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Feedback and Competition in 
Procurement e-Auctions. 
By Niklas Klarnskou*, Philippos Louis†  and Wouter Passtoors‡  

 

Abstract: 

We use a lab experiment to examine the effect of feedback on bidder behavior 
in procurement e-auc;ons. We compare ‘Rank-only’ to ‘show lead bid’ feedback, 
two regimes applied frequently by procurement professionals. A choice among the 
two is oEen based on rules-of-thumb that rely on ini;al ‘bid compression’, i.e. the 
spread of the bids submiFed pre-auc;on. The use of such criteria finds no support 
in exis;ng economic theory. A common assump;on in theore;cal auc;on models 
is that bidders face no opportunity cost from par;cipa;ng in a dynamic auc;on. 
This may not hold in situa;ons where the expected value of a contract does not 
jus;fy a long-;me commitment to the bidding process on the part of bidders. In 
our experiment par;cipants face the choice of remaining ac;ve in an auc;on vs. 
exi;ng and being rewarded with a diminishing outside op;on. Showing the lead 
bid accelerated bidders’ learning. In the presence of opportunity costs, this can lead 
to substan;ally different outcomes condi;onal on the ini;al bid compression. With 
low bid compression, the bidder with the lowest cost wins more frequently, 
enhancing efficiency, but faces reduced compe;;on by the others, which hurts the 
buyer’s poten;al outcome. The opposite is true when bid compression is high. Rank 
only feedback achieved similar overall levels of efficiency, with higher benefits for 
the buyer. Crucially, these outcomes are not as sensi;ve to ini;al bid compression 
as in the case of ‘show lead bid’ feedback. A discouragement effect emerging in the 
‘Show-lead-bid’, but not in the ‘Rank-only’ regime can explain these results. 
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1. Introduc+on 

Without catching many headlines, the use of reverse auctions has been growing for more than two 
decades within the area of procurement, be it public or private. Whether applied in rising economic 
periods or uncertain and inflationary times, e-Auctions have proven an effective tool for procurement 
to mitigate the volatility in a competitive market. Private companies are applying the auction framework 
broadly across multiple categories and for contracts of all sizes, from multi-million agreements to 
smaller, day-to-day transactions. In fact, e-Auctions are more likely applied to smaller contracts where 
the time saved in the negotiation phase on both the buyer’s and the bidders’ side is of a higher relative 
value.   

For practitioners, employing auctions over traditional negotiations ensures efficient business 
allocation in any economic climate, provided there is sufficient competition and the auctioned business 
is commercially appealing. Reverse dynamic auctions represent the purest form of negotiation, as they 
guarantee the auctioneer the best possible outcome on the auction day. However, it's important to note 
that without a commitment to award the contract based on the e-auction's outcome, the likelihood of the 
buyer achieving a favorable result significantly diminishes. It is the commitment to award that creates 
a genuine incentive for bidders to present their best and final offer. 

Using one of many available software solutions organizations can run auctions to select suppliers 
for their needs. Some are highly customizable, allowing buyers to choose different auction formats, set 
reserve prices, define expressive bidding etc. Of course, all this variety of design options brings about 
the problem of how to choose the right design. Understanding the impact of such choices on an e-
Auction’s outcome becomes even more relevant following the rise of virtual assistants and AI assisted 
decision-making technology. Larger organizations that are conducting many auctions, are able to 
improve auction design through trial and error, leveraging their own internally build-up data sets. Even 
so, any mistakes can incur substantial costs to a company due to suboptimal supplier selection and/or 
overspending. The current source of remedies is sharing “best practices” with other practitioners in 
industry events (often organized by the software providers) or informally. Ideally though, they should 
be guided by carefully thought-out and empirically validated theory.1 

It is well established in auction theory that the benefits of getting the details of the design exactly 
right are overshadowed by those of increasing the number of bidders (Klemperer, 2002). Beyond theory, 
practitioners are also aware of this fact. It is therefore no surprise that when planning an auction, they 
invest substantial resources in attracting all potential bidders. Furthermore, a high number of bidders is 
necessary for enhanced competition, but far from sufficient: in dynamic auctions, the benefits of 
nominal competition (high number of participating bidders) are only achieved if this translates into 
actual competition (high bidding intensity).  

Attracting enough bidders is not always possible in the fast pace of business and can also be further 
hindered by capacity and resource constraints on the suppliers side. Practitioners therefore apply 
specific design features to an auction in an effort to mitigate the lack of bidders and still deliver 
satisfactory outcomes. Thus, nominal competition does not only depend on the number of bidders but 
also on specific design choices such as the available feedback. This is our study’s main focus. 

It is common practice in procurement auctions not to inform participants about every other bidder’s 
current bid. In one common feedback regime, the leading bid is shown to everyone. Other times, bidders 
only receive rank feedback: how their own bid ranks compared to others. Knowing that one’s bid is 
highly ranked may encourage the bidder to bid aggressively, while the opposite may happen if their bid 
is ranked low. If the leading bid is shown along with rank feedback, these effects may change, depending 
on how far off the leading bid lies. Whether any of this intuition is true will depend on what bidders 

 
1 For discussions of such issues see Hartley et al. (2004), Hur et al. (2006), Bruno et al. (2012), and references 
therein. 
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know about their competitiveness. Information about this can be revealed during the pre-auction stages, 
such as through one or multiple (often binding) requests.2  

Understanding the interplay between the feedback provided during an e-Auction and the information 
revealed in the pre-auction stages is this project’s main research question. We want to understand how 
‘rank only’ vs. ‘lead bid’ feedback affects the behaviour of bidders, competition during the auction, and 
ultimately the performance of the auction as part of the procurement process.3 To highlight the role of 
feedback on bidders’ beliefs regarding their competitiveness vis-à-vis the others, our experiment 
employs a symmetric affiliated private value (APV) model, very similar to the one used by Kagel, 
Harstad & Levin (1987).4 Under these conditions, bidders that know their own cost and initial offer, but 
have no information about others’ initial offers or rank, should believe that they have an equal chance 
of having the lowest cost as anyone else. The feedback they receive at the beginning and during the 
experiment allows them to update these beliefs. And it is these effects that we seek to investigate. 

The two feedback regimes we study are commonly applied by procurement professionals in practice. 
To choose between the two they typically employ self devised rules-of-thumb based on their companies’ 
own experience. These, often  rely on initial ‘bid compression’, i.e. the spread of the bids submitted 
pre-auction.5 Nevertheless, there is no support for the use of such criteria in existing economic theory. 
In particular, standard auction theory predicts no effect on an auction’s outcomes from providing either 
type of feedback.  

An important caveat to these theoretical predictions is that standard auction models assume that 
participating in an auction entails no opportunity cost for bidders. In real auctions, bidders must commit 
valuable time to participate. The dynamic nature of such auctions allows bidders to withdraw (or simply 
become inactive) if they believe that their chances of winning are slim, and the required time can be 
spent more productively elsewhere. This is expected to be the case for contracts that are smaller in value 
relative to the time compensation of the executives involved in the bidding process.6  But, how bidder 
beliefs are formed and updated during an auction can depend critically on the type of feedback received, 
as well as the distribution of pre-auction bids. Thus, introducing such opportunity costs and the option 
to exit into an auction model, may substantially alter its predictions. Unfortunately, the analysis of such 
a dynamic model quickly becomes intractable.7 We examine simplified models to gain some insight, 
and these also provide some benchmarks for our experimental results. Still, our main approach to the 
question in hand remains experimental. In the same spirit of keeping the analysis tractable, we focus on 
symmetric APV winner-takes-all auctions. 

 
2 In procurement jargon these pre-auction stages are known as “request for quote” (RFQ) or “request for price” 
(RFP). They follow an initial “request for information” (RFI) stage where the buyer asks potential suppliers for 
information on their organization and products or services. Based on this information the buyer selects suppliers 
to send an RFP. Some buyers provide feedback to suppliers after the 1st RFP and ask for a 2nd RFP, which 
typically results in higher bid compression. The buyer finally invites a subset of the suppliers that provided 
competitive prices in the RFP to participate in an e-auction. 
3 Our analysis focuses on information and learning and how these are affected by the feedback provided. It is of 
course possible that behavioral biases in bidding behavior also get differentially activated across feedback 
regimes. Perhaps the most relevant in our case is a quasi-endowment effect, where a bidder bids more 
aggressively when provisionally awarded the item (Heyman, Orhun and Ariely, 2004). For more discussion of 
this and other behavioral biases that affect auction behavior see for example Erhart, Ott and Abele (2015), 
Podwol & Schneider (2016), Offerman, Romagnoli & Ziegler (2022), Babaioff, Dobzinski & Oren (2022), and 
references therein. 
4 The symmetric APV model is a special case of the affiliated value model (Wilson, 1977; Milgrom and Weber, 
1982) 
5 See Larsen (2021), also quoted in the last section of this article. 
6 While e-auctions are sometimes used in large multi-million dollar projects that catch headlines and attention, 
most e-auctions concern smaller  projects. For example, out of the more than 500 e-auctions conducted by 
Maersk, a global leader in transportation and logistics, 47% had a spend size below $100k, with an additional 
23% below $1m. 
7 English auctions are often studied theoretically by looking at an equivalent clock auction. We cannot make use 
of this method, since in a clock auction there are no ranks or lead bid to provide feedback on. 
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In the experiment we design, five bidders participate in a reverse English auction. Their costs and 
initial offers are generated randomly but remain correlated. We draw the initial offers in a way that 
generates substantial (random) variation in initial bid compression, allowing us to test for the effect it 
has on the auction outcomes. During the auction, bidders are allowed to exit the auction and collect a 
payoff that is diminishing with time. This feature emulates the possible effect of opportunity costs from 
participation. We apply two treatments, each one with a different feedback regime: ‘rank only’ (RO) or 
‘show lead bid’ (SLB).  

To obtain theoretical benchmarks to compare our experimental results to, we computationally solve 
a simplified theoretical version of our setup, in which bidders first decide whether to participate in the 
auction or exit, and if they do not exit they submit a sealed-bid in a 2nd-price auction. While this ignores 
the role of dynamics, it still provides a useful reference that helps formulate testable hypotheses for our 
experiment. 

We find that on average bidders in the experiment do not exit as early as predicted by theory. In 
general they stay active longer in the RO treatment and exit faster and at a higher rate in SLB. In terms 
of efficiency, overall it is somewhat lower in the experiment than our theoretical benchmark, but there 
are no significant differences across treatments. Where we do find significant differences is in bidders’ 
profits. These are substantially higher in the SLB treatment. While the level differs substantially from 
the theoretical benchmark, the direction of the effect is the one expected. The positive effect of SLB 
feedback on bidders’ profits is realized when bid compression is low. This is explained by an apparent 
discouragement effect, akin to the one found in all-pay auctions and contests: the emergence of a clear 
leader can scare off competing bidders, drying out the effective competition in the auction. The 
existence of opportunity costs from participating in the auction introduces an all-pay auction element 
to the environment.  

The paper proceeds as follows. In what remains of this section we discuss some of the related 
literature. In the next section we present a simple theoretical model of a 2-bidder auction that we hope 
illustrates how the feedback regime interacts with bidders’ opportunity cost to affect the auction’s 
performance. It also shows how a static version of the discouragement effect can emerge in the SLB 
environment when bid compression is low. We then proceed to explain our experimental design and 
procedures. We derive theoretical benchmarks based on a static analysis, similar to that of the 2-bidder 
model in the preceding section. Based on these we derive testable hypotheses to guide the reader when 
going through our experimental results. These are presented in the next section. Finally, we end the 
paper with some discussion of our results and related conclusions. The appendix contains some 
supplemental material. 
 
1.1 Related Literature  

This paper is closely related to existing experimental research that studies feedback in procurement 
auctions (Chen-Ritzo, Harrison, Kwasnica and Thomas, 2005; Haruvy and Katok, 2013; Elmaghraby, 
Katok and Santamaria, 2012;) including auctions that allow for expressive bidding (Adomavicius, 
Gupta and Sanyal, 2014) and the design of such auctions more generally (see for example Elmaghraby, 
2007 for a survey). An important innovation of our experimental design is the incorporation of 
opportunity costs from staying in the auction, along with the possibility of exiting. 

Given this innovation in the experimental design, our work also relates to the question of entry into 
auctions and how it is affected by the auction format. Early theoretical work in this area has focused on 
the case where potential bidders do not observe their type before deciding whether or not to enter the 
auction (McAfee and McMillan, 1987; Levin and Smith, 1994; Engelbrecht-Wiggans, 1993; Smith and 
Levin, 1996; Pevnitskaya 2004; Li and Zheng, 2009). This assumption is also reflected in some of the 
experimental work in the area (Smith and Levin 2002; Engelbrecht-Wiggans and Katok, 2005; Reiley 
2005; Palfrey and Pevnitskaya, 2008; Ertaç et al. 2011).  Often, though, it makes more sense to consider 
the case where potential bidders know their type when deciding whether or not to participate in an 
auction and condition their decision on that private information. This has been considered in theoretical 
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work (Green and Laffont 1984; Samuelson 1984; Campbell 1998; Miralles 2008; Tan and Yilankaya 
2006; Menezes and Monteiro, 2008; Lu, 2009; Cao and Tian, 2007 & 2010) but has received less 
attention from experimenters (Aycinena and Rentschler, 2018; Aycinena, Bejarano and Rentschler, 
2018). Our work is closer to this last branch of the literature, in the sense that bidders are informed 
about their type when making the participation decision.  

Throughout our analysis and experiment we maintain the implicit assumption that the e-auction stage 
is preceded by one or more stages where bidders submit binding bids,8 which we take to be their initial 
offers, and these are correlated with their private cost. Theoretical analysis of indicative bidding, 
qualifying auctions and other two-stage mechanisms seems to indicate that pre-auction bids can be 
correlated to bidders’ private values when they induce some form of commitment or entry costs (Ye, 
2007; Quint & Hendricks). Experimental results lend support to this finding, but also indicate that 
commitment is not critical and even non-binding indicative bids can reflect private values (Kagel et al. 
2008). These results provide justification for our assumption. It should be noted that for an environment 
with a substantial common-value element and an insider, Boone and Goeree (2007) show that a two-
stage qualifying auction, an equilibrium exists where bidders bid their unconditional expected value in 
the first stage. Nevertheless, experiments by Boone et al (2009) do not find strong support for such 
behavior, with bidders apparently being drawn to the “babbling” equilibrium where their non-binding 
qualifying bids carry no information.  

We need to mention two more auction theory papers that look at questions that are in spirit very 
similar to ours, although in different environments.  

Ashkenazi-Golan et al. (2023), looks at private value two-stage auctions where the n highest bidders 
in the first stage can improve their bid in the second stage. They ask whether it is optimal to provide 
information about first-stage bid ranks or even bids. Such information can have two effects: one the one 
hand it may induce bidders to bid more aggressively in the second stage, but on the other hand, 
expecting to receive such information, bidders may bid less aggressively in the first stage. They find 
that the first effect becomes dominant for a sufficiently large number of bidders. We look at a single-
stage dynamic auction and information influences in-auction competition, but it has a heterogeneous 
effect on bidders, inducing more competition from some, while leading others to exit. The overall effect 
is related to initial bid compression. 

Hernando-Veciana & Michelucci (2018) look at an ascending auction model with an incumbent and 
a common-value component. They show that ‘rushes’ may occur in equilibrium, where all bidders 
simultaneously drop their demand. This is reminiscent of exits in our setting. What triggers these rushes 
in their common-value setting is the information revealed by the incumbent dropping out, which is very 
different from the opportunity cost motivation we examine. They propose a two-stage auction design to 
restore efficiency.  

Finally, the literature studying contests and all-pay auctions  predicts that a discouragement effect 
can emerge in the presence of asymmetries between competing agents (Baye et al., 1993; Gradstein, 
1995; Baik, 1994; Stein, 2002; Konrad and Kovenock, 2009) and even with homogeneous agents, under 
some conditions (Fang et al. 2020).  Lab experiments have verified the existence of such an effect 
(Davis and Reilly, 1998; Anderson and Stafford, 2003), especially in dynamic environments (Fonseca, 
2009; Deck and Sheremeta, 2012). The existence of opportunity costs adds an ‘all-pay auction element’ 
to our environment, but the asymmetries between players, i.e. bidders’ cost differences, are masked 
when ‘rank only’ feedback is provided. It is when bidders can see the lead-bid and asymmetries are 
large (i.e. low bid compression) that we observe a discouragement effect emerging.  
 

 
8 In real scenarios, these bid are not always binding and bidders may amend their initial bid before the auction 
starts. Even in these cases, the non-binding price and initial bid are typically highly correlated.  
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2. Theore+cal considera+ons 
 

Our analysis departs from standard auction theory models in some aspects: bidders face an 
opportunity cost from participating in the auction and can choose to exit; initial offers are determined 
(exogenously) at a pre-auction stage and are correlated with bidders’ cost; the feedback regime 
determines what bidders know about their competitivenes at the beginning of, and during the auction. 
In this section use a simple model to illustrate how these elements of the environment interact with 
each other. 

Consider the following auction exit game.9 Two risk-neutral bidders participate in a reverse 
second-price sealed-bid auction. In the first stage they decide whether to exit the auction or not (𝑒! ∈
{0,1}). If they exit (𝑒! = 1) they receive a fixed payoff 𝑢* ∈ (0,1). In the second stage bidders are not 
informed about others’ exit decisions. Any bidder that does not exit in the first stage submits a bid. 
Given the second-price nature of the auction bidders have a dominant strategy that is to submit a bid 
equal to their cost (Vickrey, 1961). The winner receives a payment equal to the second highest bid 
(i.e. the other bidder’s cost) or the reservation price if the other bidder exits in the first stage, and pays 
their cost. The reserve price is set to 𝑃 = 2 for convenience.10 A bidder that does not exit but loses the 
auction receives zero payoff.  

For simplicity we assume that bidders’ costs take the values 𝑐" = 0 or 𝑐# = 1 and each of the two 
bidders has an ex ante equal probability of having the lowest cost. Let 𝜃! ∈ {𝐿, 𝐻} represent a bidder’s 
state, with 𝜃! = 𝐿 in case bidder 𝑖 has the lowest cost, 𝜃! ≠ 𝜃$ and Pr7𝜃! = 𝐿, 𝜃$ = 𝐻8 = %

&
. Since 

bidders submit a bid equal to their cost, if no bidder exits, the one with the lowest cost wins the 
auction. The bidder with the highest cost can only win if the other bidder exits in the first stage. These 
are simplifying assumptions that are done here only to keep the model simple and to focus on the first 
stage and the bidders’ decision to exit or not.11  

In the first stage bidders do not know whether their cost is the lowest. An initial offer 2 + 𝜌! is 
generated for each one, where 𝜌! ∈ [0,1] is a random draw from a distribution 𝐹'! conditional on the 
bidder’s state 𝜃!, with pdf:  

𝑓'(𝜌) = ?2 − 2𝜌, 𝜃 = 𝐿
	2𝜌,																𝜃 = 𝐻 

These are triangular distributions with the mode on the lower and upper bound for 𝜃 = 𝐿 and 𝜃 = 𝐻 
respectively. Conveniently, after observing their initial offer and applying the Bayes rule, bidder 𝑖 
updates their belief about having the lowest cost to Pr(𝜃! = 𝐿|𝜌!) = 	1 − 𝜌!.12 

Bidders observe their initial offer privately. Furthermore, we consider two feedback regimes for 
the first stage. In rank only (RO), bidders are also informed of their initial offer’s rank 𝑟! ∈ {1,2}, 
indicating whether their initial offer is 1st (the lowest) or 2nd: 𝑟! = 1 ⇔ 𝜌! < 𝜌$. In show leading bid 

 
9 We refer to auction “exit” instead of “entry”, which the common nomenclature in this literature, just to stay in 
line with our experimental design, where the auction is dynamic and bidders can leave at any point in time. For 
the static environment studied in this section, choosing to enter or not exit the auction are equivalent. 
10 Setting the reserve price at 𝑃 = 2, equalizes the profit from winning the auction with the highest cost if the 
bidder with the lowest cost exits (𝑃 − 𝑐!), and that from winning with the lowest cost with no bidder exiting 
(𝑐! − 𝑐").  
11 In a reverse second-price auction bidding one’s  private cost (or progressively up to that in the strategically 
equivalent reverse English auction) is a dominant strategy.  Hence, in such an auction bidders do not need to 
form any beliefs about others’ costs and bidding strategies. 
12 We define the initial offer as 2 + 𝜌# > 𝑃 just to make it clear that bidders still need to submit a bid in the 
second stage in order to win the auction. All the relevant information that matters to the bidder is contained in 
𝜌#, which they can perfectly infer by observing the initial offer. We therefore use the two interchangeably.  
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(SLB) the bidder with the higher initial offer (𝑟! = ℎ) is also informed about the other bidder’s initial 
offer (the ‘leading bid’). To simplify notation from now on we use the rank to indicate the bidder: 𝑖 =
𝑟!. 

In this setup, maximum allocative efficiency is achieved if the bidder with the lowest cost does not 
exit the auction. As we discuss below, this is not always the case, as bidders only receive a noisy 
signal about the rank of their cost. It does not matter for allocative efficiency if the bidder with the 
higher cost exits. From the perspective of a spending minimizing buyer, exits are always bad, as they 
reduce competition and lead to a higher price paid to the winning bidder. Hence, the performance of 
auction under each feedback regime hinges upon the exit behavior induced by the information 
provided to the bidders. 

Remark 1: As bidders are ex ante symmetric, the decision to exit depends solely on their belief about 
having the lowest cost. A bidder exits unless their belief about having the lowest cost is high enough.  

Remark 2: Given the information structure and the rank information provided in both feedback 
regimes, bidder 1 is always more optimistic than bidder 2 about their chances of having the lowest 
cost. If bidder 2 is optimistic enough to stay even if bidder 1 does not exit, then bidder 1 will be even 
more optimistic and not exit. If bidder 2 is not optimistic enough and exits, then bidder 1 can win for 
sure and is therefore better off not exiting. Therefore, bidder 1 never exits in the first stage. This is 
straightforward in the simple two bidder model, but is also true in the model with multiple bidders we 
examine later on: higher ranked bidders are more optimistic and therefore if a bidder does not exit, 
neither will any bidder better ranked than them. 

Given the above we focus attention on bidder 2. We can show the following: 

• In RO, bidder 2 ‘s optimal choice is: 
 

𝑒&()(𝜌&) =

⎩
⎪
⎨

⎪
⎧1,																																	𝑢* >

1
3
	

1,			𝑢* ≤
1
3
	𝑎𝑛𝑑	𝜌& > 𝜌Q(𝑢*)	

0,																									𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

		 , 𝜌Q(𝑢*) =
3𝑢* − 1
2𝑢* − 1

	 

 
• In SLB, bidder 2 ‘s optimal choice is: 

 

𝑒&()(𝜌&, 𝜌%) =

⎩
⎪
⎨

⎪
⎧1,																																							𝑢* >

1
2	

1,			𝑢* ≤
1
2
	𝑎𝑛𝑑	𝜌& > 𝜌V(𝜌%, 𝑢*)	

0,																															𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

		 , 𝜌V(𝜌%, 𝑢*) =
𝜌%(1 − 𝑢*)

𝜌% 	+ 	𝑢* 	− 	2𝜌%𝑢*
	 

 

When 𝑢* > %
&
, in both feedback regimes bidder 2 exits in the first stage irrespective of their initial offer. 

Hence the feedback regime has no effect on the outcome. We therefore focus on the more interesting 
case where 𝑢* ≤ %

&
. 

An important concept for the analysis here and later in the paper is that of bid compression, i.e. 
how close initial offers are to each other. In this simple model one can think of it as the ratio between 
initial offers *"

*#
. The closer the initial offers are to each other, the higher the ratio, or in other words, 

the higher the bid compression. 
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Remark 3: By construction, bid compression affects behavior in the SLB feedback regime, but not in 
the RO feedback regime. Notice that  𝜌V(𝜌%, 𝑢*) is increasing in 𝜌%and, by definition, 𝜌% < 𝜌&. Thus, 
the condition for bidder 2 to exit in SLB becomes more restrictive as the two initial offers are closer 
together, or, in other words, when initial bid compression is high. So, if bid compression is high 
enough, a bidder with a specific initial offer may choose to exit in RO but not in SLB. On the other 
hand, with low bid compression, if a bidder with a specific initial offer does not exit in RO he will also 
stay in the auction in SLB. Formally, we can show that: 

• For 𝑢* < %
&
: 

 
o If  *"

*#
> %

&
 then: 𝑒&+",(𝜌&, 𝜌%) = 1 ⇒	𝑒&()(𝜌&) = 1. 

 
o If  *"

*#
≤ %

&
  then: 𝑒&()(𝜌&) = 0 ⇒	𝑒&+",(𝜌&, 𝜌%) = 0. 

The intuition behind the above result is the following. Being ranked 2nd does not necessarily mean 
that a bidder does not have the lowest cost, but it means that this is less likely to be the case. The 
likelihood decreases further with the bidder’s initial offer. In RO, this is all the information available 
to the bidder when deciding whether or not to exit. In SLB, there is more information available. When 
the 2nd bidder observes the 1st bidder’s initial offer to be much lower than their own, i.e. bid 
compression is low, the likelihood of having the lowest cost becomes even smaller. On the contrary, 
observing that the 1st bidder’s initial offer is close to their own, i.e. bid compression is high, is good 
news for the 2nd bidder, as it means that they perhaps have the lowest cost but got an “unlucky” draw 
for their initial offer.  

What we describe above is essentially the possibility for a discouragement effect arising. In 
particular we find that in RO the bidder ranked 2nd can be discouraged and exit by having a high 
initial offer. This decision will not depend on bid compression, as in RO a bidder knows nothing about 
the other bidder’s initial offer. The opposite is true in SLB, where the discouragement effect is 
induced by the observation of the other bidder’s initial offer: the further ahead the other bidder is, the 
stronger the effect. 

In this simple two bidder model, bid compression is easily defined as the ratio between the two 
bidders’ initial offers. Later when we examine a model with multiple bidders and a different cost 
distribution, and when looking at the experimental data, we will use the standard deviation of initial 
offers as a proxy for bid compression. 

Remark 4: Bid compression affects allocative efficiency and buyer’s spending under both feedback 
regimes. Given the previous remark, this is quite evident for SLB, but also holds in RO. Recall that 
both efficiency and spending depend on the probability of a mistake exit, i.e. the bidder with the 
lowest cost exiting the auction. In RO, the probability of the 2nd bidder exiting does not depend on the 
1st bidder’s initial offer, but if exit occurs, the probability of this being a mistake, conditional on the 
two initial offers being close, is high. The opposite is true when the two initial offers are far. 
Therefore, we expect to observe different efficiency and spending, even in RO, when we look 
separately at cases where bid compression is high vs. low.   

The theoretical model presented in this section is meant to fix ideas and illustrate the strategic 
considerations present in our experimental design, how they are affected by the feedback regime, the 
role of bid compression, and how all of this can affect an auction’s performance. In this simplified 
form the model does not lend itself for meaningful comparisons regarding performance across 
feedback regimes. We return to these issues after first introducing our experimental design. Based on 
that we set up and solve computationally a richer theoretical model that is closer to the auctions we 
conducted in the lab. We use that to provide benchmarks and hypotheses related to our experiment. 
All this is done in the following section. 
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3. The Experiment 
 

3.1 Experimental design 

The experiment took place online with 80 participants recruited from the UCY-LExEcon lab subject 
pool.13 This is based at the University of Cyprus and participants are all students at the various 
departments of the university.14 We conducted a total of eight separate sessions, with 10 participants per 
session. The experiment was programmed and run in zTree (Fischbacher, 2007), using zTree-Unleashed 
(Duch et al., 2020) and Zoom for the online implementation. An outline of the design is provided in  
Treatment Feedback # of bidders 

per auction 
# of auctions 

per round 
# of rounds 
per session 

# of sessions 

SLB 
(show lead bid) 

Rank and 
lowest offer 5 2 40 4 

RO 
(rank only) 

Rank only 5 2 40 4 

.  A translation of the instructions for the experiment provided to participants can be found in the 
Appendix. The original text in Greek is available upon request. We discuss further details of the design 
below. 

In all sessions, subjects connected on to a Zoom meeting, through which they received instructions.15 

The experimental task involved bidding in 40 auctions, one in each round of the experiment. All 
auctions are of the English reverse auction format, which is the most common format used in 
procurement e-auctions (Larsen, 2021). Subjects are randomly placed in groups of 5 bidders16 at the 
beginning and the groups remain fixed in all rounds of the experiment.  

Treatment Feedback # of bidders 
per auction 

# of auctions 
per round 

# of rounds 
per session 

# of sessions 

SLB 
(show lead bid) 

Rank and 
lowest offer 5 2 40 4 

RO 
(rank only) 

Rank only 5 2 40 4 

Each auction had a duration of 60 + x seconds, where x was a random integer between 1 and 10 
drawn in each round and not revealed to the subjects. This ensured a random ending time for the auction 
and was used to discourage sniping.17  Bidders submit offers for a virtual item in real time and as many 
times as they wish. Each bidder’s new offer must be lower than her previous one but does not have to 
be the lowest one.  

 
13 Recruitment was done using ORSEE (Greiner, 2015). 
14 More information of the the UCY LExEcon lab and subject pool can be found at 
https://www.lexecon.ucy.ac.cy/ 
15 Participants turned their cameras on upon entering the meeting individually, when their ID was checked. After 
that they switched off the camera, replaced their screen name with a randomly assigned number and moved into 
a “breakout room” while waiting for the remaining participants. This process assists in preserving anonymity.  
16 As this is a procurement setting, bidders are sellers/suppliers competing with their price offers to supply a 
good. Nevertheless, we will use the term ‘bidders’ which is more common in the study of auctions.  
17 See for example Roth & Ockenfels 2002. Real e-auctions usually extend the time limit if a bid is submitted 
near the end of the auction to achieve the same goal. This is not practical in the lab where multiple auctions are 
conducted simultaneously and repeatedly. 

 Table 1: Experimental Design 
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The bidder that has submitted the lowest offer within the time limit wins the auction. She is paid the 
offer amount minus her cost (see below). All other bidders remaining active by the end to the auction 
get a payoff of zero. At any point during the auction, bidders have the option to click on a button and 
exit the auction. Doing so results in a payoff which is decreasing with time. It starts at 30 points and 
decreases by 1 point in 2 second intervals. When a bidder exits, they become inactive for the remainder 
of the auction. Exit in any round, though, does not affect participation in any of the following rounds. 

Bidders’ costs are determined as follows. In each round the computer randomly picks 1000 
consecutive integers between 2000 and 8000. Each possible such sequence is equally likely.  From these 
integers one is picked, with a uniform probability, for each bidder to represent her cost. Thus, each 
bidder knows that the other bidders’ cost is at most 999 points higher or lower than their own.18 

At the start of every round each bidder is assigned an initial offer in the following way: the computer 
picks randomly and uniformly an integer between 1500 and 3500 for each bidder and adds it to their 
cost. 10 seconds before the auction clock starts, bidders are informed about their individual cost, their 
initial offer and their offer’s rank (based on the initial offer), with the lowest offer being ranked 1st and 
the highest offer 5th. In the SLB treatment bidders are also shown the amount of the lowest offer. Notice 
that given the way initial offers are determined, a bidder whose initial offer is ranked higher than that 
of another one is more likely to have a lower cost than that other bidder. Overall, the correlation between 
initial rank and cost rank is .325.19 It is important to note for the subsequent analysis that in the cases 
where the spread of the initial offers is low, the correlation remains positive, but is considerably lower 
than in the opposite case (.138 vs. .475). Of course, participants are not informed about the spread of 
initial offers. 

In both treatments, once the auction starts bidders are shown real time information about their current 
offer’s rank with respect to other active bidders. Whenever a bidder submits a new offer everyone’s 
rank information is updated accordingly. In the SLB treatment bidders also observe the current leading 
bid, i.e. the amount of the lowest offer submitted by any active bidder in the auction. Bidders that exit 
do not receive real time information for the remainder of the auction. When a bidder exits, remaining 
bidders’ ranks are updated based on their current offers of active bidders, i.e. the exiting bidder’s offer 
is withdrawn.20 

At the end of the time limit all bidders, whether active or inactive, are informed about the auction 
result. Specifically, they are shown the amount of the winning offer, the amount and rank of their own 
final offer, whether they won, lost or exited, and their payoff.  

 
3.2 Theore:cal benchmarks 

Before we are ready to formulate testable hypotheses for our experimental results, it is useful to 
derive some theoretical benchmarks, specifically tailored to our experimental design. We do this here.  

In the auction environment of our experiment, in each point in time subjects need to decide whether 
or not to stay in the auction and, if they do, whether or not and by how much to lower their current offer. 
All that while information about their own rank and (in the SLB treatment) the leading bid is 
continuously changing. This is not very different than what bidders in real procurement e-auction need 
to deal with. This realism comes at a cost. It makes the analysis of the strategic environment using 
equilibrium game theoretic tools intractable. Nevertheless, it is possible to take a “partial equilibrium” 

 
18 Kagel et al. (1987) employ a very similar method to induce affiliated values in their experiments. 
19 See also Table 5 in the Appendix. 
20 Updating all remaining bidders’ rank when a bidder exits could convey to them some information about the 
remaining number of bidders, if the exiting bidder’s current offer was ranked higher than another one. Note, in 
our theoretical analysis bidders are not informed about how many other bidders exit. Still, we choose to update 
ranks to avoid deception and stay closer to real-life implementations of such auctions.  
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approach to derive some benchmarks and formulate hypotheses to aid the interpretation of our 
experimental results.  

3.2.1 No opportunity cost (i.e. no exit) 

A first approach to understand what may determine bidders’ behavior in this environment is to think 
of the simpler case where there is no opportunity cost from staying in the auction. In other words, one 
could consider the same environment, but without the possibility of exit. In such an environment, any 
rational bidder that is not ranked 1st should continue lowering their offer until reaching their cost. This 
is true irrespective of whether bidders receive feedback on the leading bid or not. As is well known, this 
standard reverse English auction is theoretically equivalent to a reverse 2nd-price sealed-bid auction: 
the winner is the bidder with the lowest cost and the price is equal to the 2nd lowest bidder’s cost.  

This result also implies that the auction outcome is always efficient: the bidder with the lowest cost 
wins the auction. In this scenario without exit neither the feedback regime nor bid compression should 
affect the efficiency of the auction. Similarly, they should also not affect bidders’ expected profit. 

Infact, the latter we can calculate exactly in our setup. Conditional on having the lowest cost, and 
hence winning the auction, a bidder’s expected profit is then given by the expected difference between 
the 2nd lowest and lowest cost. As costs are uniformly distributed, this difference between order-
statistics follows a Beta distribution with parameters 𝛼 given by the difference in orders (𝛼 = 2 − 1) 
and  𝛽 = 𝑛 − 𝛼 + 1, where 𝑛	represents the number of bidders. For five bidders and a 1000 point 
interval this means the expected profit for the winning bidder is 

𝐸(𝜋-.	01!2|𝑤𝑖𝑛𝑛𝑖𝑛𝑔) = 	
%
3
⋅ 1000 = 166.66 points. 

There are two things to note about this benchmark. The first relates to treatment differences and the 
second relates to how it may be affected by exits. 

For the theoretical equivalence between the reverse English auction and the 2nd-price sealed bid 
auction to hold, it must be the case that bidders in the dynamic setting adjust their offers continuously 
by infinitesimal amounts. More realistically, it would require offer decrements to be small and very 
close to whatever is currently the leading bid. This is not very demanding in the SLB treatment, as 
bidders know exactly what the leading bid is and can adjust their offer accordingly to match it. On the 
other hand, in RO this is not possible. Given the time constraints it is reasonable for bidders to lower 
their offers in non-minimal decrements, which may result in undercutting the leading bid by a 
substantial amount. This would result in overall lower profits for bidders in the RO treatment. In their 
experiment, Elmaghraby et al. (2012) indeed find that prices tend to be lower with RO versus full-price 
feedback. They attribute this to jump bids as well as a similarity of the problem of bidders under RO to 
that presented in sealed-bid first-price auctions.  

For the expected profit calculation above we assume ‘no exit’. In fact, the calculation still holds if 
we only assume that the bidders with the lowest and 2nd lowest cost remain active in the auction. Of 
course, bidders do not know the rank of their cost and can only infer that by the information they receive 
at the start of the auction and the feedback they observe during the auction. If such inferences lead to 
the exit of bidders before their offer reaches their cost, expected profits may be different. This is 
explained in more detail below.  

3.2.2 Sta:c auc:on with opportunity cost (SAWOC) 

To obtain some benchmarks of bidders’ exit behavior we turn to a model where we dispense of all 
dynamics, but assume that bidders have an opportunity cost from participating in the auction. This is a 
variation of the simple two player model presented earlier that aligns more with the experimental 
setting. We now consider five risk-neutral bidders that participate in a reverse second-price sealed-bid 
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auction. Bidders have affiliated costs determined in the same way as in our experimental design 
described above. Initial offers, ranks and the leading bid (in SLB) are also determined as in the 
experiment.  In a first stage, after receiving information about their cost, initial offer, rank and, in SLB, 
the lowest initial offer, bidders must decide simultaneously whether or not to submit a new and final 
offer in the second stage, or exit and receive a fixed payment of 30 points. 

In such a 2nd-price auction it is a dominant strategy for all bidders that do not exit to submit an offer 
equal to their cost. The outcome of the auction, who wins, the price, and expected profits, depends on 
bidders’ exit decisions. In particular, the winner is the bidder with the lowest cost among the ones that 
do not exit. The price is the 2nd lowest cost among the ones that do not exit. If the two bidders with the 
overall lowest costs remain in the auction, the result is the same as in the case with no exit. But if either 
of the two decides to exit, results will differ.  

First, notice that the option to exit may result in lower than optimal allocative efficiency if the bidders 
with the lowest cost decide to exit. Similarly, the winner’s expected profit can also be substantially 
higher if either the bidder with the lowest cost exits, or she stays in the auction but the bidder with the 
second lowest cost exits. If the probability of any of this happening depends on the feedback received 
by bidders, both allocative efficiency and the winner’s profits may differ between the two experimental 
treatments. 

From the analysis of the model with no opportunity cost (i.e. no exit) we can see the following. 
Before receiving any information on their costs, initial offers and ranks, bidders are symmetric. Thus 
their ex ante expected profit from the auction is  

𝐸(𝜋-.	01!2) =
%
4
⋅ 𝐸(𝜋-.	01!2|𝑤𝑖𝑛𝑛𝑖𝑛𝑔) = 33.33 points. 

This means that, assuming risk neutrality, it is individually rational for bidders to participate ex ante. 
This is not the case anymore after bidders receive information about their cost, initial offers, and rank. 
Based on this information, bidders can update their belief about having the lowest cost, as they do in 
the simple two player – two type model we discussed. The bidders with the highest initial offers, as 
revealed by their rank and the leading bid (in SLB) will update their beliefs regarding their chances of 
winning downwards and may therefore choose to exit (see Remark 1 and 2 for the simple model). 

Let us first consider the RO treatment. Bidders observe their initial offer’s rank before deciding 
whether or not to exit. Recall that initial offers are correlated with bidders’ costs, and therefore a bidder 
ranked higher than another means that it is more likely for their cost to be lower than that of the other. 
Therefore, a bidder ranked 5th should adversely update their belief about the probability of winning the 
auction. In particular, given the parameters of the experiment the expected profit of such a bidder is: 

𝐸7𝜋5	01!2`𝑟𝑎𝑛𝑘𝑒𝑑	5268 ≈ 8.2	points.21 

Therefore, assuming that all other bidders stay in the auction, it is optimal for the bidder ranked 5th 
to exit the auction and collect the fixed award of 30 points from doing so. Taking this into account we 
can calculate the expected profit of the bidder ranked 4th and obtain:  

𝐸7𝜋5	01!2│𝑟𝑎𝑛𝑘𝑒𝑑	426 , 526	ℎ𝑎𝑠	𝑒𝑥𝑖𝑡𝑒𝑑8 ≈ 25.1 < 30	points. 

Hence it is again optimal for the bidder ranked 4th to exit the auction. Given this, it turns out that 
the expected profit of the remaining bidders is: 

 
21 We obtain this and similar numbers using Monte Carlo simulations. The exact calculation of these figures 
while possibly tenable, is out of the scope of our paper. 
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𝐸7𝜋5	01!2│𝑟𝑎𝑛𝑘𝑒𝑑	378𝑜𝑟	𝑎𝑏𝑜𝑣𝑒, 	426𝑎𝑛𝑑	526	ℎ𝑎𝑣𝑒	𝑒𝑥𝑖𝑡𝑒𝑑8 > 30	points. 

To sum up, in a 2nd-price sealed-bid auction with exit with RO feedback, bidders with initial offers 
ranked 4th and 5th exit the auction and all other bidders submit an offer equal to their cost. The winner 
of the auction is the active bidder with the lowest cost and the price is equal to the 2nd lowest cost 
among the active bidders.  

In the SLB treatment, observing the lowest initial offer provides more information to the bidders. 
They can therefore condition the decision to exit on their rank (as in RO) as well as on the leading bid 
information. So, unlike in RO, it is possible, for some initial offer profiles, to observe a bidder exiting 
ranked at any position up to the second, or the opposite: even the bidder ranked 5th to stay in the 
auction. Still, for any profile of initial offers, if a bidder exits, so will all bidders ranked worst, and if a 
bidder stays, so will all bidders ranked better.  

We make use of Monte Carlo simulations to calculate a bidder’s expected payoff conditional on 
their rank and the distance between their initial offer and the leading bid. Comparing that to the value 
of the outside option provides threshold values for the initial offer – leading bid distance, conditional 
on a bidder’s rank.  

From above we have computationally determined exit behavior in the SAWOC model for both the  
RO and the SLB feedback regime. We use this in a simulation exercise to obtain benchmarks 
regarding bidder’s frequency of exit and the performance of the auction. These are presented in Table 
2. The first two rows of the table show the frequency of exit under each feedback regime. The next 
two show the frequency of efficient outcomes, namely how often the winner of the auction was the 
bidder with the lowest cost. The last two rows show average winner’s profits. The simulations also 
allow us to form some intuition on the role of bid compression. In the 2nd and 3rd columns in the table 
we split the sample equally between the cases with the lowest and highest bid compression. Here (and 
later for the experimental results) we measure bid compression by the standard deviation of initial 
offers.   

Regarding exit behavior, the model predicts more frequent exits in SLB compared to RO. The 
intuition behind this is that the additional information provided to bidders in SLB allows worst 
bidders to more strongly update their beliefs about winning the auction. This means that, unlike the 
RO, even bidders that are ranked 3rd, or even 2nd sometimes choose to exit. This is more likely to 
happen when bid compression is low and therefore it may be that the bidder ranked 1st is more clearly 
ahead of the others. This is essentially a manifestation of the discouragement effect. As shown above, 
in RO the bidders ranked 4th and 5th always exit, and therefore bid compression plays no role here. 
These results are correspond to the similar finding in the simple model analyzed in Section 2 (Remark 
3).  

Table 2: Simulated exit behavior and outcomes in the SAWOC model 

  Whole 
sample  

Low  
bid compr. 

High  
bid compr. 

Exit 
RO  .400 .400 .400 

SLB .521 .638 .403 

Efficient 
Outcomes 

RO  .793 .867 .720 
SLB .876  .852 .899 

Winner’s 
Profit 

RO 222.5 213.9 231.1 
SLB 670.6 906.9 434.6 



 14 

 

In terms of allocative efficiency, SLB feedback leads on average to slightly better results, although 
bid compression operates very differently in the two regimes. When bid compression is low, the 
ranking of initial offers is more closely correlated with the ranking of costs, and vice versa. Therefore, 
in RO, where it is always the worst two ranked bidders to exit, there are fewer “wrong exits” when bid 
compression is low. In SLB, with high bid compression bidders that are not well ranked can still 
observe the lead bid, which is likely to be close to their initial offer. Thus, even the bidders with the 
highest initial offers can see that the best offer is not much lower and therefore they maintain 
relatively optimistic beliefs about their chance of winning, and stay in. This leads to fewer “wrong 
exits” under high bid compression in SLB. 

Recall that with no exit the expected winner’s profit is about 167 points. In the SAWOC model we 
find that under RO it is somewhat higher, while under SLB it is substantially higher. This is explained 
by exits. Suppose the bidder with the lowest cost stays active (i.e. the outcome is efficient) but the one 
with the second lowest cost exits. This leads to a higher winner’s profit. The higher exit rate in SLB 
leads to situations like this more frequently, in particular when bid compression is low.   

We should emphasize that these benchmarks are obtained from a static model where feedback only 
affects the exit decision at the start of the auction. In our experiment, we employ a dynamic English 
auction with feedback, either RO or SLB, provided throughout the auction, and bidders being allowed 
to exit at any point. While the SOWAP model can help us build some intuition about how bidders can 
learn from feedback and behave in a dynamic auction, the experimental results can differ substantially 
from these benchmarks.  

Next, we provide some hypotheses about bidders behavior in the experiment based on these 
theoretical benchmarks and our intuition. These should not be viewed as a way to validate a specific 
theoretical model, as any of our models differs substantially from the experimental setup. They serve 
mostly to organize, and later present, our results. 

3.3 Hypotheses 

Based on the intuition that motivated this work we expect exit behavior to differ across treatments, 
although it is not clear what direction the difference will take on aggregate, if any. Observing a lead 
bid that is close to one’s own, in SLB, could encourage a bidder, that might otherwise exit, to stay in 
the auction. The opposite can also happen. A bidder that would not have exited the auction under RO 
might be pushed to do so if they observe a lead bid that is too far away. We fall back on the 
predictions of the SAWOC model reported in Table 2 to formulate the following hypothesis: 

Hypothesis 1: Relative frequency of exit is expected to be higher in SLB compared to RO. 

Regarding any differences across bid compression conditions, in RO we do not expect to find these 
to have any correlation with exit behavior. For SLB we already noted when studying the simple two 
bidder model (see Remark 3) that we expect more exits when bid compression is low. This is also 
reflected in the SAWOC model’s predictions. 

Hypothesis 2: Relative frequency of exit remains stable across bid compression conditions in RO but 
is higher under low bid compression in SLB. With high bid compression the relative frequency of exit 
is the same in RO and SLB. 

Our intuition regarding auction performance in each treatment and depending on the level of bid 
compression relies mainly on the SAWOC model’s predictions. We expect the relative frequency of 
efficient outcomes to be lower in RO compared to SLB. The additional information provided in SLB 
should allow all bidders form more accurate beliefs, which would help bidders with the lowest cost to 
avoid ‘mistake exits’ and eventually win the auction. 
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Hypothesis 3: The relative frequency of efficient outcomes is higher in SLB compared to RO. 

In RO ‘mistake exits’ should be more common conditional on bid compression being high: when 
this is the case the rank of initial offers are less correlated with the rank of bidders’ cost. This makes it 
more likely for the bidder with the lowest cost to be ranked low initially and decide to exit. In SLB, 
the opposite should be true. Observing a lead bid that is close should encourage all bidders to stay, 
including the one that has the lowest cost. Therefore, efficient outcomes should be more frequent 
when bid compression is high. 

Hypothesis 4: The relative frequency of efficient outcomes in RO is higher when bid compression is 
low. The opposite is true in SLB. 

The SAWOC model predicts that winner’s profits will be substantially higher in SLB compared to 
RO. Notice that what drives this difference are not jump-bids or any ‘sealed-bid effect’, as there are 
no dynamics in the SAWOC model. Instead, it can be attributed entirely to differences in exit 
behavior. What frequently happens in the model in SLB is that by observing the lead bid, the bidder 
with the 2nd lowest cost correctly updates his belief about the chance of winning the auction 
downwards and chooses to exit. Thus, the bidder with the lowest cost wins the auction, but at a price 
that is substantially higher, as the 2nd lowest cost bidder (and likely the others) choose to exit. 

Hypothesis 5: The average Winner’s profit is higher in SLB compared to RO. 

Even though in the SAWOC model the average exit rate is similar in RO and SLB when bid 
compression is high, there are differences in the distribution of exits. Suppose that the bidder with the 
lowest cost does not exit. In RO it is always the two bidders with the highest initial offer that exit. 
This is not very likely to affect the price paid to the winner, as it must be the case that the 2nd lowest 
cost bidder is one of them. Given the correlation of initial offers with the bidders’ cost, this happens 
rarely, although somewhat more frequently when bid compression is high. Overall in RO the average 
winner’s profit is about 1/3 higher than the one expected without exits (=166.66). In SLB exit 
behavior tends to be more extreme: either no one exits or all but the 1st ranked bidder exit, i.e. a 
“rush”. Intermediate cases can also happen but less often. When bid compression is high, the two 
cases happen at approximately equal frequencies, therefore the relative frequency of exits overall is 
similar to the one in RO. Still, whenever there are such “rushes”, the bidder with the lowest cost wins 
and receives a very high price. 

Hypothesis 6: In RO average winner’s profit is only slightly higher when bid compression is high. In 
SLB winner’s profit is substantially higher when bid compression is low. When bid compression is low, 
average winner’s profit is higher in SLB compared to RO. 

It should be emphasized again that in formulating these hypotheses we rely mainly on the static 
models we discussed and ignore any role of auction dynamics. The expected outcomes we describe 
depend mainly on bidders’ exit choices, which in turn we assume that they depend solely on what 
bidders learn in the beginning of the auction. As we show in what follows, while the intuition build 
from these static models can help to partly understand what we observe in the experiment, we find 
significant departures from these predictions that we can attribute to a large extend to the way the 
bidders in the experiment learn from the feedback they receive during the auction. 

We are now ready to present our experimental results, which we do in the following section. 
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4. Experimental Results 
4.1 Aggregate outcomes: Exit behavior 

We first examine exit behavior. The first two rows of Table 3 report the relative frequency of exit 
in the first three second of every auction. In this initial short period behavior is expected to be mainly 
driven by the pre-auction information available to bidders. This makes these numbers more 
comparable to the ones from the SAWOC model reported in Table 2. We find that in both treatments 
bidders exit the auction much less frequently than predicted in this initial period. There are no 
significant differences across treatments and bid compression plays no role.  

Nevertheless, the dynamics of exit behavior start to diverge across treatments as the auction 
proceeds. In Figure 1 we graph the estimated survival function (the probability that a bidder remains 
active in the auction at a given time if they have not exited the auction up to that point) for bidders in 
each treatment. As can be seen, overall there is more bidder exit in SLB compared to RO. Also, 
bidders in SLB start exiting sooner, although the rate of exit decreases towards the final third of the 
auction.  

  All  
data 

Low  
bid compr. 

High 
bid compr. 

Exit 
(first 3sec) 

RO  .080  .080  .080 
SLB .086 .087  .085  

Efficient 
Outcomes 

RO  .693  .685  .704 
SLB .678  .753  .585  

Winner’s 
Payoff 

RO  147.5  129.1  170.6 
SLB 184.1  207.6  154.7  

Table 3: Average outcomes in the experiment. The first column is based on all the data. The second and third 
column only use data from auctions where bid compression was low and high respectively. The first two rows 
show the relative frequency of exit. The next two show the average time of exit measured in seconds from the 
start of the auction. The next two show the relative frequency of efficient outcomes. The last two report the 
average winner’s profit. Numbers in bold indicate statistically significant differences across treatments for the 
corresponding average (p-val<.05) in a Wilcoxon matched-pairs signed-rank test where we use group averages 
as the independent observations.  

Result 1: We find support for Hypothesis 1. The relative frequency of exit in higher in SLB 
compared to RO, although the difference can only be observed after a few initial seconds of the 
auction.  



 17 

 
Figure 1: Estimated survival functions in each treatment. The two solid lines represent the estimated survival function for 
bidders in RO (black) and SLB (gray). The dotted lines next to each line represent 95% confidence intervals for the survival 
probability at each point in time. 

As expected, when conditioning on initial bid compression in RO we find no differences in exit 
behavior across the two conditions of high vs. low bid compression. Interestingly, and contrary to our 
expectation, we also do not find any differences when doing the same in SLB (see Figure 4 in the 
Appendix) 

Result 2: We find no differences in exit behavior when conditioning on initial bid compression within 
each treatment. Hypothesis 2 is therefore only supported for RO, but not for SLB. 

Having said that, we shall see in the next subsection that the relative frequency of exit for SLB 
reported here hides some important heterogeneity in terms of the characteristics of the bidders exiting 
at any given point. More generally, the dynamics of exit behavior will account for the treatment effects 
on auction performance that we report below, and the way they differ from our predictions.   
 
4.2 Aggregate outcomes: Efficiency and Winner’s profits 

The 3rd and 4th rows of Table 3 report the average frequency of efficient outcomes in each treatment. 
When comparing the two treatments overall (first column), we do not find significant differences in the 
frequency of efficient outcomes. In fact, contrary to our prediction, efficient outcomes are slightly more 
frequent in RO compared to SLB. In general, allowing bidders to exit opens up the possibility of the 
bidder with the lowest cost to mistakenly exit the auction. It was therefore expected that full efficiency 
will not be achieved (see Table 2). But despite staying in the auction longer than anticipated, bidders 
in the experiment are not able to achieve even the level of efficiency predicted by the SAWOC model, 
in neither of the two treatments.  

Result 3: We do not find any support for Hypothesis 3. There are no differences on the relative 
frequency of efficient outcomes across treatments. 

According to Hypothesis 4, efficiency in RO should be lower when bid compression is high, as it is 
then that the bidder with the lowest cost might be initially ranked low, negatively update their belief 
about their chances of winning, and thus exit. This does not turn out to be the case in the experiment. 
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In fact we observe no significant differences in the frequency of efficient outcomes in RO when 
conditioning on bid compression. The exact reverse is true for SLB: we expected higher efficiency with 
high bid compression but find that it is that case that we obtain the fewer efficient outcomes. One thing 
to notice is that efficient outcomes are significantly lower when bid compression is low in SLB 
compared to the same case in RO. It turns out that these inefficient outcomes in SLB mostly concern 
cases where the winner’s cost is not very far from that of the bidder with the lowest cost.22  

Result 4: Contrary to Hypothesis 4, there is no negative correlation between bid compression and 
efficiency in RO, while the opposite is true in SLB.  

On the other hand, the two treatments do seem to produce significantly different results with regards 
to the bidders’ payoffs. As evidenced by the measurement of the winner’s profit, bidders do achieve on 
average a higher profit in SLB, compared to RO. This comes at the expense of the buyer, that pays on 
average a higher price in SLB. Hence, showing the lead bid works in favour of the bidders and against 
the buyer.  

Result 5: We find support for Hypothesis 5. Bidder’s profit is higher in SLB compared to RO. 

The picture becomes more nuanced when we breakdown the samples according to initial bid 
compression. We find that the treatment effect of SLB on winner’s profits seems to derive almost 
exclusively from the cases with a low bid compression. It is in these cases where the winning bidder 
achieves on average a substantially higher payoff in SLB compared to RO. Within each treatment, as 
predicted, high bid compression is associated with higher bidder profits in RO and lower bidder profits 
in SLB, although the differences are not significant in RO. Notice, that while the SAWOC model 
correctly predicts the comparative statics across treatments and conditional on bid compression, it 
substantially exaggerates the expected bidder’s profits in the SLB treatment. These predictions rely on 
bidders in many instances in SLB exiting ‘en masse’. While the exit rate in SLB is indeed higher, 
especially in the earlier stages of the auction, bidders still stay long enough for prices to be driven down 
substantially.  

Result 6: We find partial support for Hypothesis 6. When bid compression is high, winner’s profit is 
higer in RO, but the difference is not statistically significant. When bid compression is low, winner’s 
profit is significantly higher in SLB. 

A high winner’s profit reflects an increased spending on the part of the buyer. In fact, the price paid 
by the buyer could be higher than expected even in cases where the bidder’s profit is low.23 While we 
do not report any measure of the buyer’s spending here, this turns out to be highly correlated with the 
winner’s profit in our experiment. 

Overall, while some of our hypotheses are confirmed by the data, we do find substantial deviations 
from what is suggested by our theoretical benchmarks. It is worth mentioning that the practitioners in 
the team of authors had anticipated these results to a large extend, based on their experience in applying 
auctions in real procurement scenarios. Of course, the theoretical benchmarks we construct completely 
ignore the dynamic nature of the auction, how bidders may update their beliefs when observing what is 
happening, and how that can affect their behavior and the auction’s performance. In what follows, we 
take a closer look at what happens during the auctions in the experiment to shed some light on these 
topics.  

 
22 This can be seen when we measure the excess cost of an allocation, i.e. the difference between the winner’s cost and the 
lowest cost. It turns out that the differences between treatments, overall or conditioning on bid compression, are not 
statistically significant. 
23 This would happen, for example, if the bidder with the lowest cost and 2nd lowest costs exit, the bidder with the 3rd and 4th 
lowest cost do not exit, their costs are very close together, and the former wins with an offer very close to the cost of the 
latter. The price the buyer pays is much higher than expected in the equilibrium without exit, but the winner’s profit is low. 
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4.3 Learning and compe::on 

While we do not directly observe or elicit bidders’ beliefs during the auction, their exit behaviour 
may reveal something about how they learn. Under complete information, any bidder except for the one 
with the lowest cost would be better off exiting the auction. Thus, if bidders are learning during the 
auction, we should expect exits to become more correlated with a bidder’s cost rank (how their cost is 
ranked compared to that of the others) as the auction progresses. At the beginning of the auction they 
only have a noisy signal about their cost rank in the form of their exogenously given initial offer’s 
ranking (in RO) or their initial offer’s ranking and the leading bid (in SLB).  

The regressions shown in Table 4 demonstrate that in the RO treatment, at the start of the auction 
(first column) the bidders’ exit decision was at least partly explained by their initial ranking, but not 
by their cost ranking. Once the auction starts (next three columns), bidders seem to gradually learn 
more about their true cost ranking, resulting in their exit decision being increasingly correlated with 
their cost rank. The initial ranking does not seem to explain exit decisions after the initial phase of the 
auction. A similar picture emerges in SLB, only that in this treatment learning appears to be much 
faster. Already for exit decisions in the first 20 seconds of the auction, the coefficient for cost rank 
reaches the same level it reaches in the last 20 seconds in RO. 

 
dependent var: exit  
in RO 

< 3 3-20 20-40 40-60 

initial rank .155 
(.019) 

.041 
(.160) 

.042 
(.022) 

.028 
(.606) 

cost rank .036 
(.145) 

.154 
(.038) 

.285 
(.003) 

.340 
(.001) 

constant -2.018 
(.001) 

-1.773 
(.000) 

-1.737 
(.000) 

-1.923 
(.001) 

# Obs. 1600 1472 1291 987 
LogLik -433.4 -532.7 -650.2 -445.5 
     
dependent var: exit  
in SLB 

< 3 3-20 20-40 40-60 

initial rank .071 
(.103) 

.029 
(.449) 

-.017 
(.381) 

.055 
(.486) 

cost rank .090 
(.063) 

.402 
(.001) 

.397 
(.003) 

.432 
(.000) 

constant -1.875 
(.000) 

-2.011 
(.000) 

-1.909 
(.000) 

-2.434 
(.000) 

# Obs. 1600 1463 1076 846 
LogLik -459.1 -730.2 -489.0 -293.6 
     

Table 4: Learning during the auction. Probit regressions showing how the choice to exit depends on a bidder’s initial offer 
rank and their cost rank at different stages during an auction. The different columns show the estimated coefficients using 
data from different time periods/phases of the auction: the first 3 seconds, seconds 3 to 20, 20 to 40 and 40 to 60. The 
parentheses under the coefficients show the p-values obtained using the wild cluster bootstrap, with robust errors clustered at 
the group level (see Cameron et al., 2008 ; MacKinnon and Webb, 2018 ; Roodman et al., 2019). 

The regression results shown here indicate that learning occurs to some degree in both treatments. 
Showing the lead bid accelerates this process. We find further evidence to support this conclusion 
when graphing the survival functions for bidders in each treatment conditional on their cost rank. 
Error! Reference source not found. graphs the survival functions of bidders conditional on their cost 
rank. The correlation between exits and a bidder’s cost rank is clearly visible in these graphs. By the 
end of the auction, bidders’ exit rates are ordered the same way as their cost rank. While this ordering 
is pretty clear in SLB, in RO we observe that the differences in survival probabilities across bidders 
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conditional on their cost rank are less pronounced. For instance, bidders ranked 3rd and 4th have a very 
similar survival rate.  

Together with the regression results, these graphs seem to indicate that bidders are, to some degree, 
able to figure out their true chances of winning during the auction and decide upon whether or not to 
exit accordingly. The richer feedback they receive in SLB, allows them to learn this faster. It also 
seems to be the case that in SLB they learn about their chances more accurately. To see this, we can 
look at the bidders with the lowest cost that should stay in the auction and not exit. As can be seen, 
they exit at a slightly higher rate in RO compared to SLB. Similarly, from the remaining bidders, 
except from the ones with the second lowest cost that have similar survival probabilities in both 
treatments, all other bidders exit at higher rates in SLB. This can be viewed as a manifestation of the 
discouragement effect induced by observing the lead bid. In SLB, bidders with the highest cost 
quickly realize they have very low chances of winning the auction and choose to exit. 

 

The graphs also elucidate the role of bid compression. By comparing the panels corresponding to 
low and high bid compression in each treatment, we observe that high bid compression is associated 
with a smaller correlation between cost rank and survival probabilities in the first seconds of the 
auction. Continuing our interpretation of exit rates reflecting bidders beliefs about their chances of 
winning, it appears to be the case that when bid compression is high, bidders beliefs are less accurate, 
apparently influenced by the initial offer’s rank information. Recall that when bid compression is 
high, the initial offer’s rank is less correlated with a bidder’s cost rank (see Table 5 in the Appendix). 

One effect this has is that bidders with the lowest cost tend to exit more (compared to when bid 
compression is low), with this being more pronounced in RO. A second, and we believe more 
important effect, is that in SLB with low bid compression, bidders with the second lowest cost exit at 
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Figure 2: Estimated survival functions conditional on cost rank. The lines in each panel represent the survival function 
of bidders conditional on the rank of their cost, from lowest cost (1st - black) to the highest cost (5th – light gray)). Top 
panels corrspond to RO treatments and lower panels to SLB. Panels on the right use all the data in each treatment, 
panels in the middle use data from auctions with low bid compression, and panels on the right use data from auctions 
with high bid compression. 
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a substantially higher rate.24 As a result, the level of effective competition in the auction drops 
substantially. It is the presence of the bidder with the second highest cost, along with the one with the 
lowest cost, that can give rise to competitive bidding that can drive prices down. If this bidder exits 
early, and unless the next bidder’s cost is very close, there will not be sufficient competition during 
the auction for the bidder with the lowest cost to push the price down. This again a manifestation of 
the discouragement effect in SLB. Notably, for the bidder with the 2nd lowest cost discouragement is 
significant only in the case of low bid compression.  

To see how prices evolve during the auction we measure the difference of the leading bid from the 
initial lower bid. For comparability across the auctions, we normalize this by the difference of the 
initial leading bid to the lowest cost for each auction. In Figure 3 we show the average of this 
normalized price and it evolves during the auction. The final price levels reflect the differences that 
we have already observed in Table 3 regarding winner’s profits. 

 
Figure 3: Price Level. The panel on the left shows the evolution of the average difference between the leading 
bid and the lowest cost, normalized by the difference between the initial leading bid and the lowest cost, in each 
treatment and conditional on initial bid compression. The panel on the right zooms in to the final 15 seconds. 
Light gray lines correspond to RO and dark gray to SLB. Solid lines correspond to low nid compression and 
dashed lines correspond to high bid compression. 

Overall, we can see how the lower exit rates in RO translate into higher effective competition, 
which in turn drives prices down much faster than in SLB. After the second 50 in SLB, we observe a 
new phase of the price dropping. The panel on the right allows us to better distinguish what happens 
in this phase. Prices in SLB eventually drop to levels that are comparable to those in RO. 
Nevertheless, when the initial bid compression is low in SLB, the final prices remain at a markedly 
higher level (~20%) than in the other cases.  

Our previous analysis provides an explanation for how these differences in the initial conditions 
interact with the feedback regime to finally lead to the observed difference in the final price level. In 
RO, learning is slow and bidders stay in the auction longer. This maintains a sufficiently high level of 
competition that drives prices down. In SLB, bidders can update their beliefs very fast, and when 
initial bid compression is low, they do so accurately. This leads to a high exit rate early on, for all 
bidders except the one with the lowest cost. Conditional to the initial bid compression being low, once 
the auction reaches its final phase it is very likely for the bidder with the 2nd lowest cost to have 
exited. When this is the case, there is not enough pressure on the bidder with the lowest cost to reduce 
the price much further.  

 
24 In Figure 5 the Appendix show the same data as in Figure 2, but only for the two better ranked bidders, to 
highlight the differences we mention in the text. 
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5. Discussion and conclusions 

We have focused on the effects of feedback in reverse e-Auctions in the presence of opportunity 
costs from participating. The option for bidders to exit an auction early opens up the possibility for 
allocative inefficiencies. This may happen if the bidders that should win the auction get discouraged 
early and leave early. While we do observe such inefficiencies in our experiment, these are not 
substantially affected by the type of feedback provided. What is affected are the prices resulting from 
the auction and the corresponding bidders’ profits, although the direction of the effect depends on pre-
auction conditions, namely initial bid compression.  

A type of discouragement effect seems to be at play. The increased feedback in the Show Lead Bid 
regime leads to fast learning and a large number of bidders exiting early. But the composition of the 
exiting bidders is different, depending on the initial bid compression. When bid compression is low, 
early exit rates are high for all but the most competitive bidders (i.e., the ones with the lowest cost). 
This leads to an efficient allocation, but the resulting low levels of competition keep prices at a high 
level, benefiting the winning bidders at the expense of the buyer. When bid compression is high, early 
exit rates are lower also for bidders that do not have the lowest cost but are still competitive (e.g. the 
ones with the second lowest cost). While competition in the early stages also drops fast compared to 
the Rank Only regime, a substantial level of competition persists until the end of the auction, leading 
to prices comparable to the ones with Rank Only feedback.  

Such a mechanism is also compatible with the slight drop in efficiency observed in the SLB 
treatment with high bid compression: the frequency of efficient outcomes drops, but in terms of 
excess cost, the loss in efficiency is not substantial. This can be the outcome of a bidding war between 
the two bidders with the lowest costs, in which sometimes the bidder with the second lowest cost 
wins. Such “accidents” can be the result of some residual “sniper bidding” behavior in our 
experiment. Even though the experimental design incorporates a random stopping time to discourage 
exactly this type of behavior, this solution is not perfect. Typically, procurement auctions use rules 
extending the auction time if a bid is submitted in the last few minutes of the auction.  

For researchers interested in auction design, either theoretically or experimentally, our results 
highlight how the consideration of an opportunity cost from remaining active in an auction can have a 
non-obvious effect on its performance. Of course, in auctions for large multi-million contracts any 
opportunity cost is likely to be negligible compared to the potential profits for a supplier. Still, a very 
large, and continuously increasing, number of procurement auctions concern more modest contract 
sizes. In these cases, the opportunity cost introduces elements of all-pay auctions into the 
environment, affecting bidders’ behavior. Further research providing a better understanding of the role 
of opportunity cost will be welcomed by procurement practitioners that run auctions on a daily basis. 

What can these practitioners take away from our research? What feedback regime should be used 
in procurement auctions where opportunity cost is a concern?  

One interpretation of our results is that Rank Only feedback is more robust to such considerations. 
Bidders stay more engaged, and the resulting competition drives prices down and yields relatively 
efficient outcomes. The strength of the competitive forces is not affected by pre-auction conditions, 
namely bid compression. That said, used in practice the Rank Only format may still have some 
drawbacks. Bidders may dislike the format as it leaves them relatively uninformed, exposes them to 
the risk of excessive underbidding, and the losers leave the auction without learning much about their 
competitiveness compared to other market participants. Furthermore, in some instances, such as 
public procurement in some jurisdictions, showing the lead bid might be a legal requirement.  

In light of our results, an alternative approach might be to choose the feedback regime based on the 
pre-auction conditions in every instance. In fact, this is the advice given to practitioners in relevant 
handbooks: 
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“Be aware of the distance between suppliers before the e-auc>on begins. If ini>al 
RFQ bids differ by more than 10 per cent between the lead bidder and the one in 
second place (especially if it is a winnertakes-all award strategy), a different 
format should be considered.” 

(A Practical Guide to e-Auctions for Procurement, Larsen, 2021) 

 Such an approach requires a good understanding of the market environment and participating 
bidders, in order to judge what the relevant threshold is in every instance and what other 
considerations may play a role in determining the design choice. It potentially also exposes the buyer 
to the “informed principal” problem.25 Suppliers may use the choice of the design to make inferences 
about the conditions in the auction. Finally, a frequently changing auction format is not conducive in 
building trust between suppliers and the buyer. These types of considerations are, of course, only 
relevant in cases where frequent and repeated participation of the same suppliers is expected. But this 
is often the case, especially with smaller contract sizes where, as mentioned, opportunity costs are 
expected to be more relevant. 

Another possibility is to develop new designs. One suggestion would be to use a hybrid feedback 
regime: provide Rank only feedback for an initial period and switch to showing the lead bid after that. 
Based on what we observe in our experiment, this could potentially maintain competition for the 
initial phase of the auction driving prices down and keeping bidders engaged. When the lead bid 
becomes visible offers should already be substantially compressed. Bidders that have stayed behind in 
their offers might abandon the auction at this point. Still, competitive bidders would continue bidding 
and drive prices to a desired level. Whether these conjectures have any merit is left for future 
research. 
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APPENDIX 
 

Supplementary material 
 

Initial rank 
1 2 3 4 5 

Cost rank 
1 .381 .200 .169 .150 .1 

2 .284 .228 .198 .160 .130 

3 .171 .196 .222 .215 .130 

4 .100 .250 .206 .238 .206 

5 .063 .125 .206 .238 .369 
Table 5: Cost rank vs. initial rank 

 

 
Figure 4: Estimated survival functions in each treatment conditional on bid compression. The two solid lines in each graph 
represent the estimated survival function for bidders in auctions with low (black) and high (gray) bid compression, in the 
corresponding treatment. The dotted lines next to each line represent 95% confidence intervals for the survival probability at 
each point in time. 

 

 
Figure 5: Estimated survival functions conditional on cost rank for better ranked bidders. The graphs in the two 
panels combine top and bottom panels from the middle and right columns in Figure 2, but showing the 
survival rate only for the bidder with the lowest and the second lowest cost. 
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Experimental Instruc:ons (transla:on from Greek) 
 

INSTRUCTIONS 
 
Thank you for par7cipa7ng in this session. Please remain quiet! The en7re experiment will 
be run through the computer and all your decisions will be recorded through it. Please DO 
NOT talk or make other noises during the experiment. The use of mobile phones and other 
similar devices is prohibited. Please read the instruc7ons carefully and if you have any 
ques7on, turn on your microphone to ask. 
 
The task 
In this experiment you will have the role of a supplier who competes in each round with 
others to supply his own product to a buyer. All par7cipants in the experiment will be 
suppliers. The role of the buyer will be played by a computer that will choose the best offer 
every 7me. 
There will be a total of 40 rounds in the experiment and the choices and outcomes of each 
round will be completely independent of the others 
 
Auc=on 
Compe77on in each round will be through a reverse auc7on. Each supplier will be able to 
make offers to the buyer in real-7me. 
 

 
 
This can be done either by wri7ng the amount of the offer (in the box on the leT) or by 
increasing or decreasing the amount of the previous offer (with the buVons on the right) 
and pressing the corresponding buVon ‘Submit’. All offers must be integer numbers and 
refer to points. Each new offer must be less than the supplier's previous valid offer. 
 
The dura7on of the auc7on will be 60 + δ seconds, where δ is a number between 1 and 10 
that will be randomly selected in each round. No vendor will know exactly when the round 
ends. A 7mer will show the 7me remaining and when it is nearing the end the 'Time is 
running out!' indicator will flash. Whichever supplier has the lowest bid at the end of the 
round will supply the product to the buyer. He will pay the supply cost and collect his bid 
amount. The difference between the two is his profit for that round. 
 
Cost 
Each supplier will have a supply cost that they will have to pay if they are selected as a 
supplier. This cost is determined randomly in each round and independently for each 
supplier. This will be done as follows: the computer randomly selects an interval of 1000 
numbers between 2000 and 8000 (eg {4563,4564,…, 5561, 5562}). From this interval it 
randomly and with equal probability selects a number that is the cost. For all suppliers the 

Create new offer 
Input offer 

Or use the bu*ons 

Submit Submit 
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supply cost is selected from the same random interval. So, knowing your supply cost, you 
know that the other's supply cost can be up to 999 points higher or 999 points lower. Each 
supplier will know their own costs but not the of others’. 
 
Exit 
At any 7me during a round, each vendor has the op7on to exit the auc7on (for that round) 
and collect some points. The amount he can collect from the exit will start at 30 points at 
the start of the round and gradually decrease during the round un7l it reaches zero. If a 
supplier withdraws, then their current bid is void and cannot be selected as the lowest bid. 
Exi7ng a round does not in any way affect par7cipa7on in previous and subsequent rounds 
of the experiment. 
 
Ranking 
Each supplier will not know the offers of the other suppliers. What he will know will be the 
ranking of his current offer in rela7on to the others. At the top of the screen will be listed 
the ranking of the current offer of each supplier. The best (lowest) bid is 1st, the next highest 
2nd, and so on. In this ranking, only the offers from suppliers that have not leT in the given 
round count. The current ranking will be updated in real 7me. 
 
Ini=al offer and ranking 
For each vendor, at the beginning of each round, an ini7al bid will be selected in the 
following manner. The computer will add to each vendor's cost a number between 1500 and 
3500 at random and with equal probability. This number will be selected separately and 
independently for each vendor in each round. The ini7al bid will also determine the ini7al 
ranking of suppliers. By the way ini7al bids are selected, it follows that if one supplier has a 
lower ini7al bid than another, then it is more likely, but not certain, that they also have a 
lower cost. 
 
 Prepara=on phase 
At the beginning of each round there will be a 10" prepara7on phase. In this phase, each 
supplier will be able to see on his screen his cost, his ini7al offer, and his ini7al ranking. Use 
this phase to review this informa7on and prepare your strategy for each round. 
 
Earnings 
The sum of the points you will collect in each round gives your total earnings from the 
experiment in points. At the end of the experiment you will be paid 1 euro for every 150 
points you have earned. The par7cipa7on fee of 5 euros will be added to this amount. 
 
Trial rounds 
Before the experiment starts we will do a trial run to make sure everyone understands the 
process. Any "profits" made in the trial round will not count towards the calcula7on of the 
total profits from the experiment. 
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