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Abstract

This paper studies electoral competition between two purely offi ce-motivated and het-

erogeneous (in terms of valence) established candidates when entry of a lower-valence third

candidate is anticipated. In this model, when the valence asymmetries among candidates are

not very large, there always exists an essentially unique pure strategy equilibrium and it is

such that: a) the high valence established candidate offers a more moderate platform than

the low valence established candidate, b) the entrant locates between the two established

candidates and nearer to the high valence established candidate and, surprisingly, c) both

established candidates receive equal vote-shares. We also show that the platforms that the

two established candidates choose in this equilibrium constitute a local equilibrium in the

extension of the game in which the third candidate is expected to enter the race with any

non-degenerate probability.
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1 Introduction

In the standard Downsian model with two vote-share maximizing candidates of equal valence the

unique equilibrium prediction is that both candidates will converge to the ideal policy of the median

voter. This is so because the game is dominated by centripetal1 forces: each candidate knows that

she can always win more votes by approaching her opponent. But, when we introduce a valence

asymmetry2 between the two candidates, the dynamics of the Downsian model alter dramatically;

the described dominance of centripetal forces collapses for one of the two candidates. The high

valence candidate still has incentives to move close to the low valence candidate, but now the low

valence candidate has incentives to move away from the high valence candidate in order to secure

a non-negligible vote-share. In this framework Aragonès and Palfrey (2002) show that precisely

because of these asymmetric incentives (that is, because centripetal forces are dominant for only one

of the two candidates) no pure strategy equilibria exist. They moreover prove generic existence of

a mixed equilibrium and they identify a mixed equilibrium for the case of a discrete policy space,

minimal valence asymmetries and a uniform distribution of the voters ideal policies. Hummel

(2010) and Aragonès and Xefteris (2012) extend these results to non-minimal valence asymmetries

and unimodal distributions of the voters ideal policies while Groseclose (2001) extends the model

by considering that candidates care about the implemented policies.3

One of the most influential modifications of the Downsian model in the direction of mitigating

the extent of centripetal forces in a two-candidate competition, while preserving the assumption

of pure vote-share maximization, was provided by Palfrey (1984). He considered that a third

candidate enters the electoral race after the two established candidates simultaneously selected

1The term centripetal force denotes here the force which makes one candidate want to move in the direction of
the other candidate and not necessarily towards some notion of a center of the policy space.

2Introduction of a valence asymmetry between the two candidates in such a model of electoral competition seems
very intuitive as common observation dictates that voters decide which candidate to support not only on the basis
of the electoral platforms but also on the basis of non-policy characteristics such as charisma, corruption allegations,
personal appeal and others.

3Further results on electoral competition between heterogeneous candidates (or parties) may be found in Stokes
(1963), Adams (1999), Ansolabehere and Snyder (2000), Erikson and Palfrey (2000), Dix and Santore (2002),
Laussel and Le Breton (2002), Aragonès and Palfrey (2005), Herrera et al. (2006), Schofield (2007), Degan (2007),
Kartik and McAfee (2007), Carillo and Castanheira (2008), Meirowitz (2008), Zakharov (2009), Ashworth and
Bueno de Mesquita (2009), Krasa and Polborn (2012), Pastine and Pastine (2012), Ansolabehere et al. (2012),
Xefteris (2012), Bernheim and Kartik (2014) and Aragonès and Xefteris (2016).
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their platforms in order to maximize their vote-shares. In this model, the standard centripetal

forces continue to exist but they are complemented by centrifugal ones too. Each established

candidate knows that by approaching her established competitor too much, she increases the

likelihood that the entrant will locate such that she will end up squeezed between her two opponents

and, thus, that she will receive a very small vote-share. In the unique equilibrium of the game the

two established candidates locate at different positions (equidistantly away from the center of the

policy space).4

For all these reasons, this setup presents itself as an ideal environment for the study of the

effect of valence asymmetries on policy platform determination of the two established candidates.

Candidates care only about their vote-shares, so unlike Groseclose (2001) the equilibrium behavior

that the model results in does not depend on many parameters (models which assume policy moti-

vation need a whole extra structure and assumptions regarding candidates’policy preferences) and,

most importantly, the simultaneous existence of both centripetal and centrifugal forces for both

candidates (as opposed to the Downsian model without entry) makes existence of pure strategy

equilibria possible.5

Introduction of valence asymmetries in Palfrey’s (1984) entry model is exactly what we do

in this paper. We consider that all three candidates may differ in valence and that, naturally,

the two established candidates have higher valence than the entrant. We moreover consider that

these valence asymmetries are small (but not degenerate) as these are the valence asymmetries

that are considered more important in the literature and to keep the analytical part of the paper

4Results for the case in which candidates are offi ce-motivated and the third-candidate entry decision is endogenous
can be found in Greenberg and Shepsle (1987), Rubinchik and Weber (2007), Callander and Wilson (2007) and
Shapoval et al. (2015). The last study relates to this paper also because one of the two established candidates
is considered to have a valence advantage. Unlike the present paper, though, Shapoval et al. (2015): a) do not
consider the case in which both established candidates enjoy a valence advantage over the entrant and b) they
show existence of an equilibrium conditional on the valence advantage being suffi ciently large. Moreover, Osborne
(1993) provides results for the case in which entry of all candidates (and not just of a third entrant) is endogenous.
Loertscher and Muehlheusser (2011) also study a model such that entry of all candidates is endogenous but in
contrast to Osborne (1993), who assumes that all players decide whether to enter or not simultaneously, they
consider that candidates’decisions are taken in a sequential manner. For the standard Downsian model without
valence asymmetries or endogenous entry one is referred to Eaton and Lipsey (1975), Shaked (1982), Osborne and
Pitchik (1986) and Collins and Sherstyuk (2000).

5Despite the fact that mixed strategies are commonly used in certain branches of the literature (one is referred,
for example, to Baye et al. 1996 who characterize mixed equilibria of all-pay auctions), their use in electoral
competition models is still not universally accepted.
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as coherent as possible. We find that indeed pure strategy equilibria exist in this model. One

established candidate locates to the left of the median voter and the other established candidate

locates to the right of the median voter just like the no-valence asymmetries case. But when we

have valence asymmetries between the established candidates we find that: a) the high valence

established candidate offers a more moderate platform than the low valence established candidate

and that the entrant locates between them and to the side of the center of the policy space in which

the high valence candidate locates6 and that b) the vote-shares of both established candidates are

equal; the entry of a third candidate in the race has an egalitarian effect on the equilibrium payoffs

of the two established candidates.

So as far as the two established candidates are concerned, like Aragonès and Palfrey (2002),

Hummel (2010) and Aragonès and Xefteris (2012) we find that the high valence candidate is more

moderate than the low valence established candidate but unlike them: a) we show this by the

means of a pure strategy equilibrium and b) we show that the vote-shares of the two established

candidates are equal in equilibrium (all these papers find that the high valence candidate enjoys

higher expected payoffs). To sum up, the effect of considering a potential entrant is threefold. First,

it allows the model to admit a pure strategy equilibrium without further structure and assumptions

about candidate’s preferences which distort the fundamental elements of the standard Downsian

model, second, it confirms that, out of the two main candidates, the high valence one is more

moderate than the low valence one and, third, it counterintuitively contradicts the finding of all

previous papers that a valence advantage over one’s main opponent translates into a larger vote-

share. In other words, the valence dimension seems to be more important in determining the

platforms of the two main competitors than in determining who will be the winner of the elections

(in our model the two established candidates always tie in the first place).

Finally, we argue that the pair of locations that the two main candidates occupy in the unique

equilibrium of our game is: a) an equilibrium pair of locations in the extension of the model in

which the probability with which a third candidate actually enters in the race is suffi ciently large

6Three-candidate electoral competition models with valence asymmetries which consider simultaneous platform
decisions may also result in equilibria such that the highest and the lowest valence candidates locate to the left
(right) of the median voter while the intermediate valence candidate locates to the right (left) of the median voter
(see for example Evrenk and Kha, 2011 and Xefteris, 2014).
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but strictly lower than one and b) a local equilibrium in the extension of the model in which

an entrant appears with any non-degenerate probability.7 These extra findings suggest that our

results are robust even if third candidate entry is not certain.

2 The model

The policy space is the linear segment [0, 1] and the policy preferences of a voter i with ideal

policy xi are given by u(xi, x) = −|x − xi| for x ∈ [0, 1]. We consider a continuum of voters with

ideal policies distributed on [0, 1] according to a continuous and twice-differentiable distribution

function F : [0, 1] → [0, 1] with the following properties: a) F ′(x) = F ′(1− x) for every x ∈ [0, 1]

(the density of F is symmetric about the center of the policy space), b) F ′′(x) > 0 for x < 1
2
(the

density of F is unimodal) and c) F ′(1
2
)−2F ′(0) ≤ 0 (the concentration of the voters in all compact

subsets of the policy space of equal measure is not severely asymmetric).8

There are three candidates, indexed by A,B and C, which are purely offi ce-motivated; each

candidate J ∈ {A,B,C} proposes a policy platform yJ ∈ [0, 1] in order to maximize her expected

vote-share. We consider that candidates may differ in the, so called, valence dimension and we

therefore assume that vA ≥ vB ≥ vC = 0. The exact values of vA, vB and vC are known to all

three candidates and to all voters. Therefore, the valuation of a voter i with ideal policy xi for a

candidate J with valence vJ who proposes a policy yJ is given by U(xi, yJ , vJ) = u(xi, yJ)+vJ .We

consider that voters vote sincerely for the candidate they value most and that they evenly split

their vote among the candidates they value most in case they are more than one.

The game has essentially four stages. In the first stage of the game the two established candi-

dates, A and B, select their policy platforms yA and yB simultaneously. In the second stage the

entrant C observes yA and yB and selects yC . In the third stage each voter observes yA, yB and yC

and votes for the candidate she values most. In the last stage of the game the payoffs (vote-shares)

7There is a recent literature which considers that local Nash equilibrium is a reasonable solution concept for
electoral competition games. See for example Schofield (2007) and Krasa and Polborn (2012).

8Brusco and Roy (2011) employ this assumption too when they analyze the citizen-candidate model with aggre-
gate uncertainty. We partially relax this assumption after the presentation of the equilibrium existence result.
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of the three candidates are realized.

This game though cannot be directly solved in its essential form by the use of standard equilib-

rium notions (just like the case of no valence asymmetries of Palfrey, 1984). In this extensive form

game of full information one would naturally try to identify subgame perfect equilibria (SPE).

What we notice, though, is that not every subgame possesses a Nash equilibrium. This is due

to the fact that the best response of candidate C to candidates A and B playing yA and yB,

ŷC(yA, yB), is not always well-defined. For example, yA = 0, yB = 1 and the values of vA, vB and

vC are suffi ciently homogenous ŷC(yA, yB) is well-defined and single-valued but when yA = yB (or

when they are suffi ciently near) the entrant has no well-defined set of best responses. Hence, not

all subgames posses a Nash equilibrium and, therefore, a SPE cannot exist in this setup.

To deal with this issue we will introduce the notion of a Quasi-SPE. To this end, and exactly

as Palfrey (1984), we first need to employ a limit equilibrium analysis. That is, we first define

a limit equilibrium as any pair of equilibrium strategies for A and B such that the equilibrium

strategy for each candidate is a best response to any other strategy for an infinite sequence of the

perturbed games, with the perturbation converging to zero. To properly construct the perturbed

game Γε we need some extra definitions.

For a fixed triplet (vA, vB, vC) such that vA ≥ vB ≥ vC = 0 define

WA(yA, yB, yC) = {z ∈ [0, 1]|U(z, yA, vA) ≥ max{U(z, yB, vB), U(z, yC , vC)}

WB(yA, yB, yC) = {z ∈ [0, 1]|U(z, yB, vB) ≥ max{U(z, yA, vA), U(z, yC , vC)}

WC(yA, yB, yC) = {z ∈ [0, 1]|U(z, yC , vC) ≥ max{U(z, yA, vA), U(z, yB, vB)}

and

ẆA(yA, yB, yC) = [WA(·) ∩WB(·)] ∪ [WA(·) ∩WC(·)]

ẆB(yA, yB, yC) = [WB(·) ∩WA(·)] ∪ [WB(·) ∩WC(·)]
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ẆC(yA, yB, yC) = [WC(·) ∩WA(·)] ∪ [WC(·) ∩WB(·)]

Ẅ (yA, yB, yC) = [WA(·) ∩WB(·) ∩WC(·)].

Using the above we further define

VA(yA, yB, yC) =
∫
WA(·)\ẆA(·) dF (x) + 1

2

∫
ẆA(·)\Ẅ dF (x) + 1

3

∫
Ẅ
dF (x)

VB(yA, yB, yC) =
∫
WB(·)\ẆB(·) dF (x) + 1

2

∫
ẆB(·)\Ẅ dF (x) + 1

3

∫
Ẅ
dF (x)

VC(yA, yB, yC) =
∫
WC(·)\ẆC(·) dF (x) + 1

2

∫
ẆC(·)\Ẅ dF (x) + 1

3

∫
Ẅ
dF (x)

and for any ε > 0 and any pair (yA, yB) ∈ [0, 1]2

Ḃε(yA, yB) = {yC ∈ [0, 1]|VC(yA, yB, yC) > VC(yA, yB, x), ∀x ∈ [0, 1]\{yC}}

B̈ε(yA, yB) = {yC ∈ [0, 1]|VC(yA, yB, yC) > VC(yA, yB, x)− ε, ∀x ∈ [0, 1]}

Eε(yA, yB) =

 Ḃε(yA, yB) , for Ḃε(yA, yB) 6= �

B̈ε(yA, yB) , for Ḃε(yA, yB) = �
.

That is, we consider that if the entrant has a unique and well-defined best response she locates

there, while in every other case she mixes uniformly among her ε-best responses. Therefore, our

two-player perturbed game, Γε, is defined by

πεA(yA, yB) =

 VA(yA, yB, t ∈ Eε(yA, yB)) , for Ḃε(yA, yB) 6= �∫
Eε(yA,yB)

1∫
Eε(yA,yB)

dt
VA(yA, yB, t)dt , for Ḃε(yA, yB) = �

πεB(yA, yB) =

 VB(yA, yB, t ∈ Eε(yA, yB)) , for Ḃε(yA, yB) 6= �∫
Eε(yA,yB)

1∫
Eε(yA,yB)

dt
VB(yA, yB, t)dt , for Ḃε(yA, yB) = �

.

Exactly as Palfrey (1984) we call (ŷA, ŷB) a limit equilibrium if: a) for every yA 6= ŷA, there is a

number, ε(yA), such that for all ε ∈ (0, ε(yA)), πεA(yA, ŷB) < πεA(ŷA, ŷB) and b) for every yB 6= ŷB,

there is a number, ε(yB), such that for all ε ∈ (0, ε(yB)), πεB(ŷA, yB) < πεB(ŷA, ŷB).
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The careful reader should have noticed that the perturbed game that we described is slightly

different to the one constructed by Palfrey (1984). The difference lies in the fact that we consider

that the entrant chooses her best response in case she has a well-defined and unique best response

and that she mixes (uniformly) among her ε-best responses whenever she has no unique and/or

well-defined best response while Palfrey (1984) considers that the entrant always mixes (uniformly)

among her ε-best responses independently of whether she has a unique well-defined best response

or not.

We can now define a Quasi-SPE of the original game.

Definition 1 A Quasi-SPE, (ŷA, ŷB, ŷC), of the original game is such that, (ŷA, ŷB), is a limit

equilibrium of the perturbed game with Eε(ŷA, ŷB) = ŷC.9

The reason why we modify the solution strategy of Palfrey (1984) is because the original

solution cannot be directly applied in this framework. When the two established candidates differ

in valence, a perturbed game, as originally defined by Palfrey (1984), does not admit any limit

equilibrium when mixing over ε-best responses is assumed to be uniform. But since the use of

a uniform mixture is just an auxiliary device, the notion of the limit equilibrium introduced by

Palfrey (1984) essentially requires that there is a distribution over ε-best responses for the third

candidate that allows to pin down the strategies of the other two candidates. Hence, playing with

certainty the best response, if a unique one exists, and mixing uniformly over ε-best responses in all

other cases is just an alternative auxiliary device which helps us pin down the strategies of the two

main candidates and in no way is our solution strategy conceptually distant from the original one.

In fact one can show that: a) when both solution strategies result in an equilibrium (no valence

asymmetries case) then their predictions regarding the locations of the two established candidates

coincide and b) when there exist valence asymmetries between the two established candidates the

two approaches converge to the same solution strategy once we consider that ε → 0. That is, if

we consider the original perturbed game of Palfrey (1984) (let its payoff functions be π̃εA(yA, yB)

9Whenever a set H contains a unique element, η, we slightly abuse notation and instead of writing H = {η} we
write H = η.
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and π̃εA(yA, yB)) and define a new two-player game with payoffs π̊A(yA, yB) = limε→0 π̃
ε
A(yA, yB)

and π̊B(yA, yB) = limε→0 π̃
ε
B(yA, yB) then for b > 0 suffi ciently small this new two-player game will

have a Nash equilibrium which will coincide with the Quasi-SPE of the game that we analyze in

this paper.

One can surely come up with advantages of one approach over the other but all of them

are doomed to be minor since they cannot relate to the most important feature of the resulting

equilibria - the equilibrium locations of the two established candidates. This is so because, as we

already noted, when both solution strategies work then their equilibrium predictions regarding the

locations of the two established candidates coincide.

3 Formal results

We directly proceed to the main result of the paper.

Theorem 1 There exists b > 0 such that whenever b ≥ vA ≥ vB ≥ vC = 0, (ŷA, ŷB, ŷC) is a Quasi-

SPE where: a) ŷA < ŷC ≤ 1
2
< ŷB, b) |12 − ŷA| ≤ |

1
2
− ŷB|, c) F (ŷA− vA) = 1− 2F (1

4
+ 1

2
vB + 1

2
ŷA),

d) ŷB = 1− ŷA + vA − vB and e) ŷC = 1
2
− vA + vB.

Proof. According to the definition of a Quasi-SPE we have to prove that there exists b > 0 such

that whenever b ≥ vA ≥ vB ≥ vC = 0, (ŷA, ŷB) is a limit equilibrium where (i) F (ŷA − vA) =

1− 2F (1
4

+ 1
2
vB + 1

2
ŷA), (ii) ŷB = 1− ŷA + vA − vB and (iii) ŷC = (1

2
− vA + vB) = Eε(ŷA, ŷB) for

any ε > 0.

First of all we notice that, since F is continuous and strictly increasing and F ′ is symmetric

about the center of the policy space and strictly unimodal, there exists a non-degenerate b > 0

such that for b ≥ vA ≥ vB ≥ vC = 0 condition (i) admits a unique solution ŷA in [0, 1] such that

ŷA ∈ (0, 1
2
− vA). Subsequently, when condition (i) admits a unique solution, condition (ii) admits

as well exactly one solution ŷB in [0, 1] such that ŷB ∈ (1
2

+ vB, 1).
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We begin our proof by showing that when the strategy pair (ŷA, ŷB) is characterized by condi-

tions (i) and (ii), it is the case that the entrant has a unique and well-defined best response given

by condition (iii). That is, we start by demonstrating that Eε(ŷA, ŷB) = 1
2
− vA + vB for any ε > 0.

To this end, we first notice that condition (ii) is equivalent to ŷA − vA = 1− (ŷB + vB) which,

along with F ′ being symmetric about the center of the policy space, implies that F (ŷA − vA) =

1− F (ŷB + vB).

Second, conditions (i) and (ii) indicate that for b > 0 small enough (but not degenerate) we

should have ŷA + vA < (1
2
− vA + vB) ≤ 1

2
< ŷB − vB and ŷA ≥ 1− ŷB.

We observe that for any given δ > 0 we have

VC(ŷA, ŷB, ŷA − vA − δ) < F (ŷA − vA)

lim
δ→0

VC(ŷA, ŷB, ŷA − vA − δ) = F (ŷA − vA)

and

lim
δ→0

VC(ŷA, ŷB, ŷA − vA − δ) = 2VC(ŷA, ŷB, ŷA − vA)

VC(ŷA, ŷB, ŷA − vA + δ) = 0 for δ ∈ (0, 2vA)

lim
δ→0

VC(ŷA, ŷB, ŷA + vA + δ) = 2VC(ŷA, ŷB, ŷA + vA).

We moreover have that

VC(ŷA, ŷB, ŷB + vB + δ) < 1− F (ŷB + vB) = F (ŷA − vA)

lim
δ→0

VC(ŷA, ŷB, ŷB + vB + δ) = 1− F (ŷB + vB) = F (ŷA − vA)
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and that

lim
δ→0

VC(ŷA, ŷB, ŷB + vB + δ) = 2VC(ŷA, ŷB, ŷB + vB)

VC(ŷA, ŷB, ŷB + vB − δ) = 0 for δ ∈ (0, 2vB)

lim
δ→0

VC(ŷA, ŷB, ŷB − vB − δ) = 2VC(ŷA, ŷB, ŷB − vB).

We further observe that ŷC = 1
2
− vA + vB = arg maxVC(ŷA, ŷB, yC) conditional on yC ∈ (ŷA +

vA, ŷB − vB). This is due to the fact that for yC ∈ (ŷA + vA, ŷB − vB), it is the case that VC(ŷA, ŷB,

yC) = F ( ŷB−vB+yC
2

) − F ( ŷA+vA+yC
2

). Since F ′ is symmetric about 1
2
and ŷB−vB+yC

2
− ŷA+vA+yC

2
=

1
2
ŷB − 1

2
ŷA − 1

2
vA − 1

2
vB is independent of yC , it follows that VC(ŷA, ŷB, yC) is maximized when

F ′( ŷB−vB+yC
2

) = F ′( ŷA+vA+yC
2

), that is, when ŷB−vB+yC
2

= 1 − ŷA+vA+yC
2

. We moreover have that

ŷA − vA = 1− (ŷB + vB) and thus that ŷC = 1
2
− vA + vB = arg maxVC(ŷA, ŷB, yC) conditional on

yC ∈ (ŷA + vA, ŷB − vB).

The above imply that

VA(ŷA, ŷB, ŷC) = VB(ŷA, ŷB, ŷC) = F (
1
2
− vA + vB + ŷA + vA

2
) = F (

1

4
+

1

2
vB +

1

2
ŷA)

and, hence, that

VC(ŷA, ŷB, ŷC) = 1− 2F (
1

4
+

1

2
vB +

1

2
ŷA).

Therefore, VC(ŷA, ŷB, ŷC) > VC(ŷA, ŷB, yC) for any yC 6= ŷC and hence Eε(ŷA, ŷB) = ŷC =

1
2
− vA + vB for any ε > 0.

Before we proceed to the next steps of our proof we note the above finding suggests that

πεA(ŷA, ŷB) = πεB(ŷA, ŷB) = F (1
4

+ 1
2
vB + 1

2
ŷA). This observation will be useful for the construction

of the arguments that follow.

We now have to show that for each yA 6= ŷA there exists ε(yA) > 0, such that for all ε ∈

(0, ε(yA)), it is the case that πεA(yA, ŷB) < πεA(ŷA, ŷB) and that for every yB 6= ŷB, there exists

ε(yB) > 0, such that for all ε ∈ (0, ε(yB)), it is the case that πεB(ŷA, yB) < πεB(ŷA, ŷB) conditional
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on b > 0 being suffi ciently small. We consider six cases of deviations for candidate A and then we

briefly discuss how similar steps rule out existence of profitable deviations for candidate B as well.

Case 1 yA < ŷA

It is true that for any ε > 0 we have that

Eε(yA, ŷB) =
1

2
(2− vA + vB − yA + ŷB)

or

Eε(yA, ŷB) = (ŷB − vB − δ(ε), ŷB − vB)

and that
1

2
(2− vA + vB − yA + ŷB) >

1

2
− vA + vB

where ∂δ(ε)
∂ε
≥ 0 and limε→0 δ(ε) = 0.

This is due to the following fact: since limδ→0 VC(ŷA, ŷB, ŷA−vA− δ) = VC(ŷA, ŷB,
1
2
−vA+vB)

and ẏC(yA, ŷB) = 1
2
(2 − vA + vB − yA + ŷB) = arg maxVC(yA, ŷB, yC) is the unique solution of

F ′( ŷB−vB+yC
2

) = F ′(yA+vA+yC
2

) it directly follows that ẏC(yA, ŷB) is strictly decreasing in yA and,

hence, VC(yA, ŷB, ẏC(yA, ŷB)) is strictly decreasing in yA too. Therefore, and since limδ→0 VC(yA, ŷB,

ŷB + vB + δ) = limδ→0 VC(ŷA, ŷB, ŷB + vB + δ) when yA < ŷA, we have that: a) if 12(2− vA + vB −

yA + ŷB) < ŷB − vB then Eε(yA, ŷB) = arg maxVC(yA, ŷB, yC) = 1
2
(2− vA + vB − yA + ŷB) and b)

if 1
2
(2− vA + vB − yA + ŷB) ≥ ŷB − vB then Eε(yA, ŷB) = (ŷB − vB − δ(ε), ŷB − vB).

Now since
1
2
(2−vA+vB−yA+ŷB)+yA+vA

2
<

1
2
−vA+vB+ŷA+vA

2
and since πεA(ŷA, ŷB) = F (1

4
+ 1

2
vB + 1

2
ŷA)

for any ε > 0 it directly follows that we should have πεA(yA, ŷB) = F (
1
2
(2−vA+vB−yA+ŷB)+yA+vA

2
) <

F (1
4

+ 1
2
vB + 1

2
ŷA) when 1

2
(2− vA + vB − yA + ŷB) < ŷB − vB and πεA(yA, ŷB) ≤ F ( ŷB−vB+yA+vA

2
) <

F (1
4

+ 1
2
vB + 1

2
ŷA) when 1

2
(2− vA + vB − yA + ŷB) ≥ ŷB − vB. In other words, there exists ε(yA),

such that for all ε ∈ (0, ε(yA)), it is the case that πεA(yA, ŷB) < πεA(ŷA, ŷB) for all yA < ŷA.

Case 2 yA ∈ (ŷA, ŷB − vA + vB)

12



In this case it is true that there exists ε(yA), such that for all ε ∈ (0, ε(yA)) we have that

Eε(yA, ŷB) = (yA − vA − δ(ε), yA − vA)

where ∂δ(ε)
∂ε
≥ 0 and limε→0 δ(ε) = 0.

This is due to the fact that for yA ∈ (ŷA, ŷB− vA + vB) we have: a) limδ→0 VC(yA, ŷB, yA− vA−

δ) > F (ŷA−vA), b) limδ→0 VC(yA, ŷB, ŷB+vB+δ) = F (ŷA−vA) and c) VC(yA, ŷB, yC) < F (ŷA−vA)

for any yC ∈ (yA + vA, yB − vB).

Therefore, πεA(yA, ŷB) ≤ F (yA+vA+ŷB−vB
2

)−F (yA−vA+yA−vA−δ(ε)
2

). This implies that limε→0 π
ε
A(yA, ŷB) =

F (yA+vA+ŷB−vB
2

) − F (yA − vA). We notice that due to unimodality of the density of F and since

F ′(1
2
) − 2F ′(0) ≤ 0 it must hold that ∂ limε→0 πεA(yA,ŷB)

∂yA
≤ 0 for any yA ∈ (ŷA, ŷB − vA + vB). So

limε→0 π
ε
A(yA, ŷB) ≤ limyA→ŷ+A

(limε→0 π
ε
A(yA, ŷB)) = F ( ŷA+vA+ŷB−vB

2
) − F (ŷA − vA). We moreover

know that for b = 0, F ( ŷA+vA+ŷB−vB
2

)−F (ŷA− vA) + ζ = F (1
4

+ 1
2
vB + 1

2
ŷA) where ζ > 0 is a non-

degenerate positive number10. That is, there exists b > 0 and ε(yA), such that for all ε ∈ (0, ε(yA)),

it is the case that πεA(yA, ŷB) < πεA(ŷA, ŷB) for all yA ∈ (ŷA, ŷB − vA + vB).

Case 3 yA ∈ (ŷB − vA + vB, ŷB + vA − vB)

In this case we can verify that there exists ε(yA), such that for all ε ∈ (0, ε(yA)) we have that

Eε(yA, ŷB) = (yA − vA − δ(ε), yA − vA)

where ∂δ(ε)
∂ε
≥ 0 and limε→0 δ(ε) = 0.

This is due to the fact that for b = 0, ŷB − ζ = 1
2
where ζ > 0 is a non-degenerate positive

number. That is, there exists b > 0 such that ŷB − vA + vB >
1
2
and hence all the ε-best responses

of the entrant are to the left of yA − vA for ε > 0 small enough. For b → 0 we have that

limε→0 π
ε
A(yA, ŷB) = F (ŷA− vA) = F (1

4
+ 1

2
vB + 1

2
ŷA)− ζ where ζ > 0 is a non-degenerate positive

10In specific Palfrey (1984) shows that (for b = 0) F (ŷA − vA) ≥ 1
4 and that F (

1
4 +

1
2vB +

1
2 ŷA) ≥

1
3 . Hence,

F ( ŷA+vA+ŷB−vB2 )− F (ŷA − vA) = 1
2 − F (ŷA − vA) ≤

1
4 .
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number. Therefore, there exists b > 0 and ε(yA), such that for all ε ∈ (0, ε(yA)), it is the case that

πεA(yA, ŷB) < πεA(ŷA, ŷB) for all yA ∈ (ŷB − vA + vB, ŷB + vA − vB).

Case 4 yA > ŷB + vA − vB

In this case there exists ε(yA), such that for all ε ∈ (0, ε(yA)) we have that

Eε(yA, ŷB) = (ŷB − vB − δ(ε), ŷB − vB)

where ∂δ(ε)
∂ε
≥ 0 and limε→0 δ(ε) = 0.

Again this is due to the fact that for b = 0, ŷB − ζ = 1
2
where ζ > 0 is a non-degenerate

positive number. That is, there exists b > 0 such that ŷB − vB > 1
2
and hence all the ε-best

responses of the entrant are to the left of ŷB − vB for ε > 0 small enough. For b → 0 we have

that limε→0 π
ε
A(yA, ŷB) = 1− F (yA−vA+ŷB+vB

2
) < F (ŷA − vA) = F (1

4
+ 1

2
vB + 1

2
ŷA)− ζ where ζ > 0

is a non-degenerate positive number. Therefore, there exists b > 0 and ε(yA), such that for all

ε ∈ (0, ε(yA)), it is the case that πεA(yA, ŷB) < πεA(ŷA, ŷB) for all yA > ŷB + vA − vB.

Case 5 yA = ŷB − vA + vB

In this case there exists ε(yA), such that for all ε ∈ (0, ε(yA)) we have that

Eε(yA, ŷB) = (yA − vA − δ(ε), yA − vA)

where ∂δ(ε)
∂ε
≥ 0 and limε→0 δ(ε) = 0.

This is due to the fact that for b = 0, ŷB − ζ = 1
2
where ζ > 0 is a non-degenerate positive

number. That is, there exists b > 0 such that ŷB − vA + vB > 1
2
and hence all the ε-best

responses of the entrant are to the left of yA − vA for ε > 0 small enough. For b → 0 we have

that limε→0 π
ε
A(yA, ŷB) = 1

2
F (ŷA − vA) < F (ŷA − vA) = F (1

4
+ 1

2
vB + 1

2
ŷA) − ζ where ζ > 0

is a non-degenerate positive number. Therefore, there exists b > 0 and ε(yA), such that for all

ε ∈ (0, ε(yA)), it is the case that πεA(yA, ŷB) < πεA(ŷA, ŷB) for yA = ŷB − vA + vB.
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Case 6 yA = ŷB + vA − vB

In this case there exists ε(yA), such that for all ε ∈ (0, ε(yA)) we have that

Eε(yA, ŷB) = (yA − vA − δ(ε), yA − vA)

where ∂δ(ε)
∂ε
≥ 0 and limε→0 δ(ε) = 0.

This is due to the fact that for b = 0, ŷB − ζ = 1
2
where ζ > 0 is a non-degenerate positive

number. That is, there exists b > 0 such that ŷB − vA + vB >
1
2
and hence all the ε-best responses

of the entrant are to the left of yA − vA for ε > 0 small enough. For b → 0 we have that

limε→0 π
ε
A(yA, ŷB) = F (ŷA− vA) = F (1

4
+ 1

2
vB + 1

2
ŷA)− ζ where ζ > 0 is a non-degenerate positive

number. Therefore, there exists b > 0 and ε(yA), such that for all ε ∈ (0, ε(yA)), it is the case that

πεA(yA, ŷB) < πεA(ŷA, ŷB) for yA = ŷB + vA − vB.

We have, thus, proved that for each yA 6= ŷA there exists ε(yA), such that for all ε ∈ (0, ε(yA)),

it is the case that πεA(yA, ŷB) < πεA(ŷA, ŷB).We can construct six similar cases for player B bearing

in mind that the arguments of cases one, two and four are equivalent while the arguments for case

three become trivial. When yB ∈ (ŷA + vA − vB, ŷA − vA + vB) then πεB(ŷA, yB) = 0 for any ε > 0.

The arguments for the degenerate cases five and six follow from the previous four main cases as

for player A.

As we have noted in the proof πεA(ŷA, ŷB) = πεB(ŷA, ŷB); the vote-shares of both established

candidates in the described Quasi-SPE are identical. Moreover, we generically (that is, for the

case in which the established candidates have asymmetric valences11) have |1
2
− ŷA| < |12 − ŷB| and,

hence, the main result of our paper: the high valence established candidate offers a more moderate

platform than the low valence established candidate while both receive the same vote-shares.

11When there are no valence asymmetries between the two established candidates, that is, when vA = vB ≥ 0
we naturally have that | 12 − ŷA| = |

1
2 − ŷB |. Kim (2005) provides an equivalent result by studying this particular

case (two established candidates of equal valence face an entrant of lower valence) when the distribution of voters
is uniform.
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Since we now have the existence proof of a certain Quasi-SPE we can revisit the unique extra

constraint (compared to Palfrey, 1984) that we imposed on the distribution of voter’s ideal policies.

We have assumed that F ′(1
2
)−2F ′(0) ≤ 0. That is, that the concentration of voters in all compact

subsets of the policy space of equal measure is suffi ciently symmetric. This was only used in

Case 2 of the proof presented above. We observe that we actually needed only a part of this

condition. Our results would still be valid if we had only assumed that F ′(1
2
) − 2F ′(ψ) ≤ 0 for

ψ ∈ (ŷA − vA, ŷB + vB). By relaxing our assumption in this manner it becomes evident that

the described equilibrium would hold for a wide class of popular distribution functions. Beta

distribution functions, for example, with symmetric densities about the center of the policy space

can support the described Quasi-SPE for a certain range of their shape parameters under this less

stringent condition (F ′(1
2
)− 2F ′(ψ) ≤ 0 for ψ ∈ (ŷA − vA, ŷB + vB)).

Unfortunately, conditions on the nature of the distribution of ideal policies cannot be avoided

when we seek to identify equilibrium strategies of an electoral competition game among candidates

of asymmetric valence. For example, Aragonès and Palfrey (2002) specifically consider a uniform

distribution of voters’ideal policies and Aragonès and Xefteris (2012) specifically assume a certain

class of unimodal distributions in order to fully characterize an equilibrium.

Next we discuss equilibrium uniqueness.

Theorem 2 Whenever the Quasi-SPE of Theorem 1 exists then: a) (1− ŷA, 1− ŷB, 1− ŷC) is also

a Quasi-SPE and b) no third Quasi-SPE exists.

Proof. The first part of this theorem follows trivially from the fact that the density of F is

symmetric about the center of the policy space. Now assume that there exists a Quasi-SPE,

(ẙA, ẙB, ẙC), on top of these two mirror ones. Without loss of generality consider that in this

equilibrium ẙA < ẙB (the case ẙA = ẙB is trivially ruled out as player B has clear incentives to

deviate) and that (ẙA, ẙB) 6= (0, 1) (this case is trivially ruled out as A, for example, has clear

incentives to deviate from 0 to ε for ε > 0 suffi ciently small - see case 2 of the proof of proposition

1 for arguments which back up this claim). Notice, that it should be the case that ẙA < ẙC < ẙB
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because for any pair (yA, yB) 6= (0, 1) such that yA < yB player C has no unique well-defined best

response in [0, yA] ∪ [yB, 1].12 Moreover, notice that ŷA and ŷB are the unique values that solve

lim
δ→0

VC(yA, yB, yA − vA − δ) = lim
δ→0

VC(yA, yB, yB + vB + δ) = VC(yA, yB, ẏC(yA, yB))

where ẏC(yA, yB) = arg maxVC(yA, yB, yC) conditional on yC ∈ (yA, yB).

That is, if such third Quasi-SPE, (ẙA, ẙB, ẙC), exists it should be such that VC(ẙA, ẙB, ẙC) >

min{limδ→0 VC(ẙA, ẙB, ẙA−vA−δ), limδ→0 VC(ẙA, ẙB, ẙB+vB+δ)}. Again without loss of generality

assume that VC(ẙA, ẙB, ẙC) > limδ→0 VC(ẙA, ẙB, ẙA − vA − δ). This implies that there exists ζ > 0

such that VA(ẙA+ ζ, ẙB, ẏC(ẙA+ ζ, ẙB)) > VA(ẙA, ẙB, ẙC) (this follows directly from the arguments

employed in Case 1 of the proof of Theorem 1) where ẏC(ẙA + ζ, ẙB) = arg maxVC(ẙA + ζ, ẙB, yC)

and ẏC(ẙA + ζ, ẙB) ∈ (ẙA + ζ, ẙB). That is, (ẙA, ẙB, ẙC) cannot be a Quasi-SPE of the game.

We conclude our formal analysis by presenting some comparative statics of the essentially

unique equilibrium characterized above. The equilibrium condition F (ŷA − vA) = 1 − 2F (1
4

+

1
2
vB + 1

2
ŷA) suggests that

∂ŷA
∂vA

= F ′(ŷA−vA)
F ′(ŷA−vA)+F ′( 14+

1
2
vB+

1
2
ŷA)

> 0

and that

∂ŷA
∂vB

=
−F ′( 1

4
+ 1
2
vB+

1
2
ŷA)

F ′(ŷA−vA)+F ′( 14+
1
2
vB+

1
2
ŷA)

< 0.

We notice that ∂ŷA
∂vA

< 1 and that ∂ŷA
∂vB

> −1 and, hence, the equilibrium condition ŷB =

1− ŷA + vA − vB suggests that

∂ŷB
∂vA

= −∂ŷA
∂vA

+ 1 > 0

12Just for the completeness of the argument let us note that we consider that the (non-conventional) object [x, x]
is the singleton {x}. This clarification is necessary as a pair (yA, yB) 6= (0, 1) with yA < yB might be such that
yA = 0 and yB < 1 or such that yA > 0 and yB = 1. That is, [0, yA] might be the singleton {0} or [yB , 1] might be
the singleton {1} but never both ({0, 1} ⊂ [0, yA] ∪ [yB , 1]).
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and that

∂ŷB
∂vB

= −∂ŷA
∂vB
− 1 < 0.

Moreover, by ŷC = 1
2
− vA + vB it trivially follows that

∂ŷC
∂vA

< 0 and that ∂ŷC
∂vB

> 0. That is, an

increase in the valence level of an established candidate leads: a) this established candidate to offer

a more moderate platform, b) the other established candidate to offer a more extremist platform

and c) the entrant to locate closer to the established candidate whose valence has increased.

Finally, we consider an equal joint increase of the valences of the established candidates. To

this end, we define v = vB = vA − θ where θ ≥ 0 is fixed and suffi ciently small and we write the

equilibrium condition as F (ŷA − v − θ) = 1− 2F (1
4

+ 1
2
v + 1

2
ŷA). This condition yields

∂ŷA
∂v

=
F ′(ŷA−v−θ)−F ′( 14+

1
2
v+ 1

2
ŷA)

F ′(ŷA−v−θ)+F ′( 14+
1
2
v+ 1

2
ŷA)

< 0

∂ŷB
∂v

= −∂ŷA
∂v

> 0

and

∂ŷC
∂v

= 0.

Hence, the degree of policy differentiation between the two established candidates does not just

depend on the valence difference between these two candidates but also on the valence level of the

entrant.13 That is, the higher the valence asymmetry between the established candidates and the

entrant, the larger the degree of policy differentiation between the two established candidates.

13Recall that the assumption that vC = 0 is without loss of generality. If we considered vC > 0 instead, then
all the conditions of the equilibrium should be re-written by substituting vA with vA − vC and vB with vB − vC .
That is, an increase in the difference between the valence level of an established candidate and the valence level of
the entrant (when the valence difference between the established candidates is fixed) can be seen either as an equal
increase in the valence levels of the established candidates or as a decrease in the valence level of the entrant.
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4 An example of an "almost" uniform distribution.

Consider now that F → U [0, 1]. In this case we should have that

F (ŷA − vA)→ ŷA − vA

1− 2F (1
4

+ 1
2
vB + 1

2
ŷA)→ 1− 2(1

4
+ 1

2
vB + 1

2
ŷA)

and, therefore, the Quasi-SPE (ŷA, ŷB, ŷC) should be such that

ŷA → 1
2
vA − 1

2
vB + 1

4

ŷB → 1
2
vA − 1

2
vB + 3

4

and

ŷC = 1
2
− vA + vB.

We moreover find that in this case the admissible values for b > 0 are relatively large. In

specific our equilibrium exists for any 1
10
> vA ≥ vB ≥ vC = 0.

It is evident that, as in the general case, the degree of extremism of the (dis)advantaged

established candidate is (decreasing) increasing in the size of the advantage (vA − vB). Moreover,

since we always have that ŷC = 1
2
− vA + vB the entrant comes closer to the advantaged candidate

when the valence asymmetry between the two established candidates increases (see Figure 1).

[Insert Figure 1 about here]

Note that, since

πεA(ŷA, ŷB) = πεB(ŷA, ŷB)→ 1
4
vA + 1

4
vB + 3

8
,

19



it follows that the identical payoff of the two established candidates is strictly increasing in the

difference between their cumulative valence and the valence of the entrant (vA + vB − vC).

Finally, we notice that when vA = vB = v > 0 we have that ŷA → 1
4
and ŷB → 3

4
(the

equilibrium play of both established candidates is independent of the exact value of their common

valence v > 0). As we argued in the end of the previous section this is not true for strictly

unimodal distributions of the voters’ ideal policies. When vA = vB = v > 0 the equilibrium

condition F (ŷA − v) = 1 − 2F (1
4

+ 1
2
v + 1

2
ŷA) along with the strict unimodality of F ′ imply that

∂ŷA
∂v

< 0. Hence, the importance of the valence asymmetry between the established candidates

and the entrant becomes less important when the density of F becomes "flatter" (that is, when it

approaches U [0, 1]).

5 Probabilistic entry

Here we briefly and informally discuss what would happen if we assumed that the third candidate

entered the race after the two established candidates selected their platforms with probability

p < 1 and did not participate in the elections with probability 1 − p. Considering the location

pair (ŷA, ŷB) we first explore deviation incentives of candidate A. From case 1 of the proof of

proposition 1 it is evident that if the third candidate enters, candidate A prefers to be located at

ŷA compared to any location to the left of ŷA. It is moreover straightforward that candidate A

prefers to be located at ŷA compared to any location to the left of ŷA even if no third candidate

enters the race. Hence, independently of the exact value of p, candidate A prefers to be located

at ŷA compared to any location to the left of ŷA. Things are distinctly more complicated as far

as deviations to locations to the right of ŷA are concerned. As we saw in cases 2, 3, 4, 5 and

6 of the proof of proposition 1, which all correspond to deviations to the right of ŷA, if a third

candidate enters and A is located to the right of ŷA, not only the payoff of candidate A is smaller

compared to the payoff she would get if she were located at ŷA but most importantly there exists

a non-degenerate ζ > 0 such that πεA(ŷA, ŷB) − πεA(y, ŷB) > ζ for every y > ŷA. This is very

important as it suggests that if p is suffi ciently large candidate A has no incentives to deviate to
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a location the right of ŷA even if that location gives her the maximum possible payoff in case no

third candidate enters the race. For example one can easily validate that any value of p strictly

larger than 1
1+ζ

is suffi cient to make ŷA the unique best response of candidate A to B playing ŷB.

The arguments why candidate B does not wish to deviate away from ŷB when A is expected to

locate at ŷA and p is suffi ciently large are equivalent.

We moreover notice that the location pair (ŷA, ŷB) is a local equilibrium of the above extension

of the game for any p > 0. This is because: a) if candidate A marginally deviates to the left

of ŷA she is worse off both when a third candidate enters and when no third candidate enters

and b) if candidate A marginally deviates to the right of ŷA she is marginally better off when a

third candidate does not enter but significantly worse off when a third candidate enters. That is,

for every value of p there exists γ > 0 such that ŷA = arg maxy∈[ŷA−γ,ŷA+γ] π
ε
A(y, ŷB). Equivalent

arguments apply for candidate B and hence (ŷA, ŷB) is a local equilibrium for any p > 0.

6 Concluding remarks

We have demonstrated existence of an essentially unique pure strategy equilibrium in the entry

model considering that candidates may be characterized by asymmetric valences. Our analysis

is the first to produce a pure strategy equilibrium play of the two heterogeneous (in terms of

valence) main candidates when candidates are purely offi ce-motivated. Earlier studies on Downsian

competition between candidates of unequal valence (Aragonès and Palfrey 2002; Hummel 2010;

Aragonès and Xefteris 2012) suggest that: a) the high valence candidate chooses a more moderate

platform than the low valence candidate and that b) the vote-share of the high valence candidate

(in expected terms) is strictly larger than the vote-share of the low valence candidate. The entry

model that we just analyzed suggests that the first prediction of these models is more robust than

the second one. We have proved that in the unique equilibrium of the present game, indeed,

the high valence established candidate chooses a more moderate platform than the low valence

established candidate and that they both receive equal vote-shares.

As far as the size of valence asymmetries is concerned, the entry model is the unique one that
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produces complete results for a small but non-degenerate difference in the valence levels of the two

established candidates and for a suffi ciently dispersed electorate. The most important implication

of this characterization of a pure strategy equilibrium is that stable equilibrium outcomes can occur

even if candidates differ in valence. Models which did not account for entry resulted in equilibria

in which both players mix when valence differences are small but non-degenerate.

As far as robustness of the results is concerned we deem important to note that further studies

should care to investigate possibility of strategic choice of entry and alternative payoff functions.

Since this is the first work on the effect of candidate entry when the two established candidates are

asymmetric in terms of valence, it should be the case that it focused in generalizing the original

entry model of Palfrey (1984) and not its subsequent variants. Regarding voters’utility functions,

one should note that considering a multiplicative valence model and/or non-linear loss functions

should not upset the main messages of the present study. Such generalizations would most probably

affect only certain aspects of our equilibrium and not its fundamental characteristics. For example,

we conjecture that a model with strictly concave loss functions would mitigate the symmetry of the

equilibrium payoffs of the two established candidates without eliminating the egalitarian effect that

the addition of an entrant has on the equilibrium payoffs of the two main candidates. We finally

conjecture that a model with a multiplicative valence component would generate new incentives

for the entrant to approach the advantaged established candidate and new types of limitations

which would constrain the entrant away from both established candidates without changing any

of the qualitative implications of the present equilibrium.
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Figure 1. Eqquilibrium locatioons as a functionn of  Av  when vBB  vC  0.  
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