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Abstract

It is known that multidimensional Downsian competition fails to admit an equilibrium

in pure strategies unless very stringent conditions on the distribution of voters’bliss points

are imposed (Plott 1967). This paper revisits this problem considering that the two vote

share maximizing candidates are differentiated. That is, candidates strategically decide po-

sitions only in some of the n dimensions while in the rest their positions are assumed to be

fixed. These fixed dimensions may be viewed as candidates’immutable characteristics (race,

religion, culture, etc.). We find that if candidates are suffi ciently differentiated - if in the

fixed dimensions their positions are suffi ciently different - then a unique Nash equilibrium

in pure strategies is guaranteed to exist for any distribution of voters’bliss points. Perhaps

more importantly, we show that this is true even if there exists a unique fixed dimension and

candidates instrumentally decide their positions in all other n− 1 dimensions.
Keywords: electoral competition; multidimensional model; equilibrium existence; differ-

entiated candidates.

JEL classification: D72
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1 Introduction

Spatial representation of sets of policy alternatives and preference profiles is very popular in con-

temporary economics and political science literature. The intuition behind the ideas that an

alternative may be well represented by a point in some space and that the utility of an individual

is decreasing in the distance between her ideal alternative and the applied one is very strong. It

goes hand in hand with the common perception regarding what policy alternatives are and what is

the mental process that we use to evaluate them. When there exist n distinct political issues then

each political issue may be interpreted as a separate dimension in a Euclidean space. Therefore,

a) the policy platform of a candidate should be a vector consisting of n policies - one for each of

the n issues - and b) the utility of a voter from this candidates’platform should be decreasing in

the distance between the candidate’s platform and her bliss point - the vector of her ideal policies

for each of the n issues.

In its basic unidimensional (n = 1) version the spatial model delivers very strong results as far

as electoral competition between two offi ce motivated candidates is concerned (or simply, as far

as Downsian competition is concerned). For any distribution of voters’bliss points there exists a

unique pure strategy equilibrium and it is such that both candidates promise to implement the

bliss point of the median voter (Downs 1957; Black 1958). Once we depart from the unidimensional

world though and we arrive to more complex spaces, the "curse of multidimensionality" appears

(the term was proposed by Bernheim and Slavov 2009); for almost all distributions of voters’bliss

points there exists no equilibrium in pure strategies (Plott 1967; Kramer 1972; Davis et al. 1972;

McKelvey and Wendell 1976).

This extremely negative result gave rise to the need of identifying conditions under which

it could be overturned. To that effect, alternative candidates’ objectives were considered (see

Calvert 1985, for example, for policy motivation) and, moreover, possibility of candidates using

mixed strategies was also introduced in the model (see Banks et al. 2002, Duggan and Jackson

2004 and Banks et al. 2006). In this paper we choose an alternative strategy to overcome the issue

of equilibrium inexistence. In line with Downsian tradition, we still assume that candidates are
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purely offi ce motivated and we only allow candidates to use pure strategies1 but, unlike the original

approach, we consider that the two competing candidates are not identical. That is, we assume

that the two competing candidates have fixed positions in some of the dimensions and that they

strategically decide positions in the remaining dimensions to maximize vote shares. Such models

of electoral competition between differentiated candidates have become quite popular recently as

they incorporate two very realistic features of electoral competition. First, they allow candidates

to be instrumental in only a subset of the dimensions that are relevant for voters’choices. Indeed,

voters decide which candidate to support not only on the basis of what candidates decide during

a campaign but also on the basis of candidates’immutable characteristics (race, religion, culture,

etc.). Second, candidates are hardly ever identical as far as their immutable characteristics are

concerned. Thus, bearing in mind that immutable characteristics are relevant in voters’choices,

discarding such existing asymmetries between candidates might lead to results which are not

empirically relevant.

Most papers which consider electoral competition between differentiated candidates (see for

instance Lindbeck and Weibull 1987; Dziubiński and Roy 2011; Krasa and Polborn 2012; Krasa

and Polborn 2014; Matakos and Xefteris 2014) provide equilibrium existence results for the case in

which candidates are instrumental in only one dimension. That is, strategy-wise these games are

still unidimensional; a candidate’s strategy is a real number - not a vector of real numbers. To the

author’s knowledge the only paper in this literature which studies existence of a Nash equilibrium

in pure strategies considering that candidates are instrumental in two or more dimensions is Krasa

and Polborn (2010). In that paper though the nature of positioning is binary; it is assumed

that for each issue there are only two policy alternatives. Hence, there is no paper that deals with

equilibrium existence in multidimensional Downsian competition between differentiated candidates

in its generic form; in a non-binary policy framework. This is precisely the gap in the literature

that this paper aims to fill.

We consider that the policy space is an n-dimensional continuous Euclidean space and that

voters’bliss points are distributed in any arbitrary manner on this space. Candidates propose

1For this reason, whenever we use the term equilibrium we specifically refer to a pure strategy Nash equilibrium.
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policy platforms which are vectors of n coordinates - one number/policy for each dimension/policy-

issue - but they can strategically choose coordinates only for n − k specific policy issues; the

remaining k ≥ 1 coordinates of each candidate’s platform are fixed. Voting is deterministic: each

voter observes candidates’platforms and votes for the one which is nearer to her bliss point. That

is, as it is standardly assumed, a voter’s utility from a candidate is decreasing in the distance

between this candidate’s platform and the voter’s bliss point. The two competing candidates are

purely Downsian; their unique objective is to maximize expected vote share. Our main finding is

the following: if candidates are suffi ciently differentiated in the fixed dimensions, then a unique

Nash equilibrium in pure strategies is guaranteed to exist in this model for any distribution of

voters’bliss points. This result reads even stronger if one bears in mind that the number of fixed

dimensions may be as small as one.

As far as characterization of this unique equilibrium is concerned, we have that a) in the

general case this unique equilibrium is interior and convergent - in each political issue candidates

make the same non-extreme promise - and b) in the special case in which voters’ ideal policies

are independently distributed for each issue, this unique equilibrium may be fully characterized -

candidates locate precisely at the mean policy of each dimension. The latter is compatible with

seminal contributions by Caplin and Nalebuff (1991) and Schofield (2007) who also argue that in

multidimensional settings the best a candidate can do is to locate at the mean ideal policy of each

issue.2

A natural question regarding the robustness of the present existence result is whether the suffi -

cient degree of candidate differentiation is unrealistically large or not. To deal with this question,

we study a particular example and we show that the suffi ciently large degree of candidate differ-

entiation need be actually very small.3 Our analysis may, hence, be viewed as a positive argument

in favor of representative democracy in the sense that under a fair in many cases assumption -
2Our findings also relate to the ones of the probabilistic voting literature and in specific to works by Hinich et

al. (1972), Enelow and Hinich (1989), Lindbeck and Weibull (1993) and Banks and Duggan (2005) both in terms
of how they are derived (existence of an equilibrium is established by showing that candidates’payoff functions are
quasi-concave in own strategies) and in terms of implications (equilibria in these probabilistic models - whenever
they exist - are convergent).

3In the strategic voting literature (see, for example, Bouton and Castanheira 2012) which also derives equilibrium
existence results assuming that a certain parameter - the expected number of voters - is suffi ciently large this is
also the case; in many cases a suffi ciently large number of voters need be actually very small.
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suffi cient candidate differentiation in immutable characteristics (such as race, religion, culture etc.)

- stability in multi-issue electoral competition may be achieved. In what follows we present the

model (Section 2), the formal results (Section 3) and finally (Section 3) we conclude with the

explicit presentation of a representative example.

2 The Model

The policy space is X = Rn. The bliss points of a unit mass of voters are distributed on Rn

according to an absolutely continuous and twice differentiable distribution function F : Rn → [0, 1]

with support S =
∏n

j=1[ψj, ωj] where n ≥ 2, ψj ∈ R, ωj ∈ R and ψj < ωj. The density of this

distribution, f , is assumed to be positive valued on S. Given the above x = (x1, x2, x3, ..., xn) ∈ S is

a vector of policies for all issues, x−1 = (x2, x3, ..., xn) ∈ S−1 =
∏n

j=2[ψj, ωj] is a vector of policies for

all issues except for the first one, F1(x1|x−1 = x̂−1) is the conditional distribution of ideal policies4

regarding the first issue given ideal policies regarding all other issues, x̂−1, with corresponding

density f1(x1|x−1 = x̂−1), Fj(xj) is the marginal distribution of ideal policies regarding issue

j with corresponding density fj(xj) and F−1(x−1) is the marginal distribution of ideal policies

regarding all issues except for the first one with corresponding density f−1(x−1). Notice that since

F is twice differentiable on S it is the case that all conditional and marginal densities are twice

differentiable on their domains.

There are two candidates, A and B, who propose policy platforms a = (a1, a2, ..., an) ∈ Rn and

b = (b1, b2, ..., bn) ∈ Rn. We consider that a1 and b1 are fixed parameters of the model5 and that

F1(
a1+b1
2
|x−1 = x̂−1) ∈ (0, 1) for every x̂−1 ∈ S−1.6 Moreover, without loss of generality, we further

consider that a1 < 0 < b1 and a1+b1
2

= 0. The remaining n− 1 coordinates are strategically chosen

by the candidates in order to maximize vote shares. That is, the platform of candidate A should

4To avoid confusion we note here that a voter’s bliss point is a vector of policies, x ∈ Rn, while the ideal policy
of a voter regarding issue j is a real number, xj ∈ R.

5For the derivation of our results we work under the assumption that there exists a unique fixed dimension. It
will become straightforward by our formal arguments that the results trivially extend to the case of an arbitrary
number of fixed dimensions.

6This is a very mild assumption which only ensures that in every group of voters who agree on the last n − 1
issues, at least some are leaning towards candidate A and at least some towards candidate B.
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be such that a = (a1, a2, ..., an) ∈ {a1} × Rn−1 - the strategy set of player A is {a1} × Rn−1 - and

the platform of candidate B should be such that b = (b1, b2, ..., bn) ∈ {b1}×Rn−1 - the strategy set

of player B is {b1}×Rn−1. A voter with bliss point x = (x1, x2, ..., xn) will derive utility u(d(a, x))

if candidate A is elected and utility u(d(b, x)) if candidate B is elected, where u : [0,+∞)→ R is

strictly decreasing and d(y, x) denotes the Euclidian distance between y ∈ Rn and x ∈ Rn. Hence,

the closer a candidate’s platform to a voter’s bliss point the larger the utility that this voter derives

from this candidate’s platform. The distribution of voters’bliss points and the objectives of the

candidates are common information.

The timing of the game is as follows. In the first stage of the game candidates simultaneously

decide platforms from their strategy sets. In the second stage these platforms become common

information and each voter votes for the candidate whose platform is closer to her bliss point.

When a voter is indifferent between two platforms she splits her vote between the two candidates.

In the third stage players’payoffs are computed. Since the behavior of voters is unambiguous

in this model, we define an equilibrium only in terms of candidates’strategies. The equilibrium

concept that we apply is Nash equilibrium in pure strategies.7

Given that a voter’s utility is decreasing in the distance between her bliss point and a candidate’s

platform, a voter who is indifferent between the platforms of the two candidates should have a

bliss point i = (i1, i2, ..., in) such that

d(a, i) = d(b, i).

Because a1 < b1 and a1+b1
2

= 0, the last equality may be written as

i1 =
∑n
j=2[(bj−ij)2−(aj−ij)2]

2d

where d = b1 − a1; the degree of candidate differentiation. Hence, a voter with ideal policy,

x ∈ Rn, votes for A if
7In spite of focusing only on pure strategies, after the presentation of our formal results we argue that the

equilibrium that we identify is unique even if one permits candidates to use mixed strategies.
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u(d(a, x)) > u(d(b, x))⇐⇒ x1 <
∑n
j=2[(bj−xj)2−(aj−xj)2]

2d

votes for B if

u(d(a, x)) < u(d(b, x))⇐⇒ x1 >
∑n
j=2[(bj−xj)2−(aj−xj)2]

2d

and splits her vote between the two otherwise.

The above allow us to define the payoffs of candidate A - her vote share - as a function of

candidates’strategies a and b. We have

VA(a, b : F, d) =
∫
S−1

F1(
∑n
j=2[(bj−ij)2−(aj−ij)2]

2d
|i−1 = ı̂−1)× f−1(̂ı−1)dı̂−1

where
∫
S−1

stands for
ωn∫
ψn

...
ω3∫
ψ3

ω2∫
ψ2

and dı̂−1 stands for dı̂2dı̂3...dı̂n.

Obviously, the payoffs of candidate B - her vote share - are VB(a, b : F, d) = 1− VA(a, b : F ).

3 Results

We directly proceed to the main result of the paper

Proposition 1 For every admissible F there exists a real number d̂(F ) > 0 such that whenever

d > d̂(F ) a unique Nash equilibrium in pure strategies, (a∗, b∗), is guaranteed to exist. This

equilibrium is convergent, that is, a∗−1 = b∗−1 and interior, that is, a
∗
−1 ∈

∏n
j=2(ψj, ωj).

Proof We consider a constrained version of the game. That is we assume that the strategy set

of player A is {a1}×S−1 and that the strategy set of player B is {b1}×S−1. We prove our results

for this constrained version of the game in three steps. In the first step we deal with equilibrium

existence. In the second step we establish uniqueness. In the third step we provide a partial
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characterization (convergence and interiority). Finally, we argue that everything would continue

to hold in the unconstrained version of our game.

Step 1 (Equilibrium existence) We observe that the strategy sets are convex and compact and

that the players’payoff functions are continuous in own strategies. By Glicksberg (1952) it follows

that this game admits a Nash equilibrium in mixed strategies. If we moreover derive conditions

that guarantee that the players’payoff functions, VA(a, b : F, d) and VB(a, b : F, d), are quasi-

concave in own strategies then by Debreu (1952) it will follow that this constrained game admits

a Nash equilibrium in pure strategies. To that effect we will demonstrate that when candidate

differentiation, d > 0, is suffi ciently large, VA(a, b : F, d) is strictly concave on {a1}×S−1 for every

b ∈ {b1}×S−1 and, hence, strictly quasi-concave. A symmetric argument can guarantee that when

candidate differentiation, d > 0, is suffi ciently large, VB(a, b : F, d) is strictly concave on {b1}×S−1
for every a ∈ {a1} × S−1 and, hence, strictly quasi-concave.

To establish that VA(a, b : F, d) is strictly concave on {a1}×S−1 for every b ∈ {b1}×S−1 we first

need to make sure that VA(a, b : F, d) is twice differentiable on {a1}×S−1 for every b ∈ {b1}×S−1.

We observe that

limd→+∞

∑n
j=2[(bj−ij)2−(aj−ij)2]

2d
= 0

for every admissible strategy profile (a, b) and every i−1 ∈ S−1. That is, when d is large

enough it must be the case that F1(
∑n
j=2[(bj−ij)2−(aj−ij)2]

2d
|i−1 = ı̂−1) ∈ (0, 1) for every admis-

sible strategy profile (a, b) and every ı̂−1 ∈ S−1. This suggests that when d is large enough

F1(
∑n
j=2[(bj−ij)2−(aj−ij)2]

2d
|i−1 = ı̂−1) is twice differentiable on {a1} × S−1 for every b ∈ {b1} × S−1

and every ı̂−1 ∈ S−1 and hence that VA(a, b : F, d) is twice differentiable on {a1} × S−1 for every

b ∈ {b1} × S−1.

Considering that d is large enough for F1(
∑n
j=2[(bj−ij)2−(aj−ij)2]

2d
|i−1 = ı̂−1)] to be twice differen-

tiable on {a1} × S−1 for every b ∈ {b1} × S−1 and every ı̂−1 ∈ S−1we compute

∂2VA(a,b:F,d)

∂a2h
= 1

d

∫
S−1

[ (ah−ı̂h)
2

d
f ′1(

∑n
j=2[(bj−ij)2−(aj−ij)2]

2d
|i−1 = ı̂−1)−
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−f1(
∑n
j=2[(bj−ij)2−(aj−ij)2]

2d
|i−1 = ı̂−1)]× f−1(̂ı−1)dı̂−1

and

∂2VA(a,b:F,d)
∂ah∂az

= 1
d

∫
S−1

(ah−ı̂h)(az−ı̂z)
d

f
′
1(
∑n
j=2[(bj−ij)2−(aj−ij)2]

2d
|i−1 = ı̂−1)× f−1(̂ı−1)dı̂−1.

Hence, the determinant of the k-th order principal minor of the Hessian matrix of VA(a, b : F, d)

is given by

DA,k = (1
d
)k × ΞA,k

where

ΞA,k =

∣∣∣∣∣∣∣∣∣∣∣∣

g11(a, b : F, d) g12(a, b : F, d) ... g1k(a, b : F, d)

g21(a, b : F, d) g22(a, b : F, d) ... g2k(a, b : F, d)
...

...
. . .

...

gk1(a, b : F, d) gk2(a, b : F, d) ... gkk(a, b : F, d)

∣∣∣∣∣∣∣∣∣∣∣∣
and

ghh(a, b : F, d) = d× ∂2VA(a,b:F,d)

∂a2h
, ghz(a, b : F, d) = d× ∂2VA(a,b:F,d)

∂ah∂az
for h 6= z.

Therefore, DA,k > 0 if and only if ΞA,k > 0 and DA,k < 0 if and only if ΞA,k < 0.

We notice that

limd→+∞ ghh(a, b : F, d) = −
∫
S−1

f1(0|i−1 = ı̂−1)× f−1(̂ı−1)dı̂−1 = −F1(0) < 0

for every h ∈ {2, 3, ..., n} and that

9



limd→+∞ ghz(a, b : F, d) = −
∫
S−1

0× f−1(̂ı−1)dı̂−1 = 0

for every h, z ∈ {2, 3, ..., n} such that h 6= z.

Therefore, when d→ +∞ we have that

ΞA,k →

∣∣∣∣∣∣∣∣∣∣∣∣

−F1(0) 0 ... 0

0 −F1(0) ... 0
...

...
. . .

...

0 0 ... −F1(0)

∣∣∣∣∣∣∣∣∣∣∣∣
= [−F1(0)]k

and, hence, when d is suffi ciently large VA(a, b : F, d) is strictly concave on {a1}×S−1 for every

b ∈ {b1} × S−1. A similar argument guarantees that when d is suffi ciently large VB(a, b : F, d) is

strictly concave on {b1} × S−1 for every a ∈ {a1} × S−1. Therefore when d is large enough the

payoff functions of the players are strictly quasi-concave in own strategies and by Debreu (1952) a

Nash equilibrium in pure strategies is guaranteed to exist in this constrained game.

Step 2 (Uniqueness) Notice that this game is constant sum. This suggests that if the con-

strained game admits two distinct equilibria, (a∗, b∗) and (a∗∗, b∗∗), such that a∗ 6= a∗∗ then (a∗∗, b∗)

should be an equilibrium too.8 But this contradicts the fact that when d is suffi ciently large

VA(a, b∗ : F, d) is strictly concave on {a1}×S−1 because it suggests that VA(a, b∗ : F, d) admits two

maxima. Hence, when d is suffi ciently large a pure strategy equilibrium exists and it is unique.

Step 3 (Characterization) Consider that the two candidate promise the same policies in the

dimensions in which they are instrumental, that is, a−1 = b−1. In such a case
∑n
j=2[(bj−ij)2−(aj−ij)2]

2d
=

0 and hence

∂VA(a,b:F,d)
∂aj

|a−1=b−1 =
∫
S−1

ı̂j−aj
d
f1(0|i−1 = ı̂−1)× f−1(̂ı−1)dı̂−1.

8This is without loss of generality since for (a∗, b∗) and (a∗∗, b∗∗) to be distinct it should be the case that either
a∗ 6= a∗∗ or b∗ 6= b∗∗ - or both.
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We observe that a) when aj = bj = ψj it is true that
∂VA(a,b:F,d)

∂aj
|a−1=b−1 > 0, when aj = bj = ωj

it is true that ∂VA(a,b:F,d)
∂aj

|a−1=b−1 < 0 and c) ∂VA(a,b:F,d)
∂aj

|a−1=b−1 is continuous in aj ∈ [ψj, ωj] and

independent of ak for every k 6= j. Therefore there exists a∗−1 = b∗−1 ∈
∏n

j=2(ψj, ωj) - convergent

and interior - such that ∂VA(a,b:F,d)
∂aj

|a∗−1=b∗−1 = 0 for every j ∈ {2, 3, ..., n}. Given that when d is

suffi ciently large VA(a, b : F, d) is strictly concave on {a1}×S−1 for every b ∈ {b1}×S−1 it follows

that this convergent and interior point in which all first order conditions are equal to zero must

be the unique pure strategy equilibrium of the game.

Now let us argue why this identified strategy profile is the unique Nash equilibrium of the

unconstrained version of our game too - that is, of the version of the game in which the strategy

set of player A is {a1} × Rn−1 and the strategy set of player B is {b1} × Rn−1. If B selects the

identified equilibrium strategy and d is suffi ciently large then A gets a payoff equal to 1
2
if she

selects the identified equilibrium strategy and a payoff strictly small than 1
2
if she selects any other

strategy from {a1} × S−1. Now consider two strategy profiles a′ = (a1, a2, ..., aj−1, a
′
j, aj+1, ..., an)

and a′′ = (a1, a2, ..., aj−1, a
′′
j , aj+1, ..., an) which are identical in everything except from the policy

regarding issue j. Moreover consider that a′j < ψj and that a
′′
j = ψj. If we take the derivative

of
∑n
j=2[(bj−ij)2−(aj−ij)2]

2d
with respect to aj we will get

ij−aj
d
. So if aj ≤ ψj and, hence, aj ≤ ij

for every ij ∈ [ψj, ωj] it follows that
∑n
j=2[(bj−ij)2−(aj−ij)2]

2d
is weakly increasing in aj. Therefore, if

aj ≤ ψj it should also be the case that F1(
∑n
j=2[(bj−ij)2−(aj−ij)2]

2d
|i−1 = ı̂−1) is weakly increasing in aj

and, thus that VA(a, b : F, d) is weakly increasing in aj too. This suggests that VA(a′, b∗ : F, d) ≤

VA(a
′′
, b∗ : F, d). One can similarly show that if a′ and a′′ differ only in the policy regarding issue j

and a′j > ωj and that a′′j = ωj then it should hold that VA(a′, b∗ : F, d) ≤ VA(a
′′
, b∗ : F, d). Hence,

if in a there are more than one aj /∈ [ψj, ωj], candidate A can substitute each of them with ψj

if aj < ψj or with ωj if aj > ωj and get a weakly larger vote share. But this new platform will

belong in {a1}× S−1 - in the strategy set of the constrained game - and as we know it will deliver

to candidate A a strictly lower payoff than the identified equilibrium strategy of the constrained

game. That is, the equilibrium of the constrained game will be an equilibrium of the unconstrained

game too. Finally, observe that the unconstrained game is also a constant sum game. Since we

argued that arg maxVA(a, b∗ : F, d) = {a∗} - a singleton - it trivially follows that the identified

equilibrium is guaranteed to be unique. QED
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Notice than when candidates are suffi ciently differentiated in the fixed dimension and a unique

Nash equilibrium in pure strategies exists then this equilibrium would also be unique even if players

were allowed to use mixed strategies as well. This trivially follows from the constant sum nature of

the game which dictates that if a player has both pure and mixed minimaximizer strategies then

the support of every mixed minimaximizer should be a subset of the set of the pure minimaximizer

strategies. Hence, when a unique pure minimaximizer strategy exists for each player - as in

our case - the unique mixed minimaximizer that exists is the one which coincides with the pure

minimaximizer. Moreover, we observe that the assumptions on the nature of F , despite the fact

that they are already quite general, they may be relaxed even more. As it became evident by the

proof above, connectedness of the support or global continuity and differentiability of F are not

necessary for the result: what is necessary is that each conditional distribution of ideal policies

regarding the first issue given ideal policies regarding all other issues behaves well (it has a positive

valued, continuous and differentiable density) only about a1+b1
2
.

We now turn attention to the special case in which voters’ ideal policies for each issue are

independently distributed. In this case we have that

F1(x1|x−1 = x̂−1) = F1(x1) and f−1(x−1) = f2(x2)× f3(x3)...× fn(xn).

Hence, the equilibrium first order conditions, ∂VA(a,b:F,d)
∂aj

|a=b=a∗ = 0 for every j ∈ {2, 3, ..., n},

should become

∫
S−1

ı̂j−a∗j
d
f1(0)× f2(̂ı2)× f3(̂ı3)...× fn(̂ın)dı̂−1 = 0 =⇒ a∗j = µj

where µj =
ωj∫
ψj

ı̂jfj (̂ıj)dı̂j; the mean ideal policy regarding issue j.

Therefore, without the need of further formalities we can state the second result of the paper.

Proposition 2 For every admissible F with density f(x1, x2, ..., xn) = f1(x1)×f2(x2)×f3(x3)...×

fn(xn) there exists a real number d̂(F ) > 0 such that whenever d > d̂(F ) a unique Nash equilibrium
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in pure strategies, (a∗, b∗), is guaranteed to exist and it is such that a∗j = b∗j = µj for every

j ∈ {2, 3, ...}.

4 Concluding remarks/Example

A question that naturally accompanies these formal results is the following: how large is this

suffi ciently large degree of candidate differentiation which guarantees equilibrium existence? In

this last part of the paper we study a simple example in order to deal with this question using the

convenient result of Proposition 2 which allows us to fully characterize a Nash equilibrium in pure

strategies. The study of this example proves rather reassuring in the sense that it demonstrates

that a small degree of candidate differentiation should be enough for an equilibrium to exist.

Consider the case in which there are three policy issues/dimensions and that voters’ ideal

policies are independently distributed on each dimension. The marginal distribution of voters’ideal

policies regarding the first issue is uniform on the unit interval, the marginal distribution of voters’

ideal policies regarding the second issue is uniform on the unit interval and the marginal distribution

of voters’ideal policies regarding the third issue is triangular on the unit interval with a peak at one.

That is f1(x1) = f2(x2) = 1 and f3(x3) = 2x3 when xj ∈ [0, 1] for every j ∈ {1, 2, 3} and fj(xj) = 0

otherwise. This three-dimensional distribution fails the necessary and suffi cient conditions of

McKelvey and Wendell (1976)9 and, hence, when two identical candidates are instrumental in all

three dimensions a pure strategy equilibrium fails to exist. More importantly notice that if the

two candidates have fixed positions in the first dimension, a1 ∈ [0, 1] and b1 ∈ [0, 1], such that

a1 = b1 then still an equilibrium fails to exist. In such circumstances we essentially have two

identical candidates competing in a two-dimensional policy space on which voters’ideologies are

distributed independently for each issue; uniformly for one and triangularly for the other. Again,

this two-dimensional distribution fails the suffi cient and necessary conditions of McKelvey and

Wendell (1976) and this is why an equilibrium fails to exist in this two-dimensional case too.10

9McKelvey and Wendell (1976) prove that when candidates are not differentiated an equilibrium exists if and
only if there exists a point m ∈ Rn such that m is the median voter projection of voters’bliss points on every line
which passes through m.
10In this case the McKelvey and Wendell (1976) conditions suggest that the unique candidate for equilibrium is
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But what if a1 < b1 and candidates are instrumental in the remaining two dimensions? In

Figure 1 we plot the vote share of A when B locates at the mean ideology of each dimension,

µ2 = 1
2
and µ3 = 2

3
, VA((a1, a2, a3), (b1,

1
2
, 2
3
) : F, d), as a function of her policy choices in the second

and third dimension, a2 and a3, considering first that a1 = 0.4 and b1 = 0.6 and then that a1 = 0.4

and b1 = 0.5. One can trivially show in a formal manner that VA((a1, a2, a3), (b1,
1
2
, 2
3
) : F, d) admits

a local maximum at (a2, a3) = (1
2
, 2
3
) and that non-marginal deviations around this point deliver

strictly lower vote share to candidate A. Hence the graphs are enough to prove that in such cases

of non-extreme differentiation existence of a pure strategy equilibrium becomes possible.

[Insert Figures 1 and 2 about here]

If we consider that candidate B locates at the mean of each dimension then, in the version

of the game in which candidates are not differentiated (a1 = b1), we notice that candidate A

still prefers to locate at the mean of each location than very far away from it. The equilibrium

inexistence problem in this case is because A has profitable deviations close by (see Figure 2)

in what is usually referred at by the term uncovered set (see Laffond et al. 1993, Banks et al.

2002 and Duggan and Jackson 2004 among others). By studying Figures 1 and 2 in detail we

observe that if we fix a1 = 0.4 ≤ b1 and we start increasing b1, the subset of [0, 1]2 on which

VA((a1, a2, a3), (b1,
1
2
, 2
3
) : F, d) is strictly concave smoothly increases around (a2, a3) = (1

2
, 2
3
). But

since far away deviations are always unprofitable - both when candidates are similar and when

they are differentiated - it follows that VA((a1, a2, a3), (b1,
1
2
, 2
3
) : F, d) starts accepting a unique

maximum at (a2, a3) = (1
2
, 2
3
) before candidate differentiation becomes very large. Hence the

equilibrium existence result is arguably quite robust.

As a final note we add that our analysis carries through a) to the case in which candidates

maximize probability to win instead of vote shares and b) to the case in which each voter might

care to a different degree about each issue. When candidates maximize probability to win then

existence and characterization results trivially continue to hold: if at a∗−1 = b∗−1 there is no deviation

( 12 ,
1√
2
); the medians of each dimension. But as one can easily verify ( 12 ,

1√
2
) is not the median voter projection of

voters’bliss points on the line x3 = 0.8+ (
√
2− 1.6)x2, for example, which passes through ( 12 ,

1√
2
). Hence, no point

satisfies the McKelvey and Wendell (1976) conditions and thus no equilibrium exists.
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for A which gives her a larger vote share then there is no deviation which gives her a larger win

probability. What need not hold though is the uniqueness of a pure strategy equilibrium. If we

allow voters to care to a different degree about each policy then each voter will not be characterized

only by a bliss point (x1, x2, ..., xn) but also by a vector of weights (γ1, γ2, ..., γn) ∈ (0, γmax)n. In

this case the distribution of voters should be F : R2n → [0, 1] with support S = (
∏n

j=1[ψj, ωj]) ×

(0, γmax)n. If the utility of a voter with bliss point (x1, x2, ..., xn) and weights (γ1, γ2, ..., γn) from

policy vector (y1, y2, ..., yn) is a strictly decreasing function of
√∑n

j=1[γj(xj − yj)2] then a voter

with weights (γ̂1, γ̂2, ..., γ̂n) who is indifferent between the platforms of the two candidates should

have a bliss point i = (i1, i2, ..., in) such that

i1 =
∑n
j=2 γ̂j [(bj−ij)2−(aj−ij)2]

2γ̂1d
.

Hence, by appropriately defining a conditional distribution of ideal policies regarding the first

issue given ideal policies regarding all other issues and given weights, one may straightforwardly

replicate all steps of the proof on Proposition 1 and establish existence of an equilibrium in this

generalized framework too.
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Figure 1. The vote share of candidate A when ���, ��� = �
�

�
,
�

�
� as a function of her positions in the second and the third issue for 	� = 0.4 and 

�� = 0.6 (left) and for 	� = 0.4 and �� = 0.5 (right). 
  

 

 

 

 



 

 

Figure 2. The vote share of candidate A when ���, ��� = �
�

�
,
�

�
� as a function of her positions in the second and the third issue for 	� = �� (left) 

and only as a function of her position in the third issue for 	� = �� and 	� =
�

�
 (right). 
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