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Abstract

In this paper we estimate the coezcients of a generated regressor in the context of a
partially linear semiparametric regression model. The generated regressor is part of the
linear part of the model and the estimator is obtained by double kernel estimation. It
is established that the double kernel estimator is root-n-consistent and asymptotically
normal. Monte Carlo results suggest that it has satisfactory small samples properies.
The usefulness of the proposed method is illustrated in an application to a model of
wage determination.

Key Words: Nonparametric estimation; Correlation; Double kernel estimation.



1 Introduction

Following the work of Pagan (1984, 1986) generated regressors have introduced a number of
interesting econometric problems in the context of fully parametric regression models. Models
of this type may naturally arise when modelling individual behavior under uncertainty, where
actions depend upon predictions (conditional extectations) of unobserved outcomes or errors
that arise from these predictions. Many macroeconomic models with rational expectations
fall in this category, where the generated regressors enter as "'surprise’ variables or simply as
conditional expectations, see for example Bean's (1986) model of the consumption function.
Also in econometric models of labor markets many models that analyze contarct duration or
labor supply responses make use of wage estimates as right hand variables. Another labor
market model where generated regressors appear is when a variable, say length of stay at the
current job (job tenure) appears on the right hand side in a wage equation. This variable
may be viewed as endogenous to the wage formation process and hence it may enter as a
predicted variable from another rst stage regression.

This paper investigates in the context of a nonparametric model, the estimation of the
parameter of a variable that has been generated by a preliminary nonparametric ~ Iter. The
model becomes a partially linear semiparametric regression model, see Robinson (1988), in
which some explanatory variables in the linear part (the part of interest to the researcher)
are the unknown conditional means of certain observables given other observable regressors.
The researcher is primarily interested in estimating the impact of these unknown conditional
means on the dependent variable. The framework assumes that the conditional mean of the
variable(s) that enters the linear part of the partial linear semiparametric model is a smooth
unknown function of other independent explanatory variables formulated in an auxiliary
equation. Furthermore, there is a correlated error structure between the equation of interest
and the auxiliary equation. We estimate the parameter(s) of interest using double kernel
nonparametric estimation. Double kernel estimation was also applied by Delgado, Li and
Stengos (1995) in the context of two non-nested nonparametric regression models to derive a
J-type test statistic of one model against the other, see Davdson and Mackinnon (1981).

Other approaches, especially the two-step approach method in estimation of a semipara-
metric model should be mentioned. Andrews (1991, 1994) and Newey (1994) provide results
for situations in which the generated regressors are estimated nonparametrically, but the



equation of interest is parametric which is di®erent from our nonparametric case. However,
the parametric speci cation used in the second step may be too strong and may lead to in-
consistent estimates. The present analysis does not require the parametric assumption in the
second step. Ahn (1995) and Rilstone (1996) have focused on a situation in which both the
equation of interest and the auxiliary equation are estimated nonparametrically. Ahn (1997)
established that the two-step estimator is pﬁ-consistent and asymptotically normal provided
that the kernel estimates of both steps converge uniformly at a suzciently rapid rate.

For our speci ¢ model, allowing for correlation of the error structures between the equation
of interest and the auxiliary equation, we establish that the double kernel estimator is pﬁ-
consistent and asymptotically normal. Our Monte Carlo study shows that the double kernel
estimator behaves quite satisfactorily in medium to larger samples in terms of mean absolute
bias and mean squared error.

Section 2 derives the estimator in a special case of a parametric equation of interest,
except for the unknown conditional mean. Section 3 discusses the semiparametric formulation
of the model. We present in detail the proposed double kernel estimator and we derive its
asymptotic distribution. Section 4 provides Monte Carlo simulations results. Section 5 looks
at an empirical example where the proposed estimator is applied to a labor supply model
using Canadian data from the Labor and Manpower Activity Survey, LMAS89. Finally,
section 6 o®ers concluding remarks. The Appendices A and B collect lengthy proofs.

2 The Case of a Parametric Regression Function.

Data consists of independent observations f(x;; zi;yi; Si); 1 = 1;:::; ng identically distributed
as the RPERYER£ER-valued multivariate random variable (X; z; y; s). We consider the impact
of the conditional mean E(sjz); which is the unknown function of z, on the dependent variable
y: We allow that the variables z may be correlated with the x’s in the equation of interest.
The model we propose is

y =H(x) +E(sjz)®+u €y
The auxilliary regression is written as

s=E(sjz) +" (2



The errors u r;and the " are correlated: Let g; = g(z;) = E(sijzi), and use the notation
: P ! 7 — TF(ZiZy i - -
A = E(Aijz) = isi AjRij =T, where Kj; = K(%L4) is the kernel function associated

with z and b is the corersponding smoothing parameter. (In this context K(:) is the product

1
nbd

kernel). The equation of interest becomes
y = u(x) + E(sj2)® +~ (3
where
" =u+[E(sjz) i E(sj2)]®

We consider below the following special model in which the function of the explanatory
variables in the equation of interest is parametric, that is, u(x) = x'°:

y = X"° + E(sjz)® + u (4)

Yi = Xi° + E(8ijzi)® + uj; E(uijxi;zi) = 0; (%)

For example, y; might be the wage rate, x; refers to certain variables that a®ect wages, such

as level of education, age and gender, whereas s; represents length of time at the present job.
This variable itself may be a®ected by other variables z;, such as age, marital status, number
of children and other demographic characteristics which are all assumed to be exogenous.
Hence, g(zi) = E(Sijz;) is the expected job tenure, while the functional form of g(¢) is not

speci ed.
We are interested in estimating © and ®.

y =x"° +E(sjz)®+~ (6)
where

" =u+[E(sj2) i E(sj2)]®
Then,

Yi =X° +8i®+ (g i )@+ (7
From (7), we have

yi = (Gs)Ch®) + (0 i )@+ (8)

= Xt + (0 i $)® +uj; ©)



where + = (°%;®)" and X; = (X; ;). We estimate + by regressing y on X:

= (X'X)"RYy
= ++ X)X i 9@+ u];

+>

where X = (X; XS: ;X% and s = E(sijzi) i’ 9i = 9(zi).
To derive the asymptotic distribution of pﬁ(iD i 1), (and consequently that of pﬁ(@ i ®);
the following de nitions and assumptions will be used.

Let G denote the class of functions such that if g 2 GP (® >0 and | _ 1 is an integer),
then g is | times di®erentiable, g and its derivatives (up to order 1) are all bounded by some
function that has ®th order nite moments. Also K;, | _ 1, denote the class of even functions
k:R ¥ R satisfying ; kK(WuMdu = o, for m=0;1;::;;1 § 1 and k(u) = O((1 + juj'*i**)id),
some = > 0. Denote g(z) = E(sj2).

(A1) (vi; Xi; zj;si) are independently distributed as (y;x;z;s), x admits a pdf f, = f(x) 2
&, also u(x) 2 G4 and h(x) 2 G&, where °
f, =1(z) 2G, g(z) 2 Gf and E(g(2)jx) 2 Gf, where  _ 2 is a positive integer. Moreover,

. 2 Is a positive integer. z admits a pdf
(x;z) admits a joint pdf A(x;z) 2 G. %2(x), fx, f, and A are uniformly bounded, where
%2(x) = E (u?jx).
(A2) k 2Ko. Asn ¥ 1,na?® ¥ 1,na* ¥ 0;K2K:. Asn ¥ 1,nb™ ¥ 1 and
nb** 1 0.
(A3) () (vi; Xi;zi;si) is a strictly stationary absolutely regular process with E(rijX;; z;) = 0,
ri = u; or wi. (i) F,(¢), £(x;¢) and g(¢) all satisfy some (global) Lipschitz-type conditions:
jr(u) § r(v)j - Dg(v)jju j vjj for all u, v 2 RY (jj¢jj is the Euclidean norm), where D4(¢) has
" nite 4th moments, r(t) = f,(¢) or g(¢t), and in the case of f(x;¢t), r(t) = f(x;¢t). (iii) Both
u; and w; have nite 4 + 2 moments for some small 2 > 0.

Assumption (Al) presents some smoothness and moments conditions. (A2) is similar to
the conditions used by Robinson (1988) or Fan, Li and Stengos (1992). It requires a higher
order kernel to be used for k (k) if p _ 4 (q . 4). Then we have,

Theorem 1 De ne X; = (x};0i) and “; = 20f(z;)E[X;jz; = z;]. Then under assumptions
(Al), (A2) and (A3), we have
P— P—.;
NEi1) =" nSi 'Sz i ¥ N(0;81);



where 8; = ©1i1(—1 + = i 2—12)©1i1, ©, = E[X?Xi], -1 = E[X?Xi%z], -2 = E[WiZ’?’i )
and —, = E[WiUiXiO’i].

The proofs are presented in Appendix A.

3 The General Case of a Semiparametric Regression
Model.

As in the previous section the data consists of independent observations f(X;; zi; Vi; Si); 1 =
1;:::;ng identically distributed as the RP £ RY £ R £ R-valued multivariate random variable
(X;z;y;s). The model is given by

y =H(x) +E(sjz)®+u (10)
The auxilliary regression is written as
s=E(sjz) +" (11)

The errors u and the ™ may be correlated. Hence s and u may be correlated, but we
assume that (x; z) is uncorrelated with u. The regression function of interest is written as

y = uXx) + E(sj2)®+ 7, (12)

where = = u + [E(sjz) i E(Sj2)]®.
Following Robinson's (1988) semi-parametric estimation approach, ® in (12) could be
estimated by
o= IEG) i BEGIz)XD: i EQix)
(E(sijzi) 1 E[E(sijzi)ixi])?
where é(¢jx) IS @ nonparametric estimate of E(¢jx), and E(¢jz) is a nonparametric estimate

(13)

of E(¢jz). A direct application of Robinson's (1988) method in (12) requires two trimming
parameters (in addition to the two smoothing parameters) to overcome the random denom-
inator problem that arises in kernel estimation. However, the technical diZculties of using
a trimming method in the context of double kernel estimation prove dizcult to overcome.
Therefore, we choose to assume a bounded density function to avoid the random denominator

problem. We estimate E(sijx;) and E(yijX;) respectively by
. P
o = mar_iei Sikij

T (xi)

; (14)



P
jei YiKij
1 (xi)

1
= ; (15)

P

and T(x;), the probability density function (p.d.f) of x;, by ﬁ((xi) = L jei Kij, where

naP
Kij = K(ZL) is the kernel function and a is the smoothing parameter. We use a product
kernel, K(u) = Q',O:l k(uyp); uy is the Ith component of u.

We estimate E(sijzi) by
F)

s = e e SRy (16)
f(z)
and f,(z;) is estimated by T,(z;) = = Pj&i Kij, where Kj; = R(%1%) is the kernel function

associated with z and b is the corresponding smoothing parameter (K(t) is also a product

kernel). We also need to estimate ETE(S;ijz;)jxig. Its kernel estimate is given by
F)

L s K > <

/S\'i = nhab J&IS] 4 - L [ ! Slklj]Kij: (17)
i (xi) naPfy(xi) jei NDIF2(Z)) 16

Let gi = 9(zi) = E(sijzi), and using the same notation introduced above, where "~"

h P 1
denotes kernel estimator conditional on z, e.g. A; = E(Aijz) = n—%q j&i AjRij =f;; we have
that (12) becomes
Yi =W +$i®+ (0i i Si)®+y; (18)

From (18), we have

H=[0+50+ (G i SO+ (19)

where
P
Ai = E(AjX) = s Ak
fi

where as before """ denotes estimation conditional on x. Subtracting (19) from (18) yields,

Vi i =l i+ G iSO+ @iis)®i @iso+uio (20)

) P
We estimate ® by regressingy j $ on's j S. Denotes Sag = % i AiB) and Sp = Sa.a, We
have
— il .
® = SJsSsisyiy

Using the assumptions that were given in the previous section we are now presenting the
main results in the form of two theorems. Theorem 2 collects some intermediate results that
are important in the derivation of the asymptotic distribution of ® given in Theorem 3.
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Theorem 2 Under assumptions (Al) and (A2),asn ¥ 1,
(i) Ss;is i’ E[(0: i h)'(9: i ha)]
(i) pﬁssig;u iT N(0; 8)
> .
(i) n Ssiguif ¥ Ssis@iow 1 Ssisiive i Ssign = 0p(1)

where 8 = %’E[(9; i h1)"(9: i hi)l.
Theorem 3 Under assumptions (Al) and (A2),asn ¥ 1,

Ph@ i@ i% N 0;%(E[(: i h)'(: i hy)™ (21)

The proofs are presented in the appendix B.
In the next section we will analyze the properties of the above estimator by means of a
Monte Carlo invetsigation.

4 The Results of Monte Carlo Study

Based on the model of the previous section our design has

U) = (C1xa + 2%2)% (1= 2=1)
h i
s= (21+2)% 2 °+e C=11)")
where e is normal with N (0; %2), x; (i=1, 2) are generated from a uniform distribution on [1,
2] and z; (i=1, 2) are generated according to

Zi=Xiti+v, 1=1;2;

where v; is normal with N (0; %2), +; = cov(X;; zi)=%Z.. We assume that x; and z; are correlated

with % = X2 \We choose the coe=cients of + (= ) (i=1, 2) by using + = 2% For

%xi%zi 1i1/22 )

instance, + = 0.35, 2 and 7.15 if % = 1 such that % = 0.1, 0.5 and 0.9 respectively, the
correlation coe=xcients between x and z. We set %2 = 1. Theny is generated by

y = H(Xx) + E(sj2)® + u;
where E(sjz) = [(zy + 22)?%; 25]° and u » N(0; %2).

7



We use the following three methods to estimate ®. The we proceed to compare the di®erent
estimates in terms of their Mean Absolute Bias and Mean Squared Error performance.

(1) Truel Model Estimation: We use the true E(sjz) as a regressor and estimate the model
to obtain an estimate of its coezxccient ®. This is the case of an unattainable benchmark.
(ii) Misspeci ed Linear Estimation: We treat as if E(sjz) were a linear function of z and use
the estimate of E(sjz) which comes from a linear regression to estimate ®. This is the case
of a misspeci ed benchmark where we treat the generating regression (auxilliary regression)
as a linear one.

(iii) Double Kernel Estimation: We deal with an unknown function of the conditional mean
E(sjz), and use the double normal kernel to estimate E[E(sjz)jx]: Then obtain we obtain the
estimate of ®.

Application of the non-parametric estimation requires that kernels and bandwidths be
chosen properly. In addition to choose the normal kernels, we choose the same bandwidth
for estimation, which h =cn' =5 where ¢ = 1, p = 2 and n is the corresponding sample size.

Table 1 and Table 2 report the results of mean absolute bias and mean square error (MSE)
for ® in the case of % = 1 and % = 2 respectively. By varying % we can control the noise in
the data generating process. There were 4000, 2000 and 1000 replications for sample sizes
of n = 100; 200 and 400 respectively. We consider the di®erent cases in the correlation of
%» = 0:1, 0:5 and 0:9 between x and z, the explanatory variables.

From Table 1 and Table 2, we see that the bias and MSE both decrease in the true model
and the double kernel estimations as the sample size n increases, but the misspeci ed model
(linear) shows a small increase. That is, the misspeci ed estimate will get worse when the
sample size is large, which is to be expected because the estimates will be inconsistent in this
case. Also the bias and MSE in the double kernel estimation method decrease signi cantly
as the correlation between the zs and the x’s increases, since that is when the estimator is
designed to be at its best. However, as expected for very low correlations (low values of %) the
double kernel estimates are not as good, especially when % is small. However, even then they
show and improvement asymptotically. In all cases as expected the estimator of ® from the
true model dominates the others. However this is an unrealistic benchmark, since a researcher
can hardly be expected to know the data generating mechanism of the auxilliary regression.
The case of the misspeci ed linear is of interest, since it demonstrates the danger of assuming
a linear expecations formation mechanism as it is done routinely in the literature, if in fact



this is an incorrect speci cation. In that case the parameter estimates will be severely biased
and inconsistent.

The performance of the double kernel nonparametric estimator is encouraging as it be-
haves fairly well in moderate samples and shows an improvement with sample size. The
payo® from its use is most noticeable when the explanatory variables are correlated.

Table 1: % =1
CASE =01 =105 =109
BIAS | MSE | BIAS | MSE | BIAS | MSE
n =100

Truel Model | 0:0423 | 0:0028 | 0:0434 | 0:0020 | 0:0144 | 0:0002
Linear Model | 0:5885 | 0:3500 | 0:8469 | 0:7173 | 0:9545 | 0:9111
Double Kernel | 0:6359 | 0:4337 | 0:4067 | 0:1706 | 0:0981 | 0:0101
n =200
Truel Model | 0:0311 | 0:0014 | 0:0399 | 0:0016 | 0:0140 | 0:0002
Linear Model | 0:5947 | 0:3553 | 0:8483 | 0:7197 | 0:9547 | 0:9115
Double Kernel | 0:5020 | 0:2614 | 0:3226 | 0:1055 | 0:0816 | 0:0068
n =400
Truel Model | 0:0239 | 0:0008 | 0:0359 | 0:0013 | 0:0135 | 0:0002
Linear Model | 0:5990 | 0:3595 | 0:8493 | 0:7213 | 0:9549 | 0:9117
Double Kernel | 0:3977 | 0:1610 | 0:2577 | 0:0669 | 0:0679 | 0:0046

Table 2: 34 =2
CASE b =0:1 Y =0:5 % =10:9
BIAS| MSE BIAS| MSE BIAS| MSE
n =100

Truel Model | 0:0138 | 0:0003 | 0:0110 | 0:0001 | 0:0036 | 0:0000
Linear Model | 0:7867 | 0:6201 | 0:9254 | 0:8564 | 0:9775 | 0:9555
Double Kernel | 0:1994 | 0:0494 | 0:1207 | 0:0159 | 0:0371 | 0:0018
n =200
Truel Model | 0:0099 | 0:0001 | 0:0102 | 0:0001 | 0:0035 | 0:0000
Linear Model | 0:7905 | 0:6255 | 0:9260 | 0:8575 | 0:9776 | 0:9557
Double Kernel | 0:1546 | 0:0270 | 0:0929 | 0:0090 | 0:0299 | 0:0010
n =400
Truel Model | 0:0072 | 0:0001 | 0:0092 | 0:0001 | 0:0034 | 0:0000
Linear Model | 0:7925 | 0:6283 | 0:9263 | 0:8580 | 0:9777 | 0:9558
Double Kernel | 0:1206 | 0:0156 | 0:0726 | 0:0054 | 0:0236 | 0:0006




5 An Application to Labor Survey Data

In this section, the estimator ® is calculated for a sample from the Labor and Manpower
Activity Survey of 1989 in Canada (LMAS89). The data set consists of 8254 observations in
Ontario on the wages and various demographic characteristics which are education, gender,
job length, age, marital status, children and birth place (born in Canada or not). We want
to examine the extent to which expected job length a®ects wage earnings. Thus, we use the
logaritm of annual wage earnings (y) as the dependent variable of interest, we let x denote
education and gender, s denote the job length (job tenure) and z denote age, marital status,
number of children and place of birth. Then E(sjz) is the expected job length conditional on
the variables of z. This decomposition of the conditioning variables is a somewhat arbitrary,
but it can be justi ed on the grounds that the z variables a®ect salary only to the extent
that they determine expected job length.

Table 3 lists the overall information for this data set of total 8254 observations. We
can see that the In(wage) values are in the range between 2.4849 and 13.7441, that is, the
annual wage in falls in the range [$12; $931;079]. The education variable takes values from
1 to 7 which denote the following categories; 1: 0 to 8 years; 2. some secondary education;
3: graduated from high school; 4: some post-secondary; 5: post-secondary certi cate or
diploma; 6: university degree; 7: trades certi cate or diploma. The index of 1 in Gender
stands for Female, 0 for Male. The job length is in the range between 0 and 44 years. The
age is grouped as 8 groups which take values 1: 16 years; 2: 17-19 years; 3. 20-24; 4. 25-34;
5: 35-44; 6: 45-54; 7: 55-64; 8. 65-69 years.

Table 4 reports the results of estimator ®, standard deviation and its t-statistic. It
shows that the impact of wage on the expected job length is signi cant. The above example
illustrates the usefulness of the method which avoids imposing a linear speci cation of the
auxilliary equation. As it was seen by the limited Monte Carlo results reported in the previous
section this can have serious consequences for the quality of the estimates if the linearity
assumption is incorrect.
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Table 3: A Summary of Labor Survey Data

V ariable Size(N) | Mean | StdDev | Minimum | Maximum
Ln(Wage) 8254 | 9:7122| 1:1276 2:4849 13:7441

Education 8254 | 3:7894 | 1.6321 1 7
Gender 8254 | 0:4850 | 0:4998 0 1
Job Length(year) | 8254 | 6:7001| 7:9036 0 44
Age 8254 | 4:5394 | 1:4569 1 8
Marital Status 8254 | 0:6461 | 0:4782 0 1
Kids 8254 | 0:7122 | 0:9903 0 6
Birth Place 8254 | 0:8190 | 0:3850 0 1

Table 4: Double Kernel Estimate Results

EstimatorValue | StdDev | MSE | T j Statistic
® 0:10008 0:003182 31:4453
E(sjz) 6:74977 3:540385 | 46:0167

6 Conclusion

11

the estimator is illustrated using a sample of Canadian data.

In this paper we derive the asymptotic distribution of a double kernel nonparametric estimator
for a partially linear semiparametric model with generated regressors among the variables of
the linear part. The generated regressor is in this case expressed as the conditional mean of
certain exogenous variables (the auxilliary regression). This conditional mean is left to be
of an unknown function form. We assume a correlated error structure between the partial
linear equation of interest and the auxilliary equation. Monte Carlo evidence suggests that
the proposed estimation behaves quite well in samples of moderate size. The usefulness of




Appendix A

First, we de ne g(zi) = E(sijzi), Wi =si i E(sijzi) ~ si i 9(zi), S = E(sijzi), & = I/5\’(SiJ'Zi)
,and v; = g(zi) i h(xi) with E(vijx;) = 0. Note that s; estimates g(z;) and & estimates
E[E(sijzi)ixi] = E[g9(z)jxi] ~ h(xi).

Lemma 1 Let X; = (X;g;) and X = (XI; XY; ;XY Also w; = s; i 9(zi) and E(w;ijz;) = 0.
(i) Sg = O + 0y(1);
(i) Sggrope = iNFL Wi +0p(N11);
(iii) Sg., =nit" Xju; +0,(ni'2),
where 7 = 20F(z;))E(Xjjz; = zj).
Proof of (i): Notice that Sy = Sx + Spix T 25x.r:x and X; i X; = (0%s i g). Then
S2:x » Ssig = Sgig+w = Sgig+ Sw+2Sq;qw = 0p(ni'7?) by Proposition 3, 4 of Appendix B
and Cauchy Inequality. Also Sx = ©; +0,(1) by exactly the same arguments as in the proof
of lemma A.6 of Fan and Li (1996), and S, .4 ., - TSxSg . x 9" = fO,(1)0,(1)g"™* = 0,(1).
Therefore Sy = ©; + 0,(1).

Proof of (ii): Sg.gis0 = Sxi0i® TSR ix:@ise = OX:@in@iwd TSR ix:@ise > Sx@ine 1
Sxwe + Sgis@ise > 1 Sxwe + 0p(nit2) by the same proof in (i) above and in Proposition

. P
9 of Appendix B. Then we show that Sx.we = Nnil" w;”; as follows.

X ® X X 1 XX
Sx;w® = n'l Xiw;® = g X Wi Rji = —
. nZpa . . 2
[ [ JjEi 1=
where H(Di; Dj) = biq(Xin + XjWi)®Rij and D; = (Xi; Zi;Wi).
Note that E(w;jz;) = 0 and H(D;; D;) is symmetric. By H-decomposition of U-statistic,

we have Sx.we = % Pi H(D;) + o(1), where
Z
H(Di) =  H(Di; Dj)dF(D;j)
Z
= biq(Xin + XjWi)®Ride(Dj)
Z

H(Di; Dj)

z
= @Eb1IX; ijide(Dj)'i‘@bqui Xj"{ide(Dj)
z

= ®biniEj[Wj|’{ij]+®bqui Xj"{ide(Dj)
Y Z
= @bid XiEj[l’{ijE(WijJ‘)] + W; Xj Rijf(Xj;Zj)dede

Y

Zj 1

bl
b f(ijZj)f(Zj)dede

z K
= ®bqui Xj"{

12



Z
®Wi XJR(t)f(XJJZJ =z + bt)f(Z, + bt)dXJdt
Z Z

= ®w; Xjf(ijZj = Zi)f(Zi)de R(t)dt + 0(1)
= OwF(Z)EIXiz = 2]+ 0(1)

P _ . P
Therefore, Sg. ;90 = 12 i ®WiT(Z)E[Xjjz; = z)] + 0,(n#?) = ¢

Wi i +0p(nit=?),

Proof of (iii): Sy, = Sxu *+ Sg;xu » Sxu + Ssjgu- Notice that Ss;qu = Sgigewu =
. . _ P

Sgigiu + Swu = 0p(n#1?) by Proposition 14 and 17 of Appendix B. So Sg., = nit" Xu; +

op(nit=2).

Proof of Theorem 1.

By the proof of Lemma 1, we have Sg. . gesy = N Pi(Xiui i W) +0,(nN"¥?). Since
E(CXiu; i W;i7;) = 0 and the variance of (Xju; § w; ;) is equal to E[(Xiui § Wi i) 'CKiui i w;i )] =
EXIX;%2 + Ew27 )] § 2E[ujw; X731 = =1 + — j 2—12, by Lindeberg Central Limit Theo-
rem, we have PR(E j £) = pﬁSleSkm(gis)@ i N (0; &)
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Appendix B

As de ned in Appendix A, we have wi = s; i E(Sijzi) ~ si i 9(zi), si = E(sijzi) i 9(zi),
$ = E(siz) ' E[E(siiz)ix] = E[g(z)ix] ~ h(x) . and v; = g(zi) i h(x;) with E(vijx;) =
0. Therefore we have

Si = 0i +W; where  E(w;jz;) =0
Si =@ +W; =0+ (& i 0i)+W
S=8+di=hi+@ih)+@ i)+

siiS=@ih)+@ig+witiih)i@ih)iw

3 3

Proposition 1 S, n=0, %"+ L =o0,(n#'?), that is,E[((h i )] =0, 8 + ;5
' . ) #,
Bl iy = £ ar el d K
o
2 < A 13
1 1 1 1
= E4— MmimKi —+(xizF)°
nar i1 fxl f:(l le
2 X A f\ f\ 2 !32
1 1 fify (it 1
= E4— i i l)Kip — +— -+ =5 °
nar i&l(p ! Ul) ! fxl f)%l f)%l f:q
"L P i #;
_ g o ie1(Hi i H1)Kia + (50"
f. (s:0:)
Hp T2 >
5 E[G i k) i M)KinKja]
i1 j61
H 1 ﬂZ ) 20,2
= - ¢ E[W i M) K]
naP i=j61 '
Hp T2 < x
oo ¢ Bl 1 v)® i M)KinKji]
i6jielj61
C2 (nap + r]2ap+°ap+°) — O uazo + iﬂ

where (s:0:) is a smaller order than the fpreceeding item. This is because it is true that
) ¥ £(x), ie., TX) i F(x) = O((naP)i¥?), and the density function of f(x) is bounded

14



by assumption. So, (fx'f\X) f0as n ¥ 1,a¥0andna” ¥ 1. Hence, “Akﬁ i 0 for all
k. It is obvious that the series of 1 w is a convergent series, and goes to zero if as

fX
n¥ 1, ,al¥0andna® ¥ 1. Therefore, the small order of (s:0) comes from
; A 13;
— i H 2
E4 - (“l 1) Kig i + Xl sz:(l + (fxl |2f:<1) 1 5
ne’ F le fx1 f:(l

2 A % £\ 13;
1 1 (fx i Tx )
= E4— , Ki— 1+ 22225
nar (U M) ! fxl k=1 f>|<(1
2 32
1
=—E4— (Uu i H)K 1—(1 +0(1))°

nav ;.

#
i&l(Ui i U)Kiz
Ty,

=E naP

+ (s:0)

It is the same argument for (s:0:) in the following discussions.
Similar to proof of Proposition 1, we have Proposition 2 and 3 as follows:

2 .
Proposition 2 S, .4 =0, aX’ +-L = 0,(Ni1°2),

naP
3 ~

Proposition 3 Sy;4 = O, h2* + # — Op(nilzz)_

Proposition 4 S, = 0,(ni%2), (r = w; or u).

We st consider the case of r =w

o 1 X 1 X X
EiSw) = E[Wiz]:E[W%]:Eff,—z[(an)'1 wiRal[(nb®) - wjRylg
i 2 i61 j&1
X
M,Ef[(nb?)i2  w?R2]g + s:0:
il
= Ef[nilbiZE;(W3R2)]g + s:0: = O((nb?)i?); (B:1)

by Lemma 1 of Robinson (1998). We also used the fact that E(w;jZ;X;i) = 0, where
Xii = (Xg; 25 Xi1; Xiae1; 125 Xn). Obviously (B.1) also proves Sy, = Op((nh?) i) (by bounded
f2).

The proof is identical to the case of r = w, simply replacing w by u in the above proof.

Similarly we have the following proposition:
Proposition 5 S¢ = 0,(ni1%2).

15



Proposition 6 S, = 0,(ni%2), (r = w or u).

Proof: For the case of r = w
P 2 2 P P P P
J = 1 E[\?V] = E[\?Vﬂ = [n4a2pb2q]| il  j&i i1 jo&i E[WJWJORIJ RIJOKlIKlIO
P P P
B fz.fz 1 =[n*a®b™]it " ey jeiie g1 E[WS Kij Rio KKy Bty ] = [n432pb2q]'1f &1

j&i:i0 0&1(” i D iDnij 3)E[W§R23R43K12K14]+(n i 1)(” i 2)E[W§R§3K12]+SO
O(nit + (n%aPh¥)il) = O(nit). The same proof leads to EjSgj = O(ni?).

Proposition 7 S,y = 0,(n**7).

By the de nition of gi = h; + v;, where E[vijxj] = 0, we have fi = G i ¢. Then

PI é\ g + 0.
ﬁ _ ) 1 1
6 i = Gidi+%= n_ap (9‘1 gj)Kjif\_"‘Oi
1 1 XX 1
= —— i 0)RGKji— + 0
naP nhd jei |&j(gl 1 gj) 1j I\j f:(i 3
= Ti+¥%
P P
Where Ti = %ib jE&i I&J(gl i gj)RU jlf\ f
Hence S, 4 = St+e. By the Cauchy mequallty we only need to show that Sy = 0,(ni'*%)

and S, = 0,(ni'*2). Obviously Proposition 5 gives the result of the latter. So we only prove
the former below.

Proof for St = O((na’nb%) it + b?*):
Using T; = [(naP) 1 (nb®) ' g jei Kii(9(z)) i g(Zi))Rijﬁ], we have

EjSri = E(T))
1 XXX X

1
= Ef—(—— ———Kui(g 1 9K Koy i 9o)Kisjrg
N*a2Pb2 1o e e jogio T2, o P ’ ! ’ !

£t 1 XXX X 1 Kai( R, Ko J& (5:00)
— —K1i(05 i1 i)Kij K1io(Fje 1 Oio) Kijojod + (S:0:
N*a?Ph?d o) iei et jein T Faifzg ’ ! J J

C XXX X
L EKui(g5 i 90K K@ i i) Kige] + (s:0:)

492ph2
n*aPh2 61 j&i i1 jo6io
= Iy +(s:0)

Case (1), all are di®erent for i; j; i’ j"

cn?
ly = KL i 92)RuKis(Gs i 89)Res

16



= ——E[E[Ki2](0s i 92)RasE3[Kis](0s i 93)Kas]

2pb2q
= zpbzqO(c'ale’)E[Ez[(gal i 92)R24]E3[(gs i 93)Kas]] by Lemma 2; Robinson (1988)
— 2p 2p+21 . .
= 2pb2qO(a )O(b***#") by Lemma 1; Li (1996)
= o®?)

Case (2),j&ibuti'&i, j’=jori'&j, j=i. We only prove the case of i’ & i, j’ = j:

cn®
ly = n4a2pb2qE[K12(g4 i 02)R2uKi3(9s i 93)Rad]

= nazpbqu[EZ[Klz](94 i 02)R2Ea[Kia](04 i 93)Kad]

= azpbzqO(c'ale’)E[Eall(gal i 0)R24]EL[(9a § 93)Kaa]] by Lemma 2; Robinson (1988)

= azpbzqo(azp)O(pr”l) by Lemma 1; Li (1996)
b?*
= 0()

Case (3), j & ibuti®=1i,j'=jori®=j, j>’=i. We only prove the case of i’ = i, j’ = j:

cn? c
g = n4azpb2qE[Kfz(93 i 92)2}{%2] = nszbqu[EZ[Klzz](gS i 92)2}{52
1
— 2 _
= e O@ELG § 8 RE] = O()

2a2pb2q
In summary, we have shown that EjStj = E(T?) = O(h?") + O(%) + O(25)- Therefore,
St = 0p(b*" + 17m) = 0p(N117).

Proposition 8 S ;,...s = 0p(n*?)

2 1 XX N N
EGyinui) = = El@ i )@ i h)( 1 B0 i )]
i
X N\
= o ElG i hGn i )
1 XX N N
e El(gi i hi)(g; & ) i M) i 1)l

i j&i

1
FnM El(u i ﬁl)z]

1 XX R R _
te Ef i W)W 1 HENG i hi)(g; i h;)iX]g
i jei _
A |
H )T A

1 o
= 0(3)0 a®+— =0 >+

17



where X = (X1;Xp; 3, Xn), and using Proposition 1 and E[(gi i hi)(9; i h)iX] = E[(0i i

h)IXIELg; i h)iX] = EMIXIE[;iX] = 0 by i & j independence and E[vijx;] = 0.

follows that Sgih:uiﬁ\ =0 ’éﬁ + ﬁ% — Op(nil=2)_

Proposition 9 Sg;ng;g = 0p(N112).

>
ElS%mgisl = =5 El@: i 02 i 6

1 XX
e El(gi i hi)(9; 1 hp)(@i i &) i &)l
i jei
C
AEl@: i 61)°]
1 x> 1 Rin 1
= E[Viv' (gl i gl) —
n j6&i ! nbs V& £, nbe j'&j
_ ul(bzl 1,
B nba
1 XXX X
+n4b2q Elvi Vj(gl i glo)l’{uo(gj i gjo)kj
x i jei g o6
2" 1
= 0 —t o that (o)

Case (1), all are di®erent for i & j & i’ & j

n4E[V1V2

1
| =
vt n*b2 fz1 fzz

%EUWVzJ’]O(b““)O(b““) =0(b*) by Lemma 1; Li(1996)

E[(9: i 93)Rusjx1; Z1]E[(92 i 9a)Roajxz; 22]]

It

Case (2), for taking three of i; j; i’ j’ di®erent, there are two of them: i’ = j or j' = i. We

only prove the case of i’ = j because of symetric.

1 1 .
g1 = 4b2q nSE[Vlvzlesz @1 i 2)RLE[Q: i 94)RajX; 22]]
bl
b2q ) = O(F)

Case (3), for taking two of i; j; i°'j0 di®erent, there is a case where i & j: i’ =

@1 1 92)R12(02 1 91)Rai]

n2 E [V1V2

hat = i lef

nZBZqE[Vl\IZ(gl i 02) I’tlz]
=0 TR oY) =0(—— L

n2ha

18



3 3 -
In summary, we have E[S2,q;0] - O %=+ A7) +1, =0 £+ L) +0(h?")+0(%)+

N . P
O(Zm)- Then Sgingig - O Bz +:8z) + O(0") + O(#k) + O(#x)- S0.Sgingis =
op(nit=2).

Proposition 10 Sy;nw = 0p(nit=2).

X XX
~Eli i h)(g; i hy)wiwg]
1 J

1
E(Sgih;w) F
1 X 1 XX
= El@ i h)’w]+ = E[(gi i hi)(g; i hj)wiw;]

i=j i&j ]
c 1 XXX X

- _E[Sw] +

1
n n4_132q E[—ViVjWiokiiOWjokjjo]

iej j ieijlsj Tzilz

C 1 XXX X 1
= —E[SW]+W E[ﬁViVjWiokiiOWjokjjo]+(S:O:)
n n i&j § i'6ij6j zi Tz
1 c XXX X

+
nha n4b2a

- %O( E[ViVjWiokiiOWjokjjo]

i J i%6ij6

1 c >
= O(— + E[E[ViijX]WioRiiOWjol’{jjo]
nZbe 0% e e e
1
= G

where X = (X1;Xz; 23, Xn), and using proposition 4 and E[(gi i hi)(9; i h;)iX] = E[(gi i
hi)iX]E[(g; i hj)iX] = 0 by i & j independence. It follows that Sy;nw = Op Pz =
0p(nit2).

Proposition 11 Sy;n.s = 0p(nil?), where r =v or r = u.

We only prove the case of r = v, the same as the case r = u.

, 1 XX X<
ESyine) = oA El(gi i hi)(g; i hj)Nv]
1 X ! , . 13X
= = CEl(g i hi)™ ]+F. - Bl i hi(g 1 hi)ivi]
i=) i€j ]
- ZEIS+El@ § )@ § h)Nv
c 1

XX
= HE[SO]+—

E[—V1V2K'1K'2V'V']
nZa% i, ey . T R

19



C C1 .
- HE[SO] + nz—asz[V1V2KilKj2ViVj] + (s:0:)

= o(n*(@)™) +1,

1

XX
) E[vivo K1 KjaVivj]
61 j&2

Itis clear to see that I, = 0 because for i & j, E[v1VvoKi1Kj2vivj] = ETE[Vi KisViJI][E[V2Kj2v;ijlg
= ET(E[KiViE[vijxa; IDJIE[(Kj2v; E[V2jX2; JDii]g = 0 by E[vijxs; 1] = E[vijx1] = 0 or
E[V2jxz; j] = E[V2jxo] = 0. Ifi = j (buti;j & 1;2), then E[v1v.Kii1 Kipv?] = EFE[v1v,Kii Kipjilvig
= ERZEWKfiIE[V2Karjily = ERZEIKuEVixi; IDITEIEvaixz; Diilg = 0 by

E(vijxi) = 0. Thus, Sq;ne = 0p(ni12).

Proposition 12 S, .4 = 0,(ni*?).

1 >
E(Sgih;\x,) == E[(gi 1 hi)(g; 1 hj)Wiv;]
i
1 X 2 1 XX
= = El(gi i )W ]+F E[@ i h)(@; i hj)Wi)]
i=j i6j J
C
- HE[SQ] +E[(9: i h1)(g2 1 ho)Wih]
c 1 XXX X 1
= _E[Sv@] + — E[—V1V2Ki1K'2Wi0RiiOW'Ol’{"o]
n N*a?ha (o) ier g jogs ﬁlﬁ(zfzifzj ! J”
c C1 A
- HE[SQ] + WE[V]_VzKilszWiOR“OWjORjjo] + (S.O.)
= O(ni?) +
1 XXX X
lw = O(W) E[V1V2Ki1Kj2Wi0RiiOWjORjjo]

61 j62 il 6]

Case (1), all are di®erent for 1;2; i; j; i'; j°. Then Ly = O(oks) E V12 Kin K Wi Kiewjo K] =
O(azp—Jbz(q)EfE[V]_VzK,lKszl,j]E[W,ORHOWJOR”OJI,j]g = 0, where E[V1V2Ki1Kj2ji;j] =
EViKigi]E[V2Kj2)j] = EFK; E[vq]1; i)JIgETK;E[V2)2; J1jjg = 0 by E[vijx;] = 0.

Case (2), all are di®erent for 1;2;i;j;i’j’ except for one pair. We only prove the case
of i' = 1 because of the same argument: lw, = O(=zb=)E[ViVvaKit Kjow: RinwjoRjj] =
O (=2 )E FE [v1 Kiawi Rinvo Kjoji; JIE Wi Rijojis jlg = 0, where E[viKiiwi RipvoKjoji; j] =
E[v1 Kisws RigjilE[V2Kj2ji] = E[viKiaw: RigfiIEFK2E[V2j2; jlijg = 0 by E[vajx,] = 0.
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Case (3), all are di®erent for 1;2;i;]j;i’ j° except for two pairs. We only prove the case of
i’ = 1;j° = 2 because of the same argument: Iy, = O(rrzbem) E[V1V2Kin Kjowy Kisw, K] =
O (o) E VW1 E[Kig Kigj1VaWoE [K;2R 25210 = O(soh)0(a2Ph) = O(ni2).

Case (4), all are di®erent for 1;2;i; j; i’; j° except for three pairs. We only prove the case of i’ =
1;j" = 1;i" = j* because of the same argument: Iy, = O(mszhs ) E[VivoKin KjaW2Ki K] =
O (srzgen) E FV1W2E[Ki1 Ris Ry1j1IV2E [K;j2]g = O(ahigm) O(a%h2) = O(55) = O(n#2).

Thus, E(Sgih:vAv) =0(n*?). That is, Sy, 4 = 0p(N**72).

Proposition 13 Sgih;@iﬁ = op(ni1=2)_

XX
B e = EL@ 1 )@ i )G, 1 B i )
i
X XX
= % El(gi i h)?@ i ﬁi)z]+$ El( i hi)(g; i h)@& i fi)G i h)]
i=j 6
+ ZElSy,) + El0: i h)@ i )@ i hd@ i Aol
_C 1 HKXX X V1Vo _ S e . B
= HE[Séiﬁ] + N4a2rp2a 1162 161165 E[—f}(lﬁzf'zif}j Kii(gi i gl)RuOKJZ(gJO i gj)l’{uo]

o XX XX
4092ph2
N*a%Ph2 i) je e joesj
= O(N OB + (n2aPh?)it) + I,
1 DX X X X
Ivg = O(

m) E[vivaKia (@i i 9)KioKj2(g50 i 9j)Kijel
61 62 i 06

- %E[S@iﬁ] + E[viVvoKis(Gie i 0i)KiKj2(g5e i 95)Kjj] + (s:02)

Case (1), all are di®erent for 1;2; i; j; i%; j°. Then lyg = O(oz)EVivoKitKj2 (00 1 91)Kin (g0
0i)Kijje] = O(zzpz) E FE V1V Kt Kiji; JIE[( i 90)Kiio(ge 1 5)Kjjeji;jlg =0

where E[v1VvoK;1Kj2ji; J] = E[viKiJi]E[V2Kj2jj] = EFKi E[v4j1; i]JIgETK2E[v2j2; J]ijg = 0
by E[vijxi] = 0.

Case (2), all are di®erent for 1;2; i; j; i’; j° except for one pair. We only prove the case of i’ = 1
because of the same argument: 1,4 = O(m)E[vlszilsz(gl i gi)l’{il(gjo i gj)lijjo] =
O (a5 EFE[ViKin (01 1 90)Rinv2Kioji; JIE[(Gy i 95)Kjpeii;jlg = 0, where E[viKii(0: i
0i)RitV2Kj2ji; j1 = EViKiz (01 i 0)RidiE[V2K;2ji] = E[viKir(91 1 ) KisfilEFK 2E [V2j2; jlijg =
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0 by E[szXz] =0.

Case (3), all are di®erent for 1;2;i;j;i’;J° except for two pairs. We only prove the case
of i' = 1; j° = 2 because of the same argument: I,y = O (=) E[V1V2Kir Kj2(91 i 00)Ki (92 i

0)Ki2] = O(orbmn) EFva (01 i 90 E[Ki KinjlIva(92 1 90 E[K;2K2i2]g = O (ki) O(a%h?) =
o(ni?).

Case (4), all are di®erent for 1;2;i;j;i’; j° except for three pairs. We only prove the case
of i' = 1;j" = 1;i" = j' because of the same argument: g = O(=zpm)EV1V2oKitKj2(01 i
0)?Ri1Rj1] = O(aben)EFv1(0r i 6)2E[KiiRiiKjj1V2E[K;2j2]g = O(ssz32)0(aPh¥) =

O(=%5) = O(n#?). Thus, E(S? ) = O(niHOG*® + (n%aPh?)il) + O(ni?). That is,

gih§if
Sgih:@iﬁ = Op(nilzz)-
Proposition 14 Sg;q.u = 0p(n#12).

Using the independence of fu;g and fx;;zig, and E(uijxi;z;) = 0 as well, E[ui(gi i
gi)Uj(0; i 6)] =0 for i & j. Then we have

2 _ 1 X 5 ) ’ 1 XX i _
ElS§igu = e E[ui(@i i &) ]+F E[ui(@i 1 6)y;(9; i )]
i i jei

= JER@ i 9]

_ 1 1 xXx

= LEli- T 1o jor 00K (g i 9K
1 1 XX

= 5 Efu} 1qu221 |&1J&1(gi i 00)Kin(g; 1 90)Kj1] + (s:02)
n;l;? |&1,&1E[ul(gi i gl)Ril(gj i 91)Kj] + (s:0)

- nzbqu[Ul(gz i 01)°Ka] + E[U1(92 i 9)R21(05 i 92)Ka] + (s:02)

= (anq qu EfUlEl[(gz i gl)kzl]El[(gs i 91)Kalg

21
= (o zbq +O()

— il=2y\.
Sgigu O(Hpbzq) + O(ﬁﬁ) = 0p(n*™):
Proposition 15 Sy, = 0p(ni'7).
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Similar arguments to Proposition 14, we can show that Sp.,., = O(;é?) + O(é%) =

op(nit=2).
Proposition 16 S; 4., = 0p(n**7?).

As we used in proof of Proposition 14 that the independence of fu;g and fx;; z;g, and

E (uijxi; z;) = 0, we have
E(S30) = ~ELE@ i )

L T Ll i bkl i 0)Ki]
uil8i 1 Ni)Kia(g5 i1 9j)K
38 fZ g1 jes o 1819
1 XXX X ]
= —E UzKi i 1 Ui RiioK' 0 1 Oi R"o
nf’az'c’bzqf\fl ie1je1 e joej T2 Tz (7K (r 7 6) 1 i 6Ky
1 XXX X ]
= - E[UKi(gi i 9)KinKji(gj i 9j)Kjj] + (s:00)

520120 F 2
N°a?Ph*ife, o1 jer g jogj T Tz

C XXX X
" hsazrpa E[uKi(gie i 9)KinKji(gj i 95)Kjj] + (s:0)

_ C

" n‘a®h

L ¢
n3a2pb2q

i61 &1 i'6i j&j

>
E[UiK2, (g0 i 92)Rao(@j0 i 92)Koje]

B2 e 2
E[uZKo1Ka1 (@i i 92)Ran (@0 i 93)Raji] + (s:07)
62 j6:3
= lizj + lig;j

Case (1), all are di®erent for i% ' 1;2; 3:

— 1 P P 2K 2 = R - R — 1 2
lizi = O(azipz) ez joe2 E[UTKS (G0 § 92)R2in(Qje i 92)Kzj0] = O(agzp529) O (N%)
EfulEL[KZ1E2[(00 i 02) Ron]E2[(950 § 92)Rep]d = O(srsh) O (N?)O(P)O (b%+)O (b4 ") E[u?] =
Oréw) P P
lisj = O(ragipm) ez joes E[UTK21Ka1 (G0 i 02)Roin(gjo 1 93)Raj] = O(rmig)
EFUZE1[Kx]E[Kai]E2[(g0 i 92)Ran]Eal(@je i 9s)Kajelg = O(ﬁ)'

Case (2), all are di®erent except for one pairs: i = jori® =1orj’=1o0ri’ =3 or
j"=2(in ligj). We only prove the cases of i’ = j” and i’ = 1 for the reason of similarity.
For i* = " Tizj = O(rgmn) E[UTKZ1 (93 i 92)°R3] = Olrma)-

liej = Oz ) E[UFK 21 Ka1(0s i 02)R24(0s i 93)Raa] = O(brf—zl)-

For i' = 1: lizj = O(=sgp)EFUSKZ (01 i 02) K1 E1[(03 1 02)Ra1]g = O(#lebq)Efu%Kgl(gl i
02)Ro1g = O(ng_;p)'
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liej = (g ) EIUIKa1 Ko (91 i 82)Ro1(0s i 93)Raa] = O(ss)EIWK 1 (01 i 92)Roi] =
o).

Case (3), only two pairs are equal: i' =j'=1ori'=j;j'=

For case i' = j' = 1: lizj = O(=gmpg ) EIUIKEZ, (01 i 92)2|’t = O(n3apbq)

liej = O(n2a2pb2q)Efu1El[K21(gl i 02)R]E[Kai (01 i 9s)Railg = O(L).

For case i’ = j;j" = 1 li=j not applicable because i = j and i’ & i.

liej = Oz ) EFUIE Ko KaijXe; Z](0s i 92)R23(01 i 93)Rag = O(=)

Efui(91 i 92)Ra1E[(9s i 92)Rzsjl; 3]g = O(Z)EFui(gr i 9s)Rarg = O(%-).
From the cases above, we can say that lij + ligj = 0p(n*'?). Thus, Sy, ., = 0p(N**7).

Proposition 17 S, = 0,(n#2).

>
- E[uiuj)wiw;] = E[U1W1
]
1 XX 1
= 3029 E[—UiWiRUWj le]
i&lj&l 21821

E(Sku)

1
= n2b2q [ U1W2 I’{Zl] + [

1
fZ uiwz Roiws K] + (s:0:)

E[ulwgkm] + E[U1W2 Ro1wsRa] + (s:0)

2b2q

JE[uiw; lizﬂ = O(

( 2b2q qu)

where we used E[udw, R, w3Rs1] = EFu2R,, Rai E[w,jl; 2; 3]E[wsjl; 2; 3]g = 0 by E[wijzi] =
0. Hence, Sy, = O(n =) = 0p(ni172).

Proposition 18 Sy, = 0,(ni'?).

1 XX 1 )
E(S\fz\vu) = F o E[Uin)\/oi\le] = —E[Ui\lg'\l
i
1 XXX X
= [ ulKilKjlinRiiOWjORjjO]
N°a%h o) ey 61 j06:j f\fl
1 XXX X 1
= E[—UlKilKj;LWioRiiOWjol'{jjo] + (S:o:)
n5a2pb2q i61 j&1i'%6i j'&j f)glfzifzj
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C XXX X )
" h5azrh2a E[UlKilKjlwiol’tiiowjol’tjjo] + (s:02)
n-a i61 j&1 %6 j&j
C X X
= oo E[UZK2 Wi R owio K i0]
492ppy2 1 M2 Wit R2j0 Wjo IR 2j
n*azPb 62 j0&:2
C X X
+ 352prp2d E[uiK21K3lWiOR2i0Wj0stO] + (s:02)
n-a i'6:2 j'&:3

= Ai5j + Aigj + (s:0)

Case (1), all are di®erent for i%j’;1;2;3. Then

Aisj = E[u1K21w3Ii23w4li24] nzazpbzqEfu1K21E[w3Ii23w4li24jl 29 = e

EfuzK E[WsRosj1; 2]E [WaR )15 29 = st E FUSKZ E[(E [Waj3]R23)jL; 2]E [(E [Waj4]R24)j1; 219
= 0 by E[w;jjz;] = 0.

Ajgj =

n2a2pb2q

— St E[U2K o1 KW, Rogws Rgs] = 0 by the same arguments above.
Case (2), all are di®erent except for one pairs: i = jori® =1orj’=1o0ri’ =3 or
j" =2 (in Aigj). We only prove the cases of i’ = j’ and i’ = 1 for the reason of similarity.
For i = j% Aij = O(mampm) E[WZKZW2ZRZ] = O(asks)-

Aigj = O(orbmm ) E[UZKo KayW2R 5 Rag] = O().
For i' = 1: Aizj = O(smabm ) ETUZKZ, Wi Ro1wsRspg = 0 by E[wsRa,jl; 2]
= EF(E[wajl; 2; z3]K3,)j1; 29 = 0.

Case (3), only two pairs are equal: i’ =j'=1ori’=7j;j"'=i.
For case i' = j° = 1 Aij = O(=mm) EIRKZ,W2RZ ] = O(=5).
|&J O(nzazprq)EfulE[K21K31J1]W1E[R21R31J1]g - O(nz)
For case i’ = j; j" = 1: Aiz; not applicable because i = j and i’ & i.
Aigj = O(nazprq)EfU1K21K31W3R23W1R319 = 0 by E[wijzi] = 0.
From the cases above, we can say that Ai-j + Ajgj = 0,(n#'7%). So, Sy, = 0p(ni17).

Proof of Theorem 2

First we prove Theorem 2 (i). Notice that S5 = S i gy+wiBinyi@if);w

Sv+(9i9)+Wi(ﬁih)i(@iﬁ)iv?/:v+(gig)+Wi(ﬁih)i(’g‘iﬁ)i\f‘v = SvF2Sy g g)+wi (i (gnﬁ)n = Sv+0p(1)
by Cauchy Inequality and privious proofs of Propositions. Therefore, S, i'® E[(g: i h.)(01 i
h1)] by Proposition 1 in Li (1996). Thus, Sq.4 i E[(9: i h1)"(0:1 i ho)l.
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Then we prove Theorem 2 (ii). Notice that

P— I o =
NSsieu = nS(gih)+(9i9)+Wi(ﬁih)i(@iﬁ)i\f‘v:u o

_ o _ _ P
nSViU + nsgigiu i I‘]Sﬁih;u i nséiﬁ;u +

NSwu i pﬁSA

W;u

o)

nSy.u +0p(1) by Propositions 14 j 18:
i N(0;8): by Levy CLT under (Al) (A2):
where the last equality is obtained by using Proposition 15 in Robinson (1988). 8 = %2E[(0: i

h1)’(91 i h1)], where g1 = g(z1) = E(S1jz1) and hy = h(x1) = E[9(z1)jx1] = EFE[s1jz1]jx10.

Finally in order to prove Theorem 2 (iii), we need to show that
P

(@ 1="RS, 4,0 = 0p(L);
® 11=PAs, 600 =0,D);
c 1= IDﬁSsi@;@ig:op(l);
@ 1V =Phs,.., = 0, (1):
Then PTS, 5 190 = 0p(1), and PAS, .4 4,80 = 05(1). So, Theorem 2 (iii) holds.

(@). Proof of I = pﬁSSig;(“m = 0p(1).

_ b= _P=
I = pnssigiuiﬁ_pns(gih)+(9ig)+wi(ﬁih)i(@iﬁ)i\f\viuiﬁ b b
= r]Sgih:u f nSgig:uiﬁi nsﬁih:uiﬁi nS@iﬁ:uiﬁ+ nSw;uiﬁi ns\f‘vm i
= |1+|2+|3+|4+|5+|6
_P= _
Proof of I, =" NS, ,..; 0 = 0p(1).
By proposition 8, it follows that
A ! A !

_ b _Poo & .3 o el o)
Proof of I, = pﬁSgigWﬁ = 0p(1).
Notice that S, ...n - 2(Sgig + S;;p) by Cauchy Inequality. Then we have E[S,; . ;4 -

P P
2FE[Sy;q] + EIS, ;a0 = 2FE[L " i(¢ i 90?1+ E[L (i i 4)49 = 2FE[(61 § 91)2] +E[(s i
i1)?]g. Therefore it is true that E[S, ,,d =0 b** +-; +0 a* + - by Proposition
1and 3. That is, I, = 0p(1).
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The proof of I3 = 0,(1) is the same as the proof of I, by using Proposition 1 and 2.
Proof of Is = pﬁS wift = 0p (D).

Wil
By Cauchy Inequality, and using Proposition 1 and 4, it is clear that
1=2 H 1 T
Swiif - 2fSW+S in9 =0p(n**)+ 0O a%® + — s

That is, 15 = S, . = 0,(1).
Proof of Ig = pﬁSv@;pi
By Cauchy Inequality, and using Proposition 1 and 6, it is proved.
Finally, we use Proposition 7 to have I, = anglﬁ it = 0p(2).

(b) Proof of 11 = PRS, ¢ = 0,(1).

_ P _ P
Il = " NSgis0is = NSgim+@igrwi®ini Gihit:@io)iw
I

= nfSyingis i Seig i Spingig 1 Sgihgig | Sigig

iSginw 1 2Sgigw 1 Sw + Sp;nw + Sgiaw T Sawd

For pﬁSgih;gig and pﬁSgih;w, we can show that they both equal to o,(1) by Proposition 9
and 10. For the rest of them, by using Cauchy Inequality and Propositions of 1-7, all are

proved.
(c) Proof of 111 = pﬁsslg;glg = 0p(1)
i = pﬁSSi§:9i§:p_S(gih)+(9ig)+Wi(ﬁ'h)'(’g‘iﬁ)i"'i(@iﬁ)+0i\7‘v
= pﬁSgihﬁi@+pﬁsg-g-ﬁ-@ i UNSh o, A+p”5A ﬁ+pﬁsw;ﬁie i pﬁsw;ﬁi@
+pﬁSgih;o+ pﬁSgig;o i anﬁ_h_O i an/\-ﬁ.O + pﬁSW;o i pﬁSVAV;O
ipﬁSgimAV i pﬁSg oi anﬁ hiv + anA Ay i pﬁSW;VAv + pﬁSVAV
Using Propositions of 11-13, it is proved that pﬁSgih;o = 0p(1), p_Sgih;VA‘, = 0p(1), and
pﬁSgih;ﬁi@ = 0,(1). By using Cauchy Inequality and Propositions of 1-7, the rest all are
proved.
(d). Proof of IV = PAS, 4, = 0,(1).
v = Phs, ..,
_ P
NS(gim+@in+wi Bini@if)ino
= pﬁsgih:o"’ pﬁsgig:o i pﬁsﬁih;o i pﬁs’g‘iﬁ;o"’ pﬁSW:O i pﬁs\i‘v;o
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Proposition 11 gives us that pﬁSgih;o = 0,(1). By using Cauchy Inequality and Propositions
of 1-7, the rest all are proved.

Proof of Theorem 3
We now prove Theorem 3. By Theorem 2, it is clear to have

Pieie) = pﬁs;ilgs

= siPrs,
= (Seun) RSy + 0p(D) )
i (EL(gl i h)’(g: i h))''N 0;%°E[(91 i h1)’(91 i ha)]
= N 0% (E[(9: i h)'(g: i h))D'

siSu+iD+@ingi(@i9Heion .

i1 P—= _ _
iSu +S;i§ n Ssig;piﬁ_'_ssig;(gis)@ 1 Ssié;(gi§)® 1 Ssig;o
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