgment aggregation.
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the ideal policy of the median voter. Indeed, when trimming becomes extreme the outcome
literally coincides with the median report, and hence a gradual transition of the equilibrium
outcome to the median peak seems as a reasonable consequence as the degree of trimming
increases.

This stark difference regarding the theoretical properties of trimming between statistical
and strategic settings calls for careful empirical investigation. The idea that trimming should
disincentivize instrumental extreme reports seems compelling and, hence, our theoretical
finding that the degree of strategic behavior is unaffected by the degree of trimming might
not prove relevant in contexts of applied interest. In fact, if real individuals are substantially
discouraged from submitting extreme reports when such reports are trimmed away, then it
might be very likely that trimming leads to more moderate outcomes than the simple mean
mechanism (as possibly desired by the mechanism designer). For this reason we conduct a
laboratory experiment in which groups of five subjects are asked to make collective choice
following three alternative mechanisms: the Simple Mean (no trimming), the Olympic Mean
(the highest and lowest reports are trimmed), and the Median (the two highest and the two
lowest reports are trimmed).

The results point clearly in favour of our main theoretical prediction: for given prefer-
ences of the group, the outcome of the decision procedure becomes more extreme and moves
closer to the ideal policy of the median voter as the degree of trimming becomes higher. The
difference is very strong between any pair of mechanisms, and this establishes in a robust
manner that in strategic environments trimming pushes the outcome in the predicted direc-
tion. Importantly, though, the experiment also weakly justifies the common perception that
trimming mitigates strategic misreporting: individuals always misreport, but, conditional
on being extremists, choose to report values closer to their ideal policies as the degree of
trimming increases. When trimming becomes extreme (i.e., when all reports except the me-
dian one are trimmed away) then incentives to misreport vanish and subjects behave more
sincerely. These additional insights –that could not be drawn from the theoretical analysis–
lead to the following key observation: While trimming pushes subjects mildly towards more
sincere behavior, the effect is not strong enough to counterbalance the centrifugal force that
it induces on the outcome. Indeed, if non-extreme trimming (e.g., the degree of trimming
employed in the Olympic mean mechanism) could induce substantially more sincere behav-
ior then in several cases it would lead to more moderate outcomes than simple averaging
(which incentivizes, unambiguously, strategic behavior). As we find though, as long as the
degree of trimming remains non-extreme the strategic forces continue to dominate, subjects
polarize and misreport broadly to the same extent, and the outcome becomes more extreme
as trimming increases.

Overall, we consider that these first results provide a solid groundwork for further analy-
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sis of these popular mechanisms and pin down important and, so far, unidentified properties
of trimming in strategic contexts. Apart from the academic debate, our findings also call for
caution when it comes to deciding whether a trimmed mean mechanism should be employed
in real-life settings. An outcome-oriented mechanism designer who wants to extract infor-
mation regarding a value of interest (i.e., the true quality of the performance of an athlete)
should choose the mechanism that –taking in account the potential strategic behavior of
agents– leads to the most accurate estimate. Indeed, disincentivizing strategic misreporting
seems a natural target from this perspective. But as we find, this is only a simplistic view
of the problem: if sincerity increases slowly with the degree of trimming, then the effects
on the outcome might be completely opposite than desired. The loss of information due to
trimming seems to be in several cases much higher than the induced increase in sincere be-
havior, and this leads, both in theory and in the laboratory, to more extreme outcomes and
potentially less accurate estimates of the target values. Hence, it seems plausible that the
best way to induce the desired outcome (e.g., to moderate the outcome as much as possible)
might be by not trimming extreme reports at all.

After developing our theoretical analysis in Sections 2 and 3, and illustrating some key
facts in Section 4, Section 5 presents the experimental design and the hypotheses to be
tested. Results are presented in Section 6.

2 Theoretical Setting
Let A := [0, 1] denote the set of alternatives and N := {1, . . . , n} the set of players with
n = 2k + 1 for some positive integer k. That is, we focus on the case where n is odd but a
similar analysis can be conducted for the case in which n is even. Each player i has utility
function ui in U , the set of single-peaked preferences on the set of alternatives, with ui(x)
the utility of player i when x ∈ A is implemented. The player’s utility function, ui, reaches
its maximum at its unique peak, pi ∈ A, so that ui(x′) < ui(x′′) when x′ < x′′ ≤ pi and
when pi ≤ x′′ < x′. A social choice function is a function f : Un → A that associates every
u = (u1, . . . , un) ∈ Un with a unique alternative f(u) in A.

Ordered vectors and generalized medians. For any positive integer z and any finite
collection of points x = (x1, . . . , xz) in [0, 1]z, we let x̃ = (x̃1, x̃2, . . . , x̃z) denote the ordered
profile associated to x with x̃1 ≤ x̃2 ≤ . . . ≤ x̃z. Note that in case of ties in x, the element
with the lowest index in x is associated the lowest index in the ordered profile x̃. Given these
specifications, the ordered profile x̃ is uniquely defined for each collection x. The midpoint of
x̃ is the left median of x (the smallest xk for which #

{
` | x` ≤ xk

}
≥ z

2) and we denote it by
m(x). A social choice function is a generalized median rule (GMR) if there is some collection
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of points κ1, . . . , κn−1 in [0, 1] such that, for each u ∈ Un, f(u) = m(p1, . . . , pn, κ1, . . . , κn−1).
We refer to κ = (κ1, . . . , κn−1) as the phantom vector or vector of calibration parameters of
the GMR and to p = (p1, . . . , pn) as the peak vector. Essentially, the outcome of the GMR

with phantom vector κ is the ideal policy of the median voter of the group composed of the
n players with peaks in p plus n− 1 phantom/artificial voters with peaks in κ.

Nash and strong Nash equilibria. A mechanism is a function θ : Sn → A that assigns
to every s ∈ Sn, a unique element θ(s) in A, where S is the strategy space of player i. Given
a mechanism θ : Sn → A, the strategy profile s ∈ Sn is a Nash equilibrium of θ at u ∈ Un,
if ui

(
θ(si, s−i)

)
≥ ui

(
θ(s′i, s−i)

)
for all i ∈ N and any s′i ∈ S. Similarly, given a mechanism

θ : Sn → A, the strategy profile s ∈ Sn is a strong Nash equilibrium if there is no C ⊆ N

with ui
(
θ(sC , sN\C)

)
> ui

(
θ(s)

)
with sC = (sCi )i∈C and sN\C = (si)i∈N\C .

Trimmed Mean Mechanisms. We consider trimming mechanisms that (i) request each
player to announce one alternative and (ii) select a single alternative as an outcome. The
different trimming mechanisms differ only on one dimension: the number of trimmed reports.
The degree of trimming is denoted by ω and since we consider symmetric trimming (the same
number of trimmed reports from below and from above) and n = 2k + 1, it follows that ω
belongs to {0, . . . , k}. The trimmed mean of degree ω, denoted θω, drops the ω highest and
the ω lowest reports and implements the average of the remaining values. It follows that,
in each such mechanism, the strategy space for each player equals S = [0, 1] and therefore
θω : [0, 1]n → [0, 1] associates to any strategy profile s ∈ [0, 1]n the outcome:

θω(s) = Average(s̃ω+1, . . . , s̃n−ω).

This family of trimming mechanisms includes, among others, the Mean Mechanism, the
Olympic Mean and the Median Mechanism. The Mean mechanism corresponds to the case
without trimming (ω = 0) since it simply implements the average of the reports. The
Olympic mean mechanism trims the highest and the lowest value so that ω = 1. The
Median mechanism (ω = k) selects the median of the reports, which is equivalent to the
average of the unique value that remains after trimming the ω lowest and highest reports so
that θk(s) = m(s) for each s ∈ [0, 1]n.

3 Equilibria with Coalitional Deviations
Our theoretical analysis of these mechanisms is based on the concept of strong (Nash) equi-
librium (Aumann, 1959). This equilibrium concept refines the classical notion of Nash equi-
librium. In a strong equilibrium, no collective profitable deviation exists for any group of
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agents (or coalition) whereas in a Nash equilibrium no individual profitable deviation exists.
One of the reasons of our focus on strong equilibria is that Nash equilibrium has almost no
predictive power in our setting, as the next lemma shows.

Lemma 1. For every admissible preference profile, any outcome can be sustained in a Nash
equilibrium of the mechanism θω as long as ω > 0.

The logic of this indeterminacy of Nash equilibria is immediate: as long as all players
announce the same value, this constitutes a Nash equilibrium since no unilateral deviation
can alter the outcome. This, in turn, triggers the abundance of equilibrium outcomes (see
the proof in the appendix) since any alternative can be implemented in a Nash equilibrium.

Of course, not all Nash equilibria are equally plausible. In fact, this equilibrium multiplic-
ity is largely a theoretical artifact: on the one hand it requires a high degree of coordination
–i.e., all players can somehow infer that everybody else will announce x ∈ A– but at the
same time players that could profit from a mutual deviation (e.g., players with peaks to
the left of x) cannot effectively coordinate. For this reason, like Moulin (1980), we turn to
solution concepts that are robust to communication and coordination attempts. Indeed, the
contrast with strong equilibria is steep: each of trimming mechanisms under consideration
admits a strong equilibrium and its outcome is unique as will be discussed in the rest of the
section.

Theorem 1. For each trimming degree ω:

1. the game-form associated to the mechanism θω admits a strong equilibrium for every
admissible preference profile.

2. every strong equilibrium s of this game-form with peak profile p satisfies θω(s) =
m(p, κω1 , . . . , κωn−1) with, for each j = 1, . . . , n− 1 and each ω = 0, . . . , k:

κωj = min
{

max{0, j − ω
n− 2ω}, 1

}
.

3. in every strong equilibrium s and each ω < k, each player with pi < θ(s) plays 0 and
each player with pi > θ(s) plays 1.

Theorem 1 presents in our view a very appealing property of trimmed mean mechanisms:
the existence of strong equilibria and the uniqueness of its outcomes.

As far as existence is concerned, it is well known that strong equilibria seldom exist
since they impose no restriction on how coalitions choose their profitable deviation. In our
games, this criticism does not apply since a strong equilibrium exists for every possible peak
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specification. However, we are aware that strong Nash equilibria are often criticized by
imposing no restriction on how coalitions choose their profitable deviation and that, often,
the concept of coalition-proof Nash equilibria is deemed superior. Yet, following the results
of Yamamura (2011), one can prove that in each of the games under consideration, the sets
of strong Nash and Coalition-Proof Nash equilibria coincide (Bernheim and Peleg, 1987), so
that the results identified here do not hinge on the specific details of communication between
agents.

Regarding the uniqueness of the equilibrium outcome, Theorem 1 shows that this outcome
coincides with the median of the peak profile p and of the calibration vector κω. Using im-
plementation jargon, the trimmed mean mechanism θω implements the GMR with phantom
vector κω in strong equilibrium.5 In the specific case in which ω = 0 our result aligns with
Renault and Trannoy (2005) and Yamamura and Kawasaki (2013) who have characterized
the Nash equilibrium of the mean mechanism without trimming.

Finally, note that our prediction is that individual behavior will be polarized in every
trimmed mechanism θω, with the possible exception of the median mechanism, where ω = k.
This is a very crucial point of our theoretical analysis as it directly contradicts the common
perception that trimming mitigates the incentives for strategic misreporting and postulates
that unless it is extreme (i.e., unless all but the median report are trimmed), players have
strong incentives to polarize and report opinions far from their true ones.

In the case of extreme trimming, where ω = k, voting for one’s peak is a weakly dominant
strategy. Therefore, this mechanism admits multiple (strong) equilibria. Nevertheless, in all
equilibria the median voter votes for her peak and all equilibria lead to the same unique
strong Nash equilibrium outcome for this mechanism, which is the median voter’s peak.

Having characterized the equilibrium outcome as a function of the trimming degree,
we now turn our attention to some important comparative statics. Indeed, since for each
preference profile and each trimming degree ω the outcome is unique, this allows us to
understand how trimming affects the distance of the equilibrium outcome from the center
of the policy space and from the ideal policy of the median voter. For each p ∈ [0, 1]n and
each ω = 0, . . . , k, the equilibrium outcome associated to the mechanism θω is henceforth
denoted by :

mω(p) = m(p1, . . . , pn, κ
ω
1 , . . . , κ

ω
n−1).

As Theorem 2 shows, the higher the trimming degree (the higher ω), the closer the
outcome mω(p) is to the median of the peaks m(p) and the further away from the midpoint
of the outcome space. More formally,

5For general results regarding implementation in strong Nash equilibrium one is referred to Maskin (1978)
and Dutta and Sen (1991).
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Theorem 2. Take any pair of Trimmed Mean mechanisms θω, θφ with ω < φ. Letting ‖·‖
stand for the Euclidean distance, the associated strong equilibrium outcomes satisfy:
a.) the lower the trimming degree, the closer to the midpoint of A so that:

‖mω(p)− 1
2‖ ≤ ‖mφ(p)−

1
2‖.

b) the higher the trimming degree, the closer to the median peak so that:

‖mφ(p)−m(p)‖ ≤ ‖mω(p)−m(p)‖.

Theorem 2 gives a clear illustration of the effect of trimming in strategic contexts. To
understand the importance of this result, one should contrast it with the effect of trimming
when reports are sincere: in such cases trimming, by removing outliers, may lead to more
or less moderate outcome depending on the exact peak distribution (we present examples in
thee next section). Our results show that this ambiguity disappears in a strategic setting.
Indeed, among the different trimmed mechanisms, the one for which the outcome mω(p) is
closer to the center of the interval is the mean rule, that is the only mechanism of this family
in which no trimming occurs. In reality, the above theorem is even stronger since it applies
for each pair of mechanisms: the less trimming, the more centered the decision becomes.

Finally, our results also underline a different effect: the more trimming, the closer the
outcome shifts towards the median of the peaks. This is somewhat more intuitive since
among the mechanisms under consideration, the one that exhibits the highest degree of
trimming is the median mechanism (ω = k) and its unique equilibrium outcome coincides
with the median of the peaks.

4 The Mean, the Olympic Mean and The Median
In this section we present two examples of peak distributions that explain why trimming
has ambiguous effect on the outcome when behavior is sincere and why this ambiguity
disappears when players are strategic, and we also provide a link between our theoretical
and our experimental analysis. As argued, for each peak profile p and each trimming degree
ω, the (strong) equilibrium outcome is unique. Thus, the discussion deals simply with two
parameters:

θω(p): Sincere voting outcome of trimming
mω(p): Strategic voting outcome of trimming.

9



For the sake of clarity and consistency with our experimental analysis, the present dis-
cussion focuses on a five-member committee. Therefore, we denote by N = {1, . . . , 5} the
set of agents and consider three mechanisms: the simple mean mechanism SM (ω = 0, i.e.,
no trimming), the Olympic mean mechanism OM (ω = 1, i.e., trimming the highest and the
lowest report) and the median mechanism M (ω = 2, i.e., trimming the two highest and the
two lowest reports). In all mechanisms, each player i submits a report si ∈ [0, 1] and the
mechanism selects an alternative in [0, 1]. Under sincere voting, si = pi, and under strate-
gic voting we have, generically, si 6= pi. Table 1 summarizes the outcome of the different
mechanisms under sincere and strategic (strong Nash equilibrium) voting.

Mechanism ω
Calibration
vector

Sincere
voting
outcome θω(s)

Strategic
voting
outcome mω(p)

SM 0 κ0 = (.2, .4, .6, .8) Average(s1, . . . , s5) m(p, κ0)

OM 1 κ1 = (0, 1
3 ,

2
3 , 1) Average(s2, s3, s4) m(p, κ1)

M 2 κ2 = (0, 0, 1, 1) Average(s3) = s3 m(p, κ2) = m(p)

Table 1: Mechanisms and outcomes. For presentation purposes it is assumed here that the
vector of peaks p is such that p1 ≤ p2 ≤ p3 ≤ p4 ≤ p5. Note that when voting is sincere si = pi.

In order to clarify the effect of trimming, we now analyze two examples that are repre-
sentative of two diverse classes of cases.

Example 1: aligned effects of trimming. Consider the following profile of peaks:

p1 = .05, p2 = .15, p3 = .25, p4 = .65 and p5 = .85.

This profile is left-biased since the median of the peaks is located to the left of the center
of the interval. Table 2 summarizes the outcomes that obtain under different mechanisms
under either sincere or strategic voting. For strategic voting it also shows the strategic
reports submitted by voters. These are examples of strong equilibrium profiles sustaining
the equilibrium outcome as shown in Theorem 1.

Note that the effect of trimming on the outcome goes in the same direction for both
sincere and strategic voting. Indeed, under both assumptions, the outcome shifts from right
to left and gets as close as possible to .25, the median of the peaks. For strategic voting
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Peaks
p1 p2 p3 p4 p5
.05 .15 .25 .65 .85

Mechanism ω
Sincere
outcome

Strategic reports Strategic
outcome

s1 s2 s3 s4 s5
SM 0 .39 0 0 0 1 1 .4
OM 1 .35 0 0 0 1 1 .33
M 2 .25 0 0 .25 1 1 .25

Table 2: The effects of trimming in Example 1. Under both sincere and strategic voting,
trimming shifts the outcome towards the median peak.

this is exactly what is predicted by Theorem 2. For sincere voting it is a result of the
particular peak profile used here. The next example demonstrates that for sincere voting the
comparative statics depend on the peak profile, something which is not true under strategic
voting.

Example 2: misaligned effects of trimming. Consider the following profile of peaks:

p1 = 0, p2 = 0, p3 = .3, p4 = .36 and p5 = 1.

This peak profile is again left-biased since the median of the peaks is located to the left of
the center of the interval. As one can observe in Table 3, the effect of trimming does not
push the outcome in the same direction when considering sincere and strategic behavior.

Indeed, under strategic behavior, the outcome shifts from right (i.e., .36) to left (i.e.,
.33) and gets as close as possible to the median of the peaks as ω increases. With sincere
behavior, the outcome starts at .332, then gets more extreme (i.e., .22 for the Olympic mean)
and then becomes more moderate again for the median mechanism.

Broadly speaking, trimming does not have the same effects under sincere and strategic
voting. With sincere voting the trimming may have a non-monotonic effect and this will
always depend on the particular peak profile. Under strategic voting the effect is always in
the same direction as dictated by Theorem 2. Whether real subjects will choose to employ
one or the other behavioral rule is obviously an empirical question, and we will try to address
it in the sections that follow by the means of a laboratory experiment.
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Peaks
p1 p2 p3 p4 p5
0 0 .3 .36 1

Mechanism ω
Sincere
outcome

Strategic reports Strategic
outcome

s1 s2 s3 s4 s5
SM 0 .332 0 0 0 .8 1 .36
OM 1 .22 0 0 0 1 1 .33
M 2 .3 0 0 .3 1 1 .3

Table 3: The effects of trimming in Example 2. Here, under sincere voting the effect of
trimming is not monotonic. For strategic voting the predictions of Theorem 2 hold under any peak
profile.

5 Experimental Design and Hypothesis

5.1 Experimental Design

The aim of the experimental design is to test the theoretical predictions concerning the effect
of trimming on voter’s behavior and the outcome. We use a between-subject design with
three treatments. In each treatment, subjects make collective decisions using one of the three
mechanisms described in the previous section: the Simple Mean (SM), the Olympic Mean
(OM) and the Median (M). The decision rules are such that the outcome is unique for each
admissible profile, allowing us to compare the effect of trimming since the mechanisms differ
only on the degree of trimming.

The experiment took place at the University of Cyprus Lab of Experimental Economics
(UCY-LExEcon). A total of 135 subjects, all students of the University of Cyprus partic-
ipated in 9 equally sized sessions, with 3 sessions per treatment. Recruitment was done
using ORSEE (Greiner, 2015). The experiment was computerized, and the software was
programmed and run using zTree (Fischbacher, 2007). An outline of the design is presented
in Table 4.

Timing and the experimental task. In all three treatments, subjects receive written
instructions after entering the lab. These are also read aloud to establish common knowl-
edge. In each round, subjects are placed in a group of five. Each group needs to choose
collectively an integer between 1 and 100 as the group’s destination. Each group member
has an individual starting point, that is, a different integer between 1 and 100. The payoff in
each period is then 100 points minus the distance between the destination and the subject’s
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Treatment Rule Group
size

Subjects
per session Sessions N Rounds

SM
Simple
mean 5 15 3 45 80

OM
Olympic
mean 5 15 3 45 80

M Median 5 15 3 45 80∗

Table 4: Experimental design. ∗Due to a technical problem in the first session of the M
treatment, it was only possible to conduct the first 76 rounds. For the remaining sessions subjects
played all 80 rounds.

starting point. Starting points are common knowledge and are different for every subject in
each round. Groups are reshuffled randomly in each round, and subjects do not know the
identity of the other group members.

Parameter selection. The only parameters that are different between subjects and rounds
were the subjects’ starting points, which determine their payoffs. Nevertheless, the exact
same set of parameters was used across all nine sessions. That is, for any combination of
starting points used for a group in a specific round of a session, there was another group in
all other sessions with the same starting points in the same round. Furthermore, the exact
same sequence of parameters was assigned to subjects in all sessions.

The values for the starting points are chosen in a way that allows us to better detect
differences across treatments. For instance, for any profile of starting points where the
median voter lies close to the center of the policy space there is no difference in the outcome
across the three mechanisms we use. Choosing starting points randomly would result in
a large number of such profiles, eroding the power of our experimental design to detect
differences in the outcome across mechanisms. Instead, we make a selection of profiles that
allows us to cover all cases where there should be differences across at least two treatments.

In particular, for the design we require 240 different starting point profiles. The the-
oretical difference in the (strong) Nash equilibrium outcomes in treatments SM vs. OM

can lie between zero and seven points, while for OM vs. M it goes from zero to 33, with
values above 24 being more rare. We therefore chose 200 profiles such that the differences in
equilibrium outcomes cover the [0, 7]× [0, 24] surface uniformly and another 40 profiles that
have equilibrium outcomes with OM vs. M differences above 24. Given these desiderata,
the selection of the particular profiles used in the experiment was random.
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Treatments. As mentioned earlier, a different decision rule is used in each treatment to
select the group’s destination. In all three treatments subjects vote for one location choosing
an integer from 1 to 100. The collective outcome is determined with one of the following
rules:

Simple Mean: the collective outcome is the mean of all five votes.

Olympic Mean: the collective outcome is the mean of the three central votes (after dropping
the highest and the lowest votes).

Median: the collective outcome is the median vote.

Voting and time limit. Voting in each round in all three treatments lasts for 20+x
seconds, where x is a number between one and five, chosen randomly in each round and
not known to the subjects. During this time, each subject is informed about her and others’
starting points and can enter her vote. She can also observe the votes entered by other group
members in real time. At any given point in time, the software calculates the destination
and the payoffs for each subject. These are shown on the screen as a clock counts down from
20 seconds. After 15 seconds, a text starts blinking indicating that time is almost up. After
the initial 20 seconds have passed it turns red for the remaining x seconds and indicates that
voting may finish at any moment. The destination for the period is determined by the votes
entered when the 20+x seconds finish. Finally, a screen appears informing subjects about
the results of the voting: the votes and the payoffs for each subject and the final destination.
The round finishes and a new round begins.

Payments. Ten rounds are chosen randomly and payoffs in these rounds are used to de-
termine the subject’s payment for the experiment. Subjects receive 1 e for every 80 points
earned in the selected round, plus an additional 5e as a participation fee. Subjects earned
15.10 e on average across all sessions.

5.2 Hypotheses

The theoretical results in the previous section suggest a few hypotheses to test using our ex-
perimental design. These can be classified as pertaining to either individual voting behavior
or the aggregate outcome of these. We start with the latter.

Theorem 1 gives a unique prediction about the voting outcome in each treatment: the
strong Nash equilibrium (sNE). For SM and OM the sNE differs from the outcome that
obtains if all voters vote sincerely. For M the two coincide as they both give the median’s
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starting point as the outcome.

Hypothesis 1. In treatments SM and OM the outcome will be close to the sNE and far
away from the sincere outcome. In treatment M the outcome will be the median voter’s
preferred point, as predicted by both the sNE and sincere play.

From Theorem 2 it follows that as we move to treatments with a higher degree of trim-
ming, we expect to see the outcome move closer to the median voter’s starting point. In fact,
in treatment M , the former should be identical to the latter. But Theorem 2 also predicts
that outcomes will lie between the median and the policy space mid-point. Thus, outcomes
closer to the median are also further away from the center. These comparative static results
are reflected in the following hypotheses.

Hypothesis 2a. As we move from treatment SM to OM and then to M , the outcome
moves closer to the median voter’s starting point.

Hypothesis 2b. As we move from treatment SM to OM and then to M , the outcome
moves further away from the center of the policy space.

Regarding individual voting behavior we again have a strong prediction for treatments
SM and OM . There we mostly expect most voters to move to the extremes of the policy
space, with the exact number depending each time on the exact profile of starting points in
a group. In treatment M there are multiple equilibria that all lead to the same outcome.
There is always one in which all voters (except the median one) vote for one of the extremes
and the median one votes for her preferred outcome. Everyone voting sincerely is also an
equilibrium in this treatment. Given the multiplicity we expect a less polarized distribution
of votes in this treatment.

Hypothesis 3. Individual votes in the SM and OM treatments will concentrate on the
extremes of the voting space. The distribution of votes in M will be less polarized.

As discussed in the introduction, the motivation to use trimmed mean mechanisms in
practice is to moderate incentives for participants to misrepresent their preferences. Our
theory of strategic play essentially predicts that at least four out of five players will always
choose an extreme (and, hence, largely insincere) report in SM and in OM . Therefore,
one substantial difference is that sincerity should be higher in M compared to the other
two treatments. But if one investigates non-equilibrium dynamics one can see that in SM
strategic incentives to misreport one’s preferences are somewhat more salient compared to
the ones in OM . To see this consider a strategy profile where no player chooses an extreme
policy and the outcome coincides with the median voter’s ideal policy. If the most leftist
player has chosen her ideal policy, then, it is easy to validate that under OM this player has
no incentives to move farther from her ideal policy and towards zero, while under SM she
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does. Of course, in both cases more central players might have incentives to deviate. Still this
example demonstrates that the extremists’ drive to exaggerate might be dampened under
trimming when players deviate from perfect equilibrium behavior. Finally, recall that in M
sincere voting is a weakly dominant strategy. So while multiple equilibria exist, all yielding
the same outcome, we do expect to observe higher levels of sincerity in this treatment.

Anticipating some deviations from sNE, and given the above discussion, we can conjecture
that individual votes will be closer to the ideal policies of the corresponding players as
trimming increases.

Hypothesis 4. Individual votes will be closer to their respective ideal points in treatment
M , followed by OM and then SM .

6 Results

6.1 Voting outcome

We first compare the outcomes across treatments to different theoretical benchmarks. These
are summarized in Table 5.

We start with the prediction of the strong Nash equilibrium. Overall, the sNE does a good
job predicting the voting outcome. The average deviation from sNE in both SM and OM is
statistically significant but rather small in magnitude. In M we do not find any significant
difference from sNE. More importantly, and in line with our theoretical results, it seems
that in SM and OM the sNE does a better job predicting the outcome compared to what
is expected given sincere behavior. The distance from the sincere outcome is significantly
larger in OM . For M , the sNE and sincere outcomes coincide.

A regression of the group outcome on the sNE or sincere prediction for M results on a
coefficient that is not statistically different from one. This confirms that when using the
median rule it is the median’s ideal point that entirely determines the group’s outcome.
For treatments SM and M , regressing the outcome on both the sNE and sincere behavior
predictions reveals that the group outcome can be viewed as a convex combination of these
two variables. The largest weight, 77%, is put on the sNE and the remaining 23% is put on
the sincere outcome.

Result 1. We find support for Hypothesis 1. Group outcomes are largely determined by the
sNE prediction in all treatments. In treatments SM and OM where the sincere behavior
prediction differs, it has some predictive power, albeit much less than the sNE.
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Treatment Distance
from Nash

Distance
from sincere

Distance
from median

Distance
from center

Distance
from mean

SM 4.63 8.45 16.95 15.63 8.45
= <∗ >∗∗ <∗∗ =

OM 6.30 9.41 13.26 20.28 8.21
>∗ >∗∗ >∗∗ <∗∗ >∗∗

M 2.30 2.30 2.30 31.05 11.24

Table 5: Outcomes vs. Benchmarks. The numbers indicate the average distance of outcomes
from the specified benchmark in each treatment. We compare treatments by regressing the absolute
distance on treatment dummies with robust st. errors and test using the wild bootstrap, clustering
on the session level (see Roodman et al., 2019). Stars indicate significance levels as follows: p-
val<.05: *, p-val<.01: **. Comparing M with OM and SM yield similar results. The distance
from Nash, sincere and median in M is not significantly different from zero. All other distances
are.

From the fourth and fifth columns of Table 5 we see what is predicted by Theorem 2.
On average, outcomes are closest to the median’s ideal point in treatment M , followed by
OM , with those in SM being the furthest away. At the same time, the outcomes lie between
the median and the center of the policy space in the reverse order. This is also evident in
Figure 1, despite the noise in the data. Outcomes in the SM treatment tend to be closer to
the horizontal line in the center, while the ones in M are closer to the 45 degree line. The
outcomes in OM lie mostly between the two. One can conclude that even if the outcomes
do not fully conform to the sNE predictions, the comparative statics are robust.

Result 2. We find strong support for Hypotheses 2a and 2b. Group outcomes lie mostly
between the median and the center of the policy space. They are closest to the former in
treatment M and to the latter in treatment SM . Outcomes in OM are on average between
the other two.

6.2 Individual votes

We now take a look at how individual subjects vote across treatments. In each treatment, a
voter’s behavior will largely depend on her position with respect to the other voters in the
group. Even before looking at what theory predicts, it is intuitive to think that the median
voter is likely to behave differently than the two voters on the extremes or the remaining
moderate voters. The theoretical prediction, as discussed previously, is more nuanced as it
depends on a voter’s position with respect to the mechanism’s predicted equilibrium outcome,
i.e., the median of all ideal points and the mechanism’s “phantom voters”. For SM and OM ,
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Figure 1: Outcome vs. median. Each point in the above scatter plot corresponds to the
collective outcome of a group with a given median voter. Crosses correspond to the SM treatment,
left-pointing triangles to OM , and right-pointing triangles to M . The solid diagonal line is the 45
degree line. The dashed line indicates the center of the policy space.
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in the vast majority of cases, a voter will vote for one of the extremes of the policy space. This
will not happen if her ideal policy coincides with the predicted outcome of the mechanisms,
in which case she votes in the interior of the policy space. Doing the same in M is also an
equilibrium but not the unique one.

The solid black line in each graph in Figure 2 indicates the distribution of the distance
of votes from the center of the policy space if voters behave as predicted by the sNE (for
M where there are multiple sNE’s with a unique outcome it assumes non-median voters will
adopt the one with the most extreme behavior). In most cases it is predicted that almost the
entirety of votes will lie at one of the extremes of the policy space. One obvious exception
is the case of median voters in the M treatment. In any sNE these voters vote for their
ideal point and that is the collective outcome of the mechanism. Another special case is that
of moderate voters in SM . Due to the particular selection of peak profiles we did for the
experiment (see previous section) it is often the case in this mechanism that the equilibrium
outcome coincides with a moderate voter’s peak. As a result, these voters vote sincerely
and do not polarize. As can be seen from the top middle graph in Figure 2, this happens in
about a third of cases.

The distribution of actual votes in the experiment is indicated in each graph of Figure
2 by the grey solid line. The first thing to note is that in treatments SM and OM , the
majority of votes lie on one of the extremes of the policy space, i.e., have the maximum
distance from the center of the policy space. This is not the case for treatment M , but here
we observe that median voters’ votes are distributed almost identically to what is predicted
by the sNE. When this is the case, any vote by moderates and extremists that lies on the
same side of the median as their ideal point is a best response. In fact, the dashed line shows
the distribution of voters’ ideal points’ distance from the center of the policy space and this
would be the distribution of the distance of votes if everyone voted for his ideal point. We
can see that for moderates and extremists inM the distribution of voted is not very different
from that.

While the majority of votes does lie on the extremes, there is a significant portion of
them that does not. This exceeds what is expected in equilibrium and indicates that while
sNE has a lot of power in explaining individual votes, equilibrium play is not the only factor
explaining voting behavior.

Result 3. We find support for Hypothesis 3. Groups tend to be polarized in treatments SM
and OM , but less so in M . The mass of votes in the first two treatments lies on the extremes
of the policy space.

Results 1 to 3 demonstrate the power of strong Nash equilibrium theory to predict behav-
ior and outcomes in this environment. Still, there are deviations from equilibrium behavior.
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Figure 2: The distance of individual votes from the center of the policy space. The
grey line in each graph is the empirical cumulative distribution function (CDF) for the distance of
votes from the center of the policy space for different types of individual voters (medians, moderates,
extremists) and treatments (SM , OM and M), as observed in the experimental data. The solid
black lines indicate the CDF that would result from subjects voting according to the sNE. For
treatment M we show the CDF for the sNE with the highest degree of polarization. The dashed
lines correspond to the CDF of ideal points for each type of voter. This is the same in all treatments
and coincides with the distribution of votes under sincere voting.

Such deviations are necessary for our last hypothesis to have some support, as in contrast
to the others it does not rely on equilibrium theory.

Hypothesis 4 is motivated by the intuition that higher levels of trimming disincentivize
subjects from casting extreme votes. In Table 6 we show the average distance of individuals’
votes from their respective ideal points across treatments. According to our hypothesis, this
should be lower for higher levels of trimming, namely in treatment M , followed by OM and
being highest in SM . Overall, the ranking does conform to the one hypothesized, albeit, the
differences between SM and OM are not significant. Looking more closely at the behavior
of different types of voters reveals a clear support for the hypothesis for median voters. For
moderate voters the average distance is significantly smaller in M compared to the other

20



Treatment Overall Median Moderate Extreme

SM 20.28 16.98 22.49 18.68
= >∗ = >∗∗

OM 19.53 14.27 23.57 16.79
>∗∗ >∗∗ >∗∗ =

M 12.54 2.78 10.40 18.60

Table 6: Average distance of vote from ideal point. The numbers indicate the average
distance of an individual’s vote from her ideal point. The first column shows aggregates per
treatment across all voters. The remaining three columns show averages across each type of voter.
We compare treatments by regressing the absolute distance on treatment dummies with robust st.
errors and test using the wild bootstrap, clustering on the session level (see Roodman et al., 2019).
Stars indicate significance levels as follows: p-val<.05: *, p-val<.01: **. Tests comparing SM to
M yield the same results as OM vs. M , except for extreme voters where the average distance in
SM is not significantly different than the one in M .

treatments. For these voters the highest average distance is observed in OM , although
the difference from SM is not significant. To some degree this can be explained by the
selection profiles in our experiment: in many cases in SM it is one of the moderate voters
determining the outcome in equilibrium, which means that she should not vote one of the
extremes (see upper middle panel in Figure 2). If one controls for the distance of the Nash
equilibrium prescribed vote from the ideal point the treatment effects are aligned with what
we hypothesize, but still the difference between SM and OM is not significant for moderates.
Extreme voters cast votes furthest away from their ideal points in SM , but are now followed
by their counterparts in M . The difference between the two is not significant. One potential
explanation here is that given the mechanism in M , it is highly unlikely for extreme voters
to be able to influence the outcome in their favor. This can induce noisy behavior, as voting
for anything can be deemed as a best response. The average distance in OM is significantly
lower than in SM in line with the reasoning backing this hypothesis.

Result 4. We find some support for Hypotheses 4. On average, voters in M cast votes
closer to their ideal points, followed by voters in OM and voters in SM being the furthest.
The effect of trimming on vote sincerity is more pronounced for median voters across all
treatments, for moderate voters in M and for extreme voters in OM .
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7 Concluding remarks
In this paper we have provided a full equilibrium analysis of trimmed mean mechanisms
and we have also tested several of the theoretical predictions by the means of a laboratory
investigation. The experimental test showed that the formal results described the players
behavior and decisions well, but also unveiled patterns that have not been pinned down by
the formal analysis. Indeed, real subjects are more complex than assumed by the rational
choice model and best-responding to the choices of the other players, while prevalent, is
not the only aspect that shapes their behavior. Additional empirical analysis from field
experiments and observational data seems a natural next step so that further insight can be
gained.

Our results were derived in a context of complete information regarding players’ prefer-
ences and the aggregating process. Despite this being the obvious first step, an analysis of
environments of incomplete information is evidently also relevant since in many cases play-
ers are not exposed to the biases of the other group members (especially when groups are
composed of a large number of individuals), and the aggregation process itself may not be
even fully transparent (e.g., when voting is secret and the averaging process is conducted by
a third party). Another potentially interesting route is to consider common values since in
many cases players do not only need to aggregate their preferences but also their informa-
tion. This is particularly the case when the committee is composed of experts who need to
aggregate their pieces of possibly conflicting evidence to a unique policy proposal. Finally,
asymmetries in the weights of the involved parties also make sense to be explored since they
become more and more frequent in settings of applied interest (e.g., voting in E.U. decision
making bodies). While all these extensions and generalizations are beyond the scope of the
present study, they all represent promising research directions for the future and would nicely
complement the present analysis.

References
Andrews, D. and F. Hampel (2015): Robust estimates of location: Survey and advances,
vol. 1280, Princeton University Press.

Aumann, R. (1959): “Acceptable points in general cooperative n-person games,” Contribu-
tions to the Theory of Games (AM-40), 4, 287–324.

Austen-Smith, D. and J. Banks (1996): “Information aggregation, rationality, and the
Condorcet jury theorem,” American political science review, 90, 34–45.

22



Bassett Jr, G. and J. Persky (1994): “Rating Skating,” Journal of the American
Statistical Association, 89, 1075–1079.

Bernheim, B. D. and M. Peleg, B.and Whinston (1987): “Coalition-proof nash
equilibria i. concepts,” Journal of Economic Theory, 42, 1–12.

Bickel, P. (1965): “On some robust estimates of location,” The Annals of Mathematical
Statistics, 36, 847–858.

Bryan, M. and S. Cecchetti (1994): “Measuring core inflation,” in Monetary policy,
The University of Chicago Press, 195–219.

Cai, Y., C. Daskalakis, and C. Papadimitriou (2015): “Optimum statistical estima-
tion with strategic data sources,” in Conference on Learning Theory, 280–296.

Caragiannis, I., A. Procaccia, and N. Shah (2016): “Truthful univariate estimators,”
in International Conference on Machine Learning, 127–135.

Condorcet, N. J. A. (1785): Essai sur l’application de l’analyse à la probabilité des déci-
sions rendues à la pluralité des voix. Par M. le marquis de Condorcet...., de l’Imprimerie
Royale.

Dutta, B. and A. Sen (1991): “Implementation under strong equilibrium: A complete
characterization,” Journal of Mathematical Economics, 20, 49–67.

Eisl, A., R. Jankowitsch, and M. G. Subrahmanyam (2017): “The manipulation
potential of Libor and Euribor,” European Financial Management, 23, 604–647.

Fischbacher, U. (2007): “z-Tree: Zurich toolbox for ready-made economic experiments,”
Experimental economics, 10, 171–178.

Galton, F. (1907): “One vote, one value,” Nature, 75, 414.

Greiner, B. (2015): “Subject pool recruitment procedures: organizing experiments with
ORSEE,” Journal of the Economic Science Association, 1, 114–125.

Hill, M. and W. Dixon (1982): “Robustness in real life: a study of clinical laboratory
data.” Biometrics, 38, 377–396.

Huber, P. (1972): “The 1972 wald lecture robust statistics: A review,” The Annals of
Mathematical Statistics, 43, 1041–1067.

23



Hurley, W. and D. Lior (2002): “Combining expert judgment: On the performance of
trimmed mean vote aggregation procedures in the presence of strategic voting,” European
Journal of Operational Research, 140, 142–147.

Lehmann, E. L. and G. Casella (2006): Theory of point estimation, Springer Science
& Business Media.

Maskin, E. (1978): “Implementation and strong Nash equilibrium,” .

Moulin, H. (1980): “On Strategy-proofness and Single Peakedness,” Public Choice, 35,
437–455.

Renault, R. and A. Trannoy (2005): “Protecting Minorities through the Average Rule,”
Journal of Public Economic Theory, 7, 169–199.

Roodman, D., M. Ø. Nielsen, J. G. MacKinnon, and M. D. Webb (2019): “Fast
and wild: Bootstrap inference in Stata using boottest,” The Stata Journal, 19, 4–60.

Rosar, F. (2015): “Continuous decisions by a committee: median versus average mecha-
nisms.” Journal of Economic Theory, 159- Part A, 15–65.

Rothenberg, T., F. M. Fisher, and C. B. Tilanus (1964): “A note on estimation
from a Cauchy sample,” Journal of the American Statistical Association, 59, 460–463.

Schnitkey, G. (2012): “Simple versus Olympic Averages in Prices used in Farm Commod-
ity Programs,” Farmdoc Daily, 2.

Stigler, S. (1977): “Do robust estimators work with real data?” The Annals of Statistics,
1055–1098.

Yamamura, H. (2011): “On coalitional stability and single peakedness,” Tech. rep., mimeo,
Kobe University.

Yamamura, H. and R. Kawasaki (2013): “Generalized Average Rules as stable Nash
mechanisms to implement generalized median rules,” Social Choice and Welfare, 40, 815–
832.

Yaniv, I. (1997): “Weighting and trimming: Heuristics for aggregating judgments under
uncertainty,” Organizational behavior and human decision processes, 69, 237–249.

24



A Proofs
Proof of Lemma 1

Proof. Let n = 5 (the proof can be extended to any number of agents) and take some profile
x = (c, . . . , c) where every player announces c. It follows that θω(x) = c for each ω = 0, 1, 2.
If ω > 0, no player has a profitable deviation since any unilateral deviation is removed and
hence does not modify the outcome. More precisely, for each i ∈ N , any s′i 6= x leads to
θω(s′i, c, . . . , c) = c. Thus, the strategy profile x is an equilibrium for any collection of the
peaks.

Proof of Theorem 1

Proof. The claim is immediate for ω = 0 since the mechanism θ0 (the Average rule) admits
a unique Nash equilibrium outcome m(p1, . . . , pn, κ

0
1, . . . , κ

0
n−1), as shown by Yamamura and

Kawasaki (2013) and any strong Nash equilibrium is a Nash equilibrium by definition. In
the sequel, take some mechanism θω with ω = 1, . . . , k. Consider any collection of peaks
p = (p1, . . . , pn) with w.l.o.g. p1 ≤ p2 ≤ . . . ≤ pn. Let f(p) = m(p1, . . . , pn, κ

ω
1 , . . . , κ

ω
n−1)

the generalized median rule with calibration vector (κω1 , . . . , κωn−1). To simplify notation, we
write κj rather than κωj for each j = 1, . . . , n− 1.

The rest of the proof is divided into two steps. Step 1 shows that the mechanism θω

admits a strong Nash equilibrium with outcome f(p). Step 2 shows that this outcome is the
unique one induced by strong Nash equilibria.

Step 1: The mechanism θω admits a strong Nash equilibrium s with θω(s) =
m(p1, . . . , pn, κ1, . . . , κn−1).

There are two possible cases: either there is no i ∈ N for which pi = f(p) or there is
some i ∈ N with pi = f(p).

Step 1.a.: There is no i ∈ N with pi = f(p). In this case, there is some κj with f(p) = κj.
Note that f(p) = κj implies6 that #{i ∈ N | pi < κj} = n − j and #{i ∈ N | pi > κj} = j.
Consider the profile x ∈ Sn with

xi = 0, ∀i ∈ {1, . . . , n− j} and xi = 1,∀i ∈ {n− j + 1, . . . , n}.
6Since (p1, . . . , pn, κ1, . . . , κn−1) has 2n− 1 components and κj is its median, there are n− 1 components

lower than κj and n− 1 higher than κj . Since by construction, κj > κ1, . . . , κj−1 and κj < κj+1, . . . , κn−1,
it follows that #{i ∈ N | pi < κj}+ (j− 1) = n− 1 and #{i ∈ N | pi > κj}+ (n− 1− j) = n− 1. Therefore,
#{i ∈ N | pi < κj} = n− j and #{i ∈ N | pi > κj} = j, as wanted.
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In the profile x, each player with a peak lower than κj plays 0 and each player with peak
higher than κj plays 1. Moreover, note that the construction of x implies that the following
equality holds:

θω(x) = Average(x̃ω+1, . . . , x̃n−ω) = j − ω
n− 2ω = κj,

which ensures that the strategy profile x implements the alternative κj.
We now prove that x is a Strong Nash equilibrium. Assume by contradiction that there

is some coalition of agents C ⊆ N with a profitable deviation.
If such a coalition exists, it cannot include both agents with a peak higher than κj and

agents with a peak lower than κj. To see this, consider first a coalition C that induces an
outcome η with η < κj. Each player with a peak pj higher than κj is worse-off with this
deviation since ‖pj−η‖ > ‖pj−κj‖ and player j’s utility decreases with the distance between
his peak and the outcome. Thus, the coalition C can only include agents with a peak lower
than κj. A symmetric argument applies if the coalition C induces an outcome η with η > κj

and shows that such coalition can only include agents with a peak higher than κj. It follows
that if there is a coalition C with a profitable joint deviation, either C ⊆ {i ∈ N | pi < κj}
or C ⊆ {i ∈ N | κj < pi}.

Consider a deviation by agents in some coalition C ⊆ {i ∈ N | pi < κj}, a symmetric
argument applies to coalitions of agents with peaks larger than κj. Assuming the coalition
C ⊂ {1, . . . , n− j} has cardinal m ≤ n− j, we have that:

θω(xC , xN\C) = θω(xC1 , xC2 , . . . , xCm, 0, . . . , 0,︸ ︷︷ ︸
n−j−m times

1, . . . , 1︸ ︷︷ ︸
j times

), (1)

where xCi denotes the deviation of player i for each i ∈ C. The objective of the coalition C
is to select a deviation xC that minimizes the value of (1) since each player i ∈ C has a peak
pi < κj. Yet, the minimum of (1) equals j−ω

n−2ω and is reached for xC1 = xC2 = . . . = xCn−j = 0.
However, since θω(x) = j−ω

n−2ω by construction, it follows that C has no deviation that induces
an outcome lower that θω(x), which shows that x is a SNE and finishes the claim for Step
2.a.

Step 1.b: There is some i ∈ N with pi = f(p). In this case, there is some i ∈ N

with pi = f(p). We pick κj and pi with κj ≤ pi = f(p) such that j + (i − 1) = n − 1
or j = n − 1, which is possible since pi is the median of (p1, . . . , pn, κ1, . . . , κn−1). Letting
κ0 = 0 and κn = 1, we can write that κn−i ≤ pi ≤ κn−i+1 since again pi is the median of
(p1, . . . , pn, κ1, . . . , κn−1).
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Consider the profile x−i ∈ Sn−1 such that

xk = 0,∀k ∈ {1, . . . , i− 1}, and xk = 1,∀k ∈ {i+ 1, . . . , n}.

In this profile, each player j with peak pj < pi plays 0 and each player j with peak pj > pi

plays 1. The argument applies verbatim if i = 1 by letting xk = 1 ∀k ∈ {2, . . . , n} and if
i = n letting xk = 0 ∀k ∈ {1 . . . , n− 1}.

For any x′i ∈ S, the definition of the trimming mechanism θω implies that

θω(0, x−i) = κn−i ≤ θω(x′i, x−i) ≤ κn−i+1 = θω(1, x−i),

which jointly with the continuity of θω on a player’s message implies that there is some
x∗i ∈ S with θω(x∗i , x−i) = pi. We now show that x = (x∗i , x−i) is a Strong Nash equilibrium.

In order to do this, we need to show that there is no coalition with a profitable deviation.
As in Step 1.a., there is no coalition with agents with peaks both higher and lower than pi
since their objective is opposed. It follows that if there is a coalition C with a profitable joint
deviation, either C ⊆ {i ∈ N | pi < κj} or C ⊆ {i ∈ N | pi > κj}. Consider a deviation by
agents in some coalition C ⊆ {i ∈ N | pi < κj}, a symmetric argument applies to coalitions
of agents with peak larger than κi. The same contradiction as the one described in Step 1.a
applies: the minimum of θω that can be reached by the coalition C of agents occurs when
xi = 0 for each i ∈ C. Thus, there is no profitable coalitional deviation concluding the proof.

We now prove that the unique outcome that can be reached in a SNE is the median of
the peaks and the calibration parameters κ1, . . . , κn−1.

Step 2: The mechanism θω admits m(p1, . . . , pn, κ1, . . . , κn−1) as a unique Strong
Nash equilibrium outcome.

Suppose by contradiction that there is some collection of peaks p and some SNE x =
(x1, . . . , xn) such that θω(x) > m(p1, . . . , pn, κ1, . . . , κn−1) = f(p) . Letting V ≡ {i ∈ N |
pi ≤ f(p)} and W ≡ {j ∈ {1, . . . , n − 1} | κj ≤ f(p)}, we can then select i∗, j∗ in N such
that V = {1, 2, . . . , i∗}, W = {1, 2, . . . , j∗} with f(p) = max{pi∗ , κj∗}.

We first show that in any strong equilibrium x, xi = 0 for each player i ∈ V . Assume
by contradiction that xi > 0 for some i ∈ V . Note that for each player i ∈ V , pi ≤ f(p) <
θω(x). As argued in Step 1, each player with peak pi ∈ V strictly prefers an outcome η with
pi < η < θω(x). Thus, each coalition C ⊆ V has a profitable deviation xC with xCi = 0 for
each i ∈ C since this strategy uniquely minimizes the value of θω(xC , xN\C) with ω < k7

7Note that when ω < k, the outcome corresponds to the average of n − 2ω values. Since {i ∈ N | pi <
f(p) and si ∈ s̃ω+1, . . . , s̃n−ω} is not empty for any ω < k, then any coalition in V must announce 0 in a
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This establishes that xi = 0 for each player i ∈ V .
Given that xi = 0 for each player i ∈ V , we can now establish the following inequality

θω(x) = θω(xV , xN\V ) = θω(0, . . . , 0︸ ︷︷ ︸
i′ times

, xN\V ) ≤ κn−i′ ≤ f(p). (2)

The first inequality in (2) comes from the fact that

max
xN\V ∈Sn−i′

θω(0, . . . , 0︸ ︷︷ ︸
i′ times

, xN\V ) = κn−i′ ,

which is reached when x
N\V
i = 1 for each i ∈ N \ V . The second inequality in (2) stems

from the observation that #V + #W = i∗ + j∗ ≥ n ⇐⇒ n − i∗ ≤ j∗ which implies that
κn−i∗ ≤ κj∗ ≤ max{κj∗ , pi∗} = f(p). We have therefore proved that θω(x) > p implies that
θω(x) ≤ f(p), entailing the desired contradiction. A similar contradiction arises if we assume
that some strong equilibrium x satisfies θω(x) ≥ f(p). Hence, the unique outcome in a strong
equilibrium is f(p), as required.

Proof of Theorem 2

Proof. For each vector α = (α1, . . . , αn−1) ∈ [0, 1]n−1, pick the generalized median rule that
associates to each profile p = (p1, . . . , pn) the alternative m(p, α). Letting ṽ be the ordered
profile of the values in (p−i, α) with ṽ = (ṽi)2n−2

i=1 and ṽ1 ≤ ṽ2 ≤ . . . ≤ ṽ2n−2, the outcome of
m(pi, p−i, α) equals:

m(p, α) = m(pi, ṽn−1, ṽn). (3)

Equipped with this restatement of the median rule, take two trimming mechanisms θω
and θω′ with ω < ω′ and associated vectors κω and κω

′ . It can be checked that, for each
j = 1, . . . , n− 1,

κωj <
1
2 =⇒ κω

′

j ≤ κωj and κωj >
1
2 =⇒ κω

′

j ≥ κωj .

Proposition 1 proves that for any pair m(p, α) and m(p, β) of generalized medians with
vectors α and β such that, for each j = 1, . . . , n− 1,

βj ≤
1
2 =⇒ αj ≤ βj and?βj ≥

1
2 =⇒ αj ≥ βj,

sNE.
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then:

m(p, β) ≤ 1/2 =⇒ m(p, α) ≤ m(p, β) and m(p, β) ≥ 1/2 =⇒ m(p, α) ≥ m(p, β).

Yet, this directly concludes the proof since it implies that

m(p, κω) ≤ 1/2 =⇒ m(p) ≤ m(p, κω′) ≤ m(p, κω) ≤ 1
2 and

m(p, κω) ≥ 1/2 =⇒ m(p) ≥ m(p, κω′) ≥ m(p, κω) ≥ 1
2 ,

where m(p) = m(p, α) with αj = 0 for i = 1, . . . , n−1
2 and αj = 1 for i = n−1

2 , . . . , n − 1
(n is odd and hence n−1

2 is well-defined).

Proposition 1. Let α and β be two vectors in [0, 1]n−1 such that for each j = 1, . . . , n− 1,

βj ≤
1
2 =⇒ αj ≤ βj and βj ≥

1
2 =⇒ αj ≥ βj.

Then, for any p ∈ [0, 1]n:

m(p, β) ≤ 1/2 =⇒ m(p, α) ≤ m(p, β) and m(p, β) ≥ 1/2 =⇒ m(p, α) ≥ m(p, β).

Proof. For each pi ∈ [0, 1] and each p−i ∈ [0, 1]n−1, consider the vectors ṽ and w̃ the ordered
vectors associated to (α, p−i) and to (β, p−i) respectively. Using (3), it suffices to show that
for each i ∈ N , each pi ∈ [0, 1] and each p−i ∈ [0, 1]n−1,

m(pi, w̃n−1, w̃n) ≤ 1
2 ⇐⇒ m(pi, ṽn−1, ṽn) ≤ m(pi, w̃n−1, w̃n).

Since by assumption, the vectors α and β satisfy βj ≤ 1
2 =⇒ αj ≤ βj and? βj ≥ 1

2 =⇒
αj ≥ βj for each j = 1, . . . , n − 1, it follows that each h = 1, . . . , 2n − 1, the following
implications hold:

w̃h ≤
1
2 =⇒ ṽh ≤ w̃h and w̃h ≥

1
2 =⇒ ṽh ≥ w̃h. (4)

Suppose that m(p, β) ≤ 1/2, the same logic applies if m(p, β) ≥ 1
2 by symmetry.

a. If w̃n ≤ 1
2 , then w̃n−1 ≤ 1

2 since w̃ is an ordered vector. Therefore, (4) implies
both that ṽn−1 ≤ w̃n−1 and ṽn ≤ w̃n. Thus, Lemma 1 implies that m(pi, ṽn−1, ṽn) ≤
m(pi, w̃n−1, w̃n)⇐⇒ m(p, α) ≤ m(p, β) as wanted.
b. If w̃n−1 ≤ 1

2 ≤ w̃n, then (4) implies that ṽn−1 ≤ w̃n−1 ≤ 1
2 ≤ w̃n ≤ ṽn. It follows that

according to Lemma 2, m(pi, ṽn−1, ṽn) ≤ m(pi, w̃n−1, w̃n)⇐⇒ m(p, α) ≤ m(p, β) as required.
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c. Finally, if 1
2 ≤ w̃n−1 ≤ w̃n, m(pi, w̃n−1, w̃n) ≥ 1

2 so that there is a contradiction with
m(p, α) ≤ 1

2 . This concludes the proof.
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Lemma 1: For each pair of vectors (α1, α2), (β1, β2) ∈ [0, 1]2 with 0 ≤ α1 ≤ α2 ≤ 1 and
0 ≤ β1 ≤ β2 ≤ 1, if 0 ≤ α1 ≤ β1 and 0 ≤ α2 ≤ β2 =⇒ m(x, α1, α2) ≤ m(x, β1, β2).

Proof. There are two cases: either α1 ≤ α2 ≤ β1 ≤ β2 or α1 ≤ β1 ≤ α2 ≤ β1.
Assume first that α1 ≤ α2 ≤ β1 ≤ β2. In this case, the claim is immediate since

minx∈[0,1] m(x, β1, β2) ≥ maxx∈[0,1] m(x, α1, α2).
Assume now that α1 ≤ β1 ≤ α2 ≤ β1. In this case, we write for each x ∈ [0, 1],

m(x, α1, α2) =


α1 if x < α1

x if α1 ≤ x ≤ α2

α2 if x > α2

and m(x, β1, β2) =


β1 if x < β1

x if β1 ≤ x ≤ β2

β2 if x > β2

which implies that

m(x, α1, α2)−m(x, β1, β2) =



α1 − β1 if x < α1

x− β1 if α1 ≤ x ≤ β1

0 if β1 ≤ x ≤ β2

α2 − x if α2 ≤ x ≤ β2

α2 − β2 if x > β2

The previous statement of the function m(x, α1, α2) −m(x, β1, β2) directly implies that
m(x, α1, α2) ≤ m(x, β1, β2) for each x ∈ [0, 1], as wanted.

Lemma 2: For each pair of vectors (α1, α2), (β1, β2) ∈ [0, 1]2 with 0 ≤ α1 ≤ β1 ≤ 1
2 ≤ β2 ≤

α2 ≤ 1:
· if m(x, β1, β2) ≤ 1

2 then, for each x ∈ [0, 1], m(x, α1, α2) ≤ m(x, β1, β2)
· if m(x, β1, β2) ≥ 1

2 then, for each x ∈ [0, 1], m(x, α1, α2) ≥ m(x, β1, β2).

Proof. By the definition of the median function,

m(x, α1, α2) =


α1 if x < α1

x if α1 ≤ x ≤ α2

α2 if x > α2

and m(x, β1, β2) =


β1 if x < β1

x if β1 ≤ x ≤ β2

β2 if x > β2
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Since 0 ≤ α1 < β1 <
1
2 < β2 < α2 ≤ 1, it follows that

m(x, α1, α2)−m(x, β1, β2) =



α1 − β1 if x < α1

x− β1 if α1 ≤ x ≤ β1

0 if β1 ≤ x ≤ β2

x− β2 if β2 ≤ x ≤ α2

α2 − β2 if x > α2

Note that, given the conditions of the parameters, if m(x, β1, β2) ≤ 1
2 then x ≤ 1

2 and
thus m(x, α1, α2) ≤ m(x, β1, β2). Similarly, if m(x, β1, β2) ≥ 1

2 then x ≥ 1
2 which in turn

implies that m(x, α1, α2) ≥ m(x, β1, β2), as wanted.
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