

AGE EFFECTS ON CONSUMER DEMAND: AN ADDITIVE PARTIALLY LINEAR REGRESSION MODEL

Panayiota Lyssiotou, Panos Passhardes and Thanasis Stengos

Discussion Paper 99-06

P.O. Box 20537, 1678 Nicosia, CYPRUS Tel.: ++357-2-892101, Fax: ++357-2-750310 Web site: http://www.econ.ucy.ac.cy

Age exects on Consumer Demand: An Additive Partially Linear Regression Model

Panayiota Lyssiotou

University of Cyprus, POBox 537, Nicosia, Cyprus (p.lyssiotou@ucy.ac.cy)

Panos Pashardes

University of Cyprus, POBox 537, Nicosia, Cyprus (p.pashardes@ucy.ac.cy)

Thanasis Stengos¹

University of Guelph, Guelph, Ontario, Canada N1G 2W1 (thanasis@css.uoguelph.ca)

February 1999

¹We would like to thank the University of Cyprus for ...nancial support and the Central Statistical O¢ce for making available the UK Family Expenditure Survey data through the ESRC Data Archive. We are solely responsible for the interpretation of the data and all errors.

Abstract

An additive partially linear regression model is used to estimate nonparametrically the exects of total expenditure and age in the context of Engel curves and investigate the speci...cation and welfare interpretation of the age exects in parametric models of consumer behavior. Empirical analysis based on data drawn from the UK Family Expenditure Survey shows that modelling of the exects of age requires a more sophisticated approach than that generally adopted in parametric demand analysis. It also shows that failing to adequately capture these exects can have misleading welfare implications.

JEL Classi...cation: C14, D12 Keywords: nonparametric methods, Engel curves, relative equivalence scales.

Age Exects on Consumer Demand: An Additive Partially Linear Regression Model

1 Introduction

The bene...ts of using nonparametric methods in empirical demand analysis have been recently highlighted by Blundell and Duncan (1997), Gozalo (1997), Donald (1997), Pendakur (1999) and Lyssiotou, Pashardes and Stengos (1999) among others. These studies are mostly concerned with ...nding appropriate ways of modelling the exect of expenditure on consumer demand. In this paper we concentrate mainly on the age exects and our approach also dixers from previous empirical investigations insofar as we use an additive Partially Linear Regression model to do so.

The additive PLR model can be seen as a way of tackling the 'curse of dimensionality' problem, one of the most important weaknesses of nonparametric estimation methods. In recent papers Linton and Nielsen (1995), Fan, Härdle and Mammen (1996) and Fan and Li (1996) all employ marginal integration as a way of obtaining estimates of the components of the additive regression model. Linton and Nielsen's (1995) paper deals with a simple additive model with two components, whereas Fan, Härdle and Mammen (1996) and Fan and Li (1996) extend the regression function to allow for a more general partially linear formulation. In this paper we follow the treatment of Fan and Li (1996) that results in estimates with better ...nite sample properties.

The nonparametric investigation of how expenditure and age a¤ect consumer demands is important because these two variables are generally found to have pronounced e¤ects on consumer behavior (Blundell, Pashardes and Weber 1993 and Gozalo 1997). Furthermore, expenditure and age are continuous variables and their parameterization can be associated with a wider margin of misspeci...cation error than other variables entering demand systems as dummies. The importance of using an additive PLR model relates to the fact that in the context of this model the expenditure and age e¤ects on consumer can both be investigated nonparametrically at the same time. This can improve e¢ciency and reduce the risk of obtaining misleading conclusions about the e¤ects of one of these variables because the e¤ects of the other are misspeci...ed.

We investigate empirically the points raised above using individual household data drawn from the UK Family Expenditure Survey and use the results obtained from nonparametric analysis to examine the modelling of age and expenditure exects in a parametric system of Engel curves. Furthermore, we examine the welfare implications of alternative parameterization of the age exects using the concept of the relative equivalence scale, de...ned as the ratio of the true cost of living indices of two households with dixerent demographic characteristics (Blundell and Lewbel 1991). Generally this scale is used for calculating dixerences in the exects of in‡ation on the cost of living of households with and without children (e.g. Dickens, Fry and Pashardes 1993). In this paper we use the relative equivalence scale to compare the exects of in‡ation on the cost of living of households with dixerences in the age of head.

The structure of the paper is as follows. Section 2 describes the additive PLR model and reports empirical results obtained from its application to individual household to data. Section 3 investigates the implications of the nonparametric results for the parametric speci...cation and welfare interpretation of age exects in a system of Engel curves. Section 4 concludes the paper.

2 An additive partially linear regression model

Consider the following additive PLR model with two regressors:

$$w_i = ^{(R)} + g_1(X_{1i}) + g_2(X_{2i}) + u_i; i = 1; ...; n;$$
(1)

where fw_i ; X_{1i} ; $X_{2i}g_{i=1}^n$ are independently and identically distributed (i.i.d.) random variables, $E(u_i j X_{1i}; X_{2i}) = 0$; [®] is an unknown parameter, $g_1(:)$ and $g_2(:)$ are unknown

univariate functions that obey the identi...ability condition that $E(g_1(X_1)) = 0$ and $E(g_2(X_2)) = 0$:

As shown by Stone (1985, 1986) the additive components $g_s(:)$ (s = 1; 2) in (1) can be consistently estimated at the same rate as a fully nonparametric regression with only one regressor. This can be done by employing marginal integration as in Linton and Nielsen (1995), Fan, Härdle and Mammen (1996) and Fan and Li (1996). In this paper we follow the treatment of Fan and Li (1996) that results in estimates with better ...nite sample properties. The idea behind marginal integration in the context of equation (1) can be described as follows.

Let $E(wjX_1 = x_1; X_2 = x_2) = a(x_1; x_2)$: One can estimate $a(x_1; x_2)$ by a nonparametric local smoother, say $\mathbf{b}(x_1; x_2)$; and then obtain an estimator of $fg_1(x_1) + {}^{\textcircled{R}}g$ by integrating $\mathbf{b}(x_1; x_2)$ over z_2 ; i.e., $\mathbf{e}_{1}(x_1) = n^{i-1} \mathbf{P}_{j=1}^n \mathbf{b}(x_1; X_{2j})$: Since $E(g_1(X_1)) = 0$; we can obtain the estimator of $g_1(x_1)$ by subtracting the sample mean of $\mathbf{e}_{1}(:)$ from $\mathbf{e}_{1}(x_1)$; i.e. $\mathbf{g}_1(x_1) = \mathbf{e}_{1}(x_1)_i n^{i-1} \mathbf{P}_{i=1}^n \mathbf{e}_{1}(X_{1i})$: Similarly, we can obtain an estimator for $g_2(x_2)$:

Equation (1) can be extended to allow for an additive linear component. In that case we have

$$w_{i} = ^{\mathbb{R}} + Z_{i}^{T-} + g_{1}(X_{1i}) + g_{2}(X_{2i}) + u_{i}; i = 1; ...; n;$$
(2)

where Z_i is a variable (discrete or continuous) of dimension q; $\bar{}$ is a q £ 1 vector of parameters and $^{(n)}$ is a scalar parameter as before. We can obtain a $^{(n)}\overline{n_i}$ consistent estimator of $\bar{}$ using Robinson's (1988) approach. Let us denote such an estimator by **b**: Equation (2) can be then written as

$$w_{i i} Z_{i}^{T} \mathbf{b} = @ + g_{1}(X_{1i}) + g_{2}(X_{2i}) + u_{i} + Z_{i}^{T}(\bar{a} b); i = 1; ...; n;$$
(3)

where u_i ; + $Z_i^T(\bar{a} \mathbf{b})$ is the new composite error term. In a similar fashion as with equation (1) we can apply marginal integration to equation (2) to obtain estimates of $g_1(x_1)$ and $g_2(x_2)$:

We estimate the above model for a system of Engel curves consisting of six categories of non-durable commodities: food, alcohol, fuel, clothing, other goods and services.¹. The data used are drawn from the 1980 UK Family Expenditure Survey (FES) and include two-adult households whose head is under retirement age and not self-employed. For the nonparametric analysis in this section a random sample consisting of 427 observations is selected from these data.

Introducing the subscript h to denote households, the dependant variable w_{ih} is de...ned as the share of the ith good in the budget of the hth household whereas, the regressors X_{1h} and X_{2h} are de...ned as the age of household head and the logarithm of the household budget, the two continuous variables normally included in demand systems estimated from individual household data. The vector Z_h is de...ned to include a large number of dummy variables re‡ecting family composition, sex, employment and economic position of members, housing tenure and other household characteristics found elsewhere to have a signi...cant e¤ect on consumer behavior by studies using UK FES data (Blundell et. al. 1993).²

In the diagrams of Figure 1 the heavy continuous line shows the estimated age exect on the budget shares of food, alcohol, fuel and clothing obtained from the additive PLR model (3). The light line shows the age exect obtained from a semiparametric estimation where the logarithm of expenditure enters the budget shares nonparametrically, whereas age and other household characteristics enter parametrically. This semiparametric speci...cation includes age and age square as explanatory variables as in other empirical studies mentioned above. Also in the diagrams of Figure 1 we report the 95% con...dence band (light discontinuous lines) corresponding to the nonparametric

¹The assumption concerning durable goods is that they act as conditioning variables and this is modelled by including dummies for housing tenure, the size and value of the house, car ownership, the presence of smokers in the household etc. in the vector of household characteristics.

²To capture possible interactions between the age of household head and the logarithm of household budget we have also included the product of these two variables among the Z vector. This product term was found to be signi...cant.

estimates obtained from the additive PLR model.³

Figure 1: Nonparametric age effects

The di¤erence between the age e¤ects estimated from the additive PLR model and those estimated from the semiparametric model is striking. In three out of four goods presented in Figure 1 (alcohol, fuel and clothing) the Engel curves obtained from the two models go mostly in di¤erent directions so that the parametric estimates are within the 95% con...dence band of the nonparametric ones only where the lines estimated from

³The smoothing parameters in the graphs were chosen as $c s_{x_i} n^{i-1=5}$; where s_{x_i} is the estimate of the standard deviation of X_i ; i = 1; 2: The choice of c was done by cross-validation in a range between 0.5 and 2.

the two models intersect! The most pronounced di¤erence occurs in the case of clothing where the nonparametric results suggest that age has a negative e¤ect on the budget share globally, whereas the parametric results suggest exactly the opposite. Even in the case of food where the di¤erences between the two models are not so pronounced, the parametric results are outside the 95% con...dence band of the nonparametric estimates over a wide range of age variation (i.e. households with head between 20-25 and 45-60 years old).

3 Age exects in parametric demand analysis

In this section we investigate the modelling of age exects in a parametric system of Engel curves in the light of the nonparametric results of the previous section. More speci...cally, the same categories of non-durable goods estimated nonparametrically in the previous section are estimated parametrically using the system of Engel curves

$$w_{ih} = {}^{\mathbb{B}}_{i} + \frac{\mathbf{P}}{_{k}}_{-} {}^{\mathbf{I}}_{ik} Z_{hk} + \frac{\mathbf{P}}{_{s}} {}^{\mathbf{A}}_{j} + \frac{\mathbf{P}}{_{j}}_{ijs} D_{jh} X_{1h}^{s} + \frac{\mathbf{P}}{_{r}}_{,ir} X_{2h}^{r}$$
(4)

where the variables Z_{hk} , X_{1h} and X_{2h} are as de...ned in the previous section.

The choice of (4) re‡ects the fact that it is su¢ciently general to cover many of the popular Engel curves and demand systems estimated with individual household data, e.g. those of Working (1943), Deaton and Muellbauer (1980) and subsequent generalizations such as Blundell et. al. (1993) and Banks et al (1997). Moreover it can allow for the rather complex nonlinear age e¤ects on the budget shares, suggested by the results obtained from the additive PLR model in the previous section. More speci...cally, (4) can accommodate (i) a polynomial form, $\S_s \wp_{1ijs} D_{jh} X_{1h}^s$; to capture higher order age e¤ects and (ii) a dummy variable form, $\S_s \S_j {}^1_{ijs} D_{jh} X_{1h}^s$; to capture age e¤ects peculiar to certain household groups.

Following initial investigation we found that the Quadratic Logarithmic version of

(4), i.e. r = 2; with up to cubic age exects, s = 3; and dummies to capture the behavior of households with heads under 30 was su¢ciently general to explain the age and log expenditure exects on the budget shares in our sample.⁴ In terms of the logarithmic expenditure exects, this result is in agreement with the ...ndings of most previous empirical studies in the literature, Lewbel (1991), Blundell et al (1993), Pashardes (1995), Banks et al (1997) and Lyssiotou et al (1999) among others. This, however, is not true for the age exects in the sense that we ...nd no empirical evidence in support of the hypothesis that these exects are linear and quadratic, as reported in the aforementioned studies.

This point is illustrated empirically by estimating the system of Engel curves

$$w_{ih} = {}^{\textcircled{R}}_{i} + \frac{P}{k} - {}_{ik}Z_{hk} + \frac{P}{k} (\mu_{is} + {}^{1}{}_{is}D_{<30}) X_{1h}^{s} + \frac{P}{k} + {}_{r=1} \cdot {}_{ir}X_{2h}^{r};$$
(5)

where $D_{<30} = 1$ for households with head under 30 and $D_{<30} = 0$ otherwise. As in the previous sections six categories of non-durable commodities are considered (food, alcohol, fuel, clothing, other goods and services) and the data are drawn from the 1980 UK FES.⁵

The ...rst pair of columns in Table 1, under the heading 'full', shows parameter estimates and t-ratios obtained from the estimation of (5) without any restrictions on the age exects. The second pair of columns in Table 1, under the heading 'quadratic', shows parameter estimates and t-ratios obtained from (5) subject to the restrictions that there are no cubic age exects ($\mu_{i3} = 0$; all i) and no dummy exects for households with head under 30 ($^{1}_{is} = 0$; all i and s). As shown by in the last line of the second pair of columns in Table 1 this hypothesis implies 15 parameter restrictions and reduces

⁴The Quadratic Logarithmic demand system (Lewbel 1991) itself comes from a general demand system of the form, $w_{ih} = \prod_{r=1}^{R} \sum_{ri} (p; z_n) F_r[y_{n,i} a(p; z_n)]$; the rank of which equals the rank of the n by R matrix of elements \sum_{ri} : Lewbel (1989) proved that utility maximization requires that the rank of demand systems in this form must be less than or equal to four and Gorman (1981) proved that when F_r (:) = :^{ri 1}, utility maximization requires that the rank of (4) must be less or equal to three, with $\sum_{s=1}^{4} \sum_{s=1}^{4} \sum_{s=1}^{4}$

⁵The observations used for the estimation of (5) correspond to households with two-adults and a head under retirement age and not self-employed, a total of 2770 observations.

the 2 Log-Likelihood (2LL) statistic by 154. Therefore, it fails decisively the \hat{A}^2 -test at the 5 signi...cance level.

		Empirical specification							
Age effect		Full		Quadratic		Cubic		Dummies	
		Param.	t-ratio	Param.	t-ratio	Param.	t-ratio	Param.	t- ratio
Linear	Food Alcohol Fuel	-0.0771 -0.0078 -0.0094	-0.6 -0.1 -0.1	0.0406 -0.0224 0.0103	2.7 -2.0 1.2	-0.1495 0.0220 0.0216	-2.2 0.4 0.6	0.0902 -0.0293 0.0029	4.2 -2.2 0.3
	Clothing Other	-0.0112 -0.2667	-0.1 -2.3	-0.0454 0.0040	-2.9 0.3	-0.1369 0.0643	-1.9 1.1	-0.0280 -0.0365	-1.2 -2.0
Quadratic	Food Alcohol Fuel Clothing	0.0303 -0.0034 0.0033 -0.0016	1.0 -0.2 0.2 -0.1	-0.0025 0.0013 -0.0006 0.0041	-1.4 1.0 -0.6 2.2	0.0452 -0.0099 -0.0033 0.0268	2.8 -0.8 -0.4 1.5	-0.0077 0.0020 0.0002 0.0022	-3.2 1.3 0.2 0.9
Cubic	Other Food Alcohol Fuel	0.0552 -0.0028 0.0004 -0.0002	2.1 -1.2 0.3 -0.2	-0.0012 - -	-0.8	-0.0163 -0.0038 0.0009 0.0002	-1.2 -2.9 0.9 0.3	0.0030 - -	1.5
Lincar	Clothing Other Food	0.0003	0.1 -2.0	-		-0.0018 0.0012	-1.3 1.1	- - 0.0527	2.0
dummies	Alcohol Fuel Clothing Other	-0.0100 -0.0100 0.0645 -0.1086	-0.5 -0.5 1.4 -2 9	-		-		-0.0100 -0.0100 0.0587 -0.0486	-0.9 -0.9 2.1 -2.2
Quadratic dummies	Food Alcohol Fuel Clothing Other	-0.0010 0.0034 0.0034 -0.0245 0.0365	-0.1 0.5 0.5 -1.5 2.7	-		-		-0.0163 0.0034 0.0034 -0.0225 0.0157	-1.7 0.8 0.8 -2.2 1.9
Test statistics:									
Root MSE	Food Alcohol Fuel Clothing Other Services	0.09817 0.07598 0.05665 0.10446 0.08386 0.10838		0.09834 0.07597 0.05663 0.10454 0.08401 0.10843		0.09820 0.07595 0.05663 0.10452 0.08399 0.10838		0.09819 0.07598 0.05666 0.10445 0.08390 0.10844	
2LL drop (restrictions)		-		154 (15)		20 (10)		12 (5)	

Table 1: Parameter estimates for the age effects

Next we investigate the question whether one needs to augment the 'quadratic'

model to include cubic age exects and exects for households with head under 30 or adding just one of these two types of exects is sucient. To answer this question we impose on (4) the corresponding restrictions (i) $\mu_{i3} = 0$; all i; and (ii) ${}^{1}_{is} = 0$; all i and s, separately. The parameter estimates and standard errors obtained from these restrictions are reported in the third and fourth pair of columns in Table 1 (under the heading 'cubic' and 'dummies', respectively) with the reduction in the 2LL statistic appearing in the last line. On the basis of the Å²-test none of the two sets of restrictions can be rejected at the 5 signi...cance level. Therefore, the data used in our empirical analysis suggest that either a model with up to cubic age exects or a model with up to quadratic age exects and dummies to capture the behavior of households with head under 30 is an adequate empirical speci...cation of the age exects on consumer demands.

In the remainder of this section we illustrate how welfare measures derived from observed consumer behavior can be a ected by the alternative parameterization of the age exects de...ned by the 'full', 'quadratic', 'cubic' and 'dummies' models de...ned above. The welfare measure chosen for this illustration is the relative equivalence scale comparing the exects of a price change on the cost of living of households. Here we de...ne this scale for a price change from P_0 to P_t and the cost of living comparison is between households in dimerent age groups. Using the subscript o to denote households in the reference age category, the relative equivalence scale is

$$R_{ho}(P_{t}; P_{0}) = \frac{C(P_{t}; Z_{h}; X_{1h}; U_{h}) = C(P_{0}; Z_{h}; X_{1h}; U_{h})}{C(P_{t}; Z_{h}; X_{1o}; U_{0}) = C(P_{0}; Z_{h}; X_{1o}; U_{0})};$$
(6)

where C (P_i; Z_h; X_{1m}; U_m) represents the cost of reaching the utility level U_m at prices P_i by a household with head aged X_{1m}; for i = 1; 0 and m = h; o:

Under the Quadratic Logarithmic model the cost function has the form

InC
$$(P_{2}; Z_{m}; U_{m}) = (P_{2}; Z_{m}; X_{1m}) + \frac{I_{1}(P_{2})U_{h}}{I_{1}I_{2}(P_{2})U_{h}};$$
 (7)

where the $\bar{(P_{\cdot}; Z_m; X_{1m})}$; $_{1}(P_{\cdot})$ and $_{2}(P_{\cdot})$ functions are homogeneous in prices. We assume that at base period prices there is a compensation for age di¤erences between

households types are such that $U_h = U_0$: The logarithm of the relative equivalence scale showing the compensation for intation required so as to maintain this utility parity in the new price regime is

$$InR_{ho} = [^{-}(P_t; Z_h; X_{1h})_i - (P_t; Z_0; X_{1o})] + [^{-}(P_0; Z_0; X_{1o})_i - (P_0; Z_h; X_{1h})]$$
(8)

Assuming that $\bar{}$ (P ; Zm; X1m) has the usual translog form

$$-\frac{P}{0} + \frac{P}{i} \cdot \frac{P}{k} - \frac{P}{ik} Z_{hk} + \frac{P}{s=1} (\mu_{is} + \mu_{is} D_{<30}) X_{1h}^{s} + \frac{P}{n} \cdot \frac{P}{in} \ln P \cdot \frac{P}{n} \cdot \frac{P}{in} \ln P \cdot \frac{P}{in} \cdot \frac{P}{in} + \frac{P}{in} \cdot \frac{P}$$

and setting $P_{0i} = 0$ for the base period (6) can also be written as

$$InR_{ho} = \frac{\mathbf{P} \cdot \mathbf{P}}{i k} - \frac{\mathbf{P} \cdot \mathbf{P}}{i k} (Z_{hk} i Z_{ok}) + \frac{\mathbf{P}}{i k} (\mu_{is} + i_{is} D_{<30}) (X_{1h}^{s} i X_{1o}^{s}) \cdot InP_{it}:$$
(9)

The diagram of Figure 2 reports the relative equivalence scales calculated with (8) using the parameter estimates obtained from the alternative parameterization of the age exects described above. The relative equivalence scales obtained from using the parameter estimates of the 'full' model suggest that in the UK over the period 1980-86 households with head over 50 experienced a cost of living increase of 1.4% above the cost of living increase experienced by households with head under 30. This ...gure for the 'quadratic' model was only 0.4%, whereas for the 'dummies' and 'cubic' models 1.0% and 1.3%, respectively.

Figure 2: Relative equivalence scales for age differences

4 Conclusion

This paper investigates the exect of age and expenditure on consumer demand using an additive partially linear regression model where the exects of both these variables are estimated nonparametrically. Empirical results obtained from the application of this model to UK data suggest that age has more complicated exects than those generally assumed in empirical speci...cations of parametric demand systems. In particular, we have found that households with younger heads tend to behave dixerently than other households and this is not adequately captured in a demand system where only linear and quadratic age exects are included in the empirical speci...cation. In the case of our sample an adequate empirical demand system requires either cubic age exects or dummies to capture dixerences in the behavior of households with head at the lower end of the age distribution.

The welfare implications of inadequately accounting for the age exects on consumer demand are illustrated using results obtained from alternative parameterization of these exects to compare dixerences in the cost of living increase between households over the period 1980-86. The results suggest that a system of Engel curves with only linear and quadratic age exects understates the impact of in‡ation on the cost of living of households with older head. This ...nding supports the in‡ation indexing of pensions and other old age bene...ts to a separate cost of living index re‡ecting the consumption costs of older consumers, a policy currently followed in the UK.

References

Banks, J., Blundell, R., and Lewbel, A. (1997), Quadratic Engel curves and Consumer Demand, Review of Economics and Statistics, 4, 527-539.

Blundell, R., and Duncan, A. (1997), Semiparametric Estimation and Consumer Demand, Institute for Fiscal Studies, mimeo.

Blundell R. and A. Lewbel (1991), The Information Content of Equivalence Scales, Journal of Econometrics, 50, 49-68.

Blundell, R., Pashardes, P., and Weber, G. (1993), What do we Learn about Consumer Demand Patterns from Micro-data, American Economic Review, 83, 570-597.

Deaton, A., and Muellbauer, J. (1980), An Almost Ideal Demand System, American Economic Review, 70, 312-326.

Dickens R., V. Fry and P. Pashardes (1993), Non-linearities and Equivalence Scales, Economic Journal, 103, 359-368.

Donald, S. G. (1997), Inference Concerning the Number of Factors in a Multivariate Nonparametric Relationship, Econometrica, 65, 103-132.

Fan, J., Härdle, W. and E. Mammen (1996), Direct Estimation of Low Dimensional Components in Additive Models, Mimeo.

Fan, Y. and Q. Li (1996), On Estimating Additive Partially Linear Models, Mimeo.

Gorman, T. (1981), Some Engel curves, in Essays in the Theory and Measurement of Consumer Behaviour in Honor of Richard Stone, ed. A. Deaton, Cambridge University Press.

Gozalo, P. (1997), Nonparametric Bootstrap Analysis with Applications to Demographic Exects in Demand Functions, Journal of Econometrics, 81, 357-393.

Linton, O.B. and J.P. Nielsen (1995), A Kernel Method of Estimating Structural Nonparametric Regression Based on Marginal Integration, Biometrika, 82, 93-100.

Hausman, J., Newey, W., and Powell, J. (1995), Nonlinear Errors in Variables: Estimation of Some Engel curves, Journal of Econometrics, 65, 203-233.

Lewbel, A. (1989), A Demand System Rank Theorem, Econometrica, 57, 701-705.

Lewbel, A. (1991), The Rank of Demand Systems: Theory and Nonparametric Estimation, Econometrica, 59, 711-730.

Lyssiotou, P., Pashardes, P., and Stengos T. (1999), Preference Heterogeneity and the Rank of Demand Systems, Journal of Business and Economic Statistics (forthcoming).

Pendakur, K. (1999), Semiparametric Estimation and Tests of Base-Independent Equivalence Scales, Journal of Econometrics, 88, 1-40.

Robinson, P. (1988), Root-N-Consistent Semiparametric Regression, Econometrica, 56, 931-954.

Stone, C.J. (1985), Additive Regression and Other Nonparametric Models, Annals of Statistics, 13, 685-705.

Stone, C.J (1986), The Dimensionality Reduction Principle for Generalized Additive Models, Annals of Statistics, 14, 592-606.

Working H. (1943), Statistical Laws of Family Expenditure, Journal of the American Statistical Association, 38, 43-56.

SELECTED RECENT PUBLICATIONS

- Bertaut, C. and Haliassos, M,. "Precautionary Portfolio Behavior from a Life Cycle Perspective", *Journal of Economic Dynamics and Control*, 21, 1511-1542, 1997).
- Caporale, G. and Pittis, N. "Causality and Forecasting in Incomplete Systems", *Journal of Forecasting*, 1997, 16, 6, 425-437.
- Caporale, G. and Pittis, N. "Efficient estimation of cointegrated vectors and testing for causality in vector autoregressions: A survey of the theoretical literature", *Journal of Economic Surveys*, forthcoming.
- Caporale, G. and Pittis, N. "Unit root testing using covariates: Some theory and evidence", *Oxford Bulletin of Economics and Statistics*, forthcoming.
- Caporale, W., Hassapis, C. and Pittis, N. "Unit Roots and Long Run Causality: Investigating the Relationship between Output, Money and Interest Rates". *Economic Modeling*, 15(1), 91-112, January 1998.
- Clerides, K., S. "Is Learning-by-Exporting Important? Micro-Dynamic Evidence from Colombia, Morocco, and Mexico." *Quarterly Journal of Economics* 113(3), pp. 903-947, August 1998, (with Lach and J.R. Tybout).
- Cukierman, A., Kalaitzidakis, P., Summers, L. and Webb, S. "Central Bank Independence, Growth, Investment, and Real Rates", Reprinted in Sylvester Eijffinger (ed), *Independent Central Banks and Economic Performance,* Edward Elgar, 1997, 416-461.
- Eicher, Th. and Kalaitzidakis, P. "The Human Capital Dimension to Foreign Direct Investment: Training, Adverse Selection and Firm Location". In Bjarne Jensen and Kar-yiu Wong (eds), *Dynamics,Economic Growth, and International Trade,* The University of Michigan Press, 1997, 337-364.
- Gatsios, K., Hatzipanayotou, P. and Michael, M. S. "International Migration, the Provision of Public Good and Welfare", *Journal of Development Economics*, 60/2, 561-577, 1999.
- Haliassos, M. "On Perfect Foresight Models of a Stochastic World", *Economic Journal*, 104, 477-491, 1994.
- Haliassos, M. and Bertaut, C., "Why Do So Few Hold Stocks?", *The Economic Journal*, 105, 1110-1129, 1995.
- Haliassos, M. and Tobin, J. "The Macroeconomics of Government Finance", reprinted in J. Tobin, *Essays in Economics*, Vol. 4, Cambridge: MIT Press, 1996.
- Hassapis, C., Pittis, N. and Prodromidis, K. "Unit Roots and Granger Causality in the EMS Interest Rates: The German Dominance Hypothesis Revisited", *Journal of International Money and Finance*, pp. 47-73, 1999.
- Hassapis, C., Kalyvitis, S., and Pittis, N. "Cointegration and Joint Efficiency of International Commodity Markets", *The Quarterly Review of Economics and Finance*, Vol 39, pp. 213-231, 1999.

- Hassapis, C., Pittis, N., and Prodromides, K. "EMS Interest Rates: The German Dominance Hypothesis or Else?" in *European Union at the Crossroads: A Critical Analysis of Monetary Union and Enlargement*, Aldershot, UK., Chapter 3, pp. 32-54, 1998. Edward Elgar Publishing Limited.
- Hatzipanayotou, P. and Michael, M. S. "General Equilibrium Effects of Import Constraints Under Variable Labor Supply, Public Goods and Income Taxes", *Economica*, 66, 389-401, 1999.
- Hatzipanayotou, P. and Michael, M. S. "Public Good Production, Nontraded Goods and Trade Restriction", *Southern Economic Journal*, 63, 4, 1100-1107, 1997.
- Hatzipanayotou, P. and Michael, M. S. "Real Exchange Rate Effects of Fiscal Expansion Under Trade Restrictions", *Canadian Journal of Economics*, 30-1, 42-56, 1997.
- Kalaitzidakis, P. "On-the-job Training Under Firm-Specific Innovations and Worker Heterogeneity", *Industrial Relations*, 36, 371-390, July 1997.
- Kalaitzidakis, P., Mamuneas, Th. and Stengos, Th. "European Economics: An Analysis Based on Publications in Core Journals." *European Economic Review*,1999.
- Lyssiotou, P., Pashardes, P. and Stengos, Th. "Testing the Rank of Engel Curves with Endogenous Expenditure", *Economics Letters*, 64, 1999, 61-65.
- Lyssiotou, P., Pashardes, P. and Stengos, Th. "Preference Heterogeneity and the Rank of Demand Systems", *Journal of Business and Economic Statistics*, Vol 17, No 2, April 1999, 248-252.
- Lyssiotou, Panayiota, "Comparison of Alternative Tax and Transfer Treatment of Children using Adult Equivalence Scales", *Review of Income and Wealth*, Series 43, No. 1 March 1997, 105-117.
- Mamuneas, T.P. (with Demetriades P.). "Intertemporal Output and Employment Effects of Public Infrastructure Capital: Evidence from 12 OECD Economies", *Economic Journal*, forthcoming.
- Mamuneas T.P. (with Kalaitzidakis P. and Stengos T.). "A Nonlinear Sensitivity Analysis of Cross-Country Growth Regressions", *Canadian Journal of Economics*, forthcoming.
- Mamouneas T.P. (with Bougheas S. and Demetriades P.)."I'nfrastructure, Specialization and Economic Growth", *Canadian Journal of Economics*, forthcoming.
- Mamuneas, Theofanis P. "Spillovers from Publicly Financed R&D Capital in High-Tech Industries", International Journal of Industrial Organization, 17(2), 215-239, 1999.
- Mamuneas, T. P. (with Nadiri, M.I.). "R&D Tax Incentives and Manufacturing-Sector R&D Expenditures", in *Borderline Case: Interntational Tax Policy, Corporate Research and Development, and Investment*, James Poterba (ed.), National Academy Press, Washington D.C., 1997. Reprinted in *Chemtech*, 28(9), 1998.

- Michaelides, A. and Ng, S. "Estimating the Rational Expectations Model of Speculative Storage: A Monte Carlo Comparison of three Simulation Estimators", *Journal of Econometrics,* forthcoming.
- Pashardes, Panos. "Equivalence Scales in a Rank-3 Demand System", *Journal of Public Economics*, 58, 143-158, 1995.
- Pashardes, Panos. "Bias in Estimating Equivalence Scales from Grouped Data", *Journal of Income Distribution*, Special Issue: Symposium on Equivalence Scales, 4, 253-264, 1995.
- Pashardes, Panos. "Abstention and Aggregation in Consumer Demand", Oxford Economic Papers, 46, 502-518, 1994 (with V. Fry).
- Pashardes, Panos. "Bias in Estimation of the Almost Ideal Demand System with the Stone Index Approximation", *Economic Journal*, 103, 908-916, 1993.
- Pashardes, Panos. "What Do We Learn About Consumer Demand Patterns From Micro-Data?", *American Economic Review*, 83, 570-597, 1993 (with R. Blundell and G. Weber).
- Pashardes, Panos. "Non-Linearities and Equivalence Scales", *The Economic Journal*, 103, 359-368, 1993 (with R. Dickens and V. Fry).
- Spanos, Aris "Revisiting Date Mining: 'hunting' with or without a license', forthcoming Journal of Methodology, July 2000.
- Spanos, Aris. "On Modeling Heteroscedasticity: The Student's *t* and Elliptical Linear Regression Models", *Econometric Theory*, 10, 286-315, 1994.
- Spanos, Aris. "On Normality and the Linear Regression Model", *Econometric Reviews*, 14, 195-203, 1995.
- Spanos, Aris. "On Theory Testing in Econometrics: Modeling with nonexperimental Data", Journal of Econometrics, 67, 189-226, 1995.