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Abstract

We propose a partially adaptive estimator based on information

theoretic maximum entropy estimates of the error distribution. The

maximum entropy (maxent) densities have simple yet flexible func-

tional forms to nest most of the mathematical distributions. Unlike the

nonparametric fully adaptive estimators, our parametric estimators do

not involve choosing a bandwidth or trimming, and only require es-

timating a small number of nuisance parameters, which is desirable

when the sample size is small. Monte Carlo simulations suggest that

the proposed estimators fare well with non-normal error distributions.
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1 Introduction

It is well known that the widely used least squares estimator is efficient if the errors

are independent and identically normally distributed and independent of the regressors.

When the error distribution is non-normal, the efficiency of the least squares estimator

deteriorates. For example, when the error distribution has “fatter” tails than the

normal, the least squares estimator can be inefficient relative to other estimators.

One approach to deal with non-normal error distributions is the adaptive estima-

tion, which “adapts” to an unknown error distribution by maximizing an estimated

likelihood function based on an estimate of the error distribution. The idea of an

adaptive estimator was first developed by Stein (1956). Beran (1974) and Stone (1975)

considered adaptive estimation in the symmetric location model. Bickel (1982) ex-

tended this to linear regression and other models for i.i.d. errors. Manski (1984) stud-

ied adaptive estimation in non-linear models. Steigerwald (1992) and Linton (1993)

considered dependent errors; Li and Stengos (1994) looked at heterogenous errors.

Consider the classical linear regression

yi = α0 + xiβ0 + ui, i = 1, 2, . . . , n.

Here ui is independent of xi and i.i.d. distributed according to a density f (u, θ) , where

θ is the shape parameter of f. Denote the likelihood function as L (y|x, β, θ) . When

the information matrix is block-diagonal, or

E [∂ ln L (y|x, β, θ) /∂β · ∂ ln L (y|x, β, θ) /∂θ] = 0, (1)

Bickel (1982) showed that the slope parameter of the model can be estimated adap-

tively, namely, one can do as well in terms of asymptotic variance as if one knew the

true error distribution f.

When the density function f is known, one can obtain the maximum likelihood
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estimator (MLE) of β0 by setting the average score function

s (β) = s (β; f) =
1
n

n∑

i=1

si (β; f)

= − 1
n

n∑

i=1

f ′ (ui (β))
f (ui (β))

xi (2)

equal to zero. Alternatively, Bickel (1975) proposed a one step Newton-Raphson esti-

mator

βNR = β̃ + Ĩ
(
β̃; f

)−1
s
(
β̃; f

)
,

where β̃ is a preliminary root-n consistent estimate of β0 and Ĩ is a consistent estimate

of the information matrix. This estimator is also referred to as the linearized likelihood

estimator.

Since in most cases the density f is unknown, it is usually estimated from the resid-

uals after a consistent estimate of β0 is obtained. Within the parametric framework,

Newey (1988) used a GMM approach for adaptive estimation. Alternatively, in the

context of a nonparametric regression model with an unknown regression function, if

the error distribution is consistently estimated using some nonparametric smoothers,

the resulting fully adaptive estimator is asymptotically efficient (see Linton and Xiao

(2004) and references therein).

Instead of trying to obtain an asymptotically efficient estimator using nonparamet-

ric methods, some researchers propose partially adaptive estimators based on paramet-

ric estimates of the error distribution. For example, McDonald and Newey (1988) and

McDonald and White (1993) used the generalized t distribution, and Phillips (1994)

used the mixture of normal distributions. As contended by Bickel (1982) and McDon-

ald and Newey (1988), a partially adaptive estimator based on parametric estimates

of the error distribution might be more practical. In particular, when the sample size

is small, the partially adaptive estimator with a small number of nuisance parameters

may outperform the fully adaptive estimator. The fully adaptive estimator, which es-
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timates the score function (2) nonparametrically, depends crucially on the choice of

bandwidth. Generally, the converge rate of a nonparametric estimator is different for

the density function itself and its first derivative. As separate derivations of an optimal

bandwidth for the density and its first derivative are rather complicated in the adap-

tive estimation, in practice often one single bandwidth is used for the density and its

first derivative. In contrast, a root-n consistent parametric estimate of a differentiable

density function retains its root-n consistency for its first derivative and does not in-

volve bandwidth selection. Furthermore, our parametric estimator does not suffer from

numerical difficulties associated with nonparametric estimation of the score function

(2) when the density estimate in the denominator is close to zero.

In this study, we propose partially adaptive estimators based on the Maximum

Entropy (maxent) density estimates of the error distribution. The Maximum Entropy

principle is a general method of assigning values to probability distributions based on

limited information such as moments. The maxent densities have simple yet flexible

functional forms that nest most commonly used mathematical distributions. We pro-

pose a particular maxent density that has certain advantages over the t distribution

and its generalizations used in the literature. It nests the normal distribution as a

special case rather than a limiting case. Practically, it is more numerically stable, as

the saddle point problem involved in the estimation of the t family of distributions can

sometimes behave irregularly. The resulting partially adaptive estimators are quasi

maximum likelihood estimators when the estimated maxent density approximates the

unknown distribution of errors, and maximum likelihood estimators when underlying

error distribution belongs to the family specified by the assumed maxent density. Our

Monte Carlo simulations show that the proposed method demonstrates considerable

degree of adaptiveness to different shape of error distributions and compares favorable

with existing methods.

The next section reviews the maximum entropy density and introduces the partic-

ular maxent density estimator that we propose. The third section introduces the par-
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tially adaptive estimator. The fourth and fifth section report Monte Carlo simulations

and an empirical application of the proposed estimator. The last section concludes.

2 Maximum Entropy Density

In this section, we introduce the Principle of Maximum Entropy and the maximum

entropy densities. We then discuss the merits of the maxent densities as a practical tool

for parametric density estimation. We introduce a simple but flexible maxent density

specification that works well in approximating skewed and/or leptokurtic distributions.

This proposed maxent density will provide the basis of obtaining partially adaptive

estimators.

2.1 Background

The central concept of information theory is Shannon’s Information Entropy

W = −
∫

f (z, θ) log f (z, θ) dz,

where f is the density function for a random variable z. Entropy is a measure of

disorder or uncertainty.

The celebrated Maximum Entropy (maxent) Principle states that among all the

distributions that satisfy certain moment constraints, one should choose the distribu-

tion that maximizes the entropy. According to Jaynes (1957), the maxent distribution

is “uniquely determined as the one which is maximally noncommittal with regard to

missing information, and that it agrees with what is known, but expresses maximum

uncertainty with respect to all other matters.”

The maxent density is obtained by maximizing the entropy subject to certain mo-

ment constraints. Let z1, z2, ..., zn be an i.i.d. random sample of size n from a distri-
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bution f(z, θ) on the real line. We maximize the entropy subject to

∫
f (z, θ) dz = 1,

∫
gk (z) f (z, θ) dz = µ̂k, k = 1, 2, . . . , K,

where µ̂k = 1
n

∑n
i=1 gk (zi) , and gk (z) is generally continuously differentiable.1 The

first moment condition is imposed to render f a proper density function. The solution

takes the form

f
(
z, θ̂

)
= exp

(
−θ̂0 −

K∑

k=1

θ̂kgk (z)

)
. (3)

To ensure f
(
z, θ̂

)
integrates to one, we set

θ̂0 = log

(∫
exp

(
−

K∑

k=1

θ̂kgk (z)

)
dz

)
.

The maximized entropy W = θ̂0 +
∑K

k=1 θ̂kµ̂k.

The maxent density is of the generalized exponential family and can be completely

characterized by the moments Egk (z) , k = 1, 2, . . . , K. Hence, we call these moments

“characterizing moments”, which are the sufficient statistics of the maxent density. A

wide range of distributions belong to this family. For example, the Pearson family and

its extensions described in Cobb et al. (1982), which nest the normal, beta, gamma

and inverse gamma densities as special cases, are all maxent densities characterized by

a few simple moments.

In general, there is no analytical solution for the maxent density, and nonlinear op-

timization is required (see Zellner and Highfield (1988), Wu (2003) and Wu and Perloff

(forthcoming)). We use Lagrange’s method to solve for this problem by iteratively

1This condition can be relaxed. For example, when g (z) = |z| , the corresponding maxent density is the
Laplace distribution.
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updating θ̂. For the (t + 1)th stage of updating,

θ̂(t+1) = θ̂(t) −H−1
(t)b(t),

where b = [b1, b2, . . . , bk]
′, bk =

∫
gk (z) f

(
z, θ̂

)
dz−µ̂k and the Hessian matrix H takes

the form

Hk,j =
∫

gk (z) gj (z) f
(
z, θ̂

)
dz, 0 ≤ k, j ≤ K. (4)

The positive-definitiveness of the Hessian ensures the existence and uniqueness of the

solution.2 Moreover, the maxent method is equivalent to a maximum likelihood ap-

proach where the likelihood function is defined over the exponential distribution and

therefore consistent and efficient.

2.2 A Flexible Maxent Density Specification

Barron and Sheu (1991) characterized the maxent density alternatively as an approxi-

mation of the log density by some basis functions, such as polynomials, trigonometric

series or splines. They showed that the estimator does not depend on the choice of basis

function. Denote the unknown true density f and its estimate f̂ , the Kullback-Leibler

distance is defined as

D =
∫

f log
f

f̂
dz.

The Kullback-Leibler distance measures the discrepancy between f and f̂ . It is non-

negative and takes the value zero if and only if f = f̂ everywhere. Under some mild

2Let γ′ = [γ0, γ1, . . . , γK ] be a non-zero vector and g0 (z) = 1, we have

γ′Hγ =
K∑

k=0

K∑

j=0

γkγj

∫
gk (z) gj (z) f (z, θ) dz

=
∫ (

K∑

k=0

γkgk (z)

)2

f (z, θ) dz > 0.

Hence, H is positive-definite.
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regularity condition, the maxent density estimates converge to the underlying density,

in terms of the Kullback-Leibler distance, if the number of moment conditions increases

with sample size.

The Kullback-Leibler distance is a pseudo-metric as it is not symmetric with respect

to f and f̂ . Tagliani (2003) showed that

V ≤ 3

[
−1 +

(
1 +

4
9
D

) 1
2

] 1
2

,

where V =
∫ ∣∣∣f − f̂

∣∣∣ dz is the variation measure. Hence, convergence in the Kullback-

Leibler distance implies convergence in the variation measure.

Theoretically, one can approximate an unknown continuous distribution arbitrar-

ily well using the maxent density if the number of moment conditions is allowed to

increase with sample size. The maximized entropy decreases monotonically with the

number of moment conditions. The change in entropy measures the contribution of

additional moment conditions in reducing the degree of uncertainty regarding the un-

known distribution. For example, a normal distribution is a maxent density completely

characterized by its first two moments. Imposing higher order moments does not change

the entropy and in that sense, has zero information content.

In practice, only a few moment conditions are used since the Hessian matrix (4)

quickly approaches singularity as the number of moment conditions increases. Nonethe-

less, one can approximate distributions with various shapes using the maxent densities

subject to a small number of moment conditions. In this study, we propose a simple

yet flexible maxent density for adaptive estimation:

f (z, θ) = exp
(−θ0 − θ1z − θ2z

2 − θ3 log
(
1 + z2

)− θ4 sin (z)− θ5 cos (z)
)
. (5)

This density is normal when θ3 = θ4 = θ5 = 0. Because z2 is the dominant term in the

exponent of our maxent density, its associated shape parameter θ2 is restricted to be
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positive such that the density vanishes at both ends.

The term log
(
1 + z2

)
is introduced to accommodate fat tails. Note that the fat-

tailed student t distribution has a density

f (z, v) =

(
1 + z2

v

)− v+1
2

B (.5, .5v)
√

v
,

where B(·) is the beta function and v is a positive integer shape parameter. Apparently,

the t distribution is also a maxent density with characterizing moment log
(
1 + z2

v

)
.

In practice, usually the degrees of freedom parameter v is unknown. Direct estimation

of v places this unknown parameter on both sides of the moment constraint in the

maxent optimization problem:

∫
log

(
1 + z2/v

)
exp

( −θ0 − θ1 log
(
1 + z2/v

))
dz =

1
n

∑n

i=1
log

(
1 + z2

i /v
)
,

resulting in a difficult saddle point problem. Instead, we use the linear combination

of z2 and log
(
1 + z2

)
to approximate log

(
1 + z2

v

)
. When the degree of freedom is

one, or the distribution is Cauchy, log
(
1 + z2

)
characterizes the density; on the other

extreme, when the degrees of freedom goes to infinity, the t distribution approximates

the normal distribution, so z and z2 characterize the density.

To examine how well z2 and log(1+z2) approximate log (1+z2/v), we use ordinary

least squares to regress log (1 + z2/v) on z2, log(1 + z2) and a constant term. Because

all functions involved are even, we only look at z on the positive real line. In the

experiment, we set z as the vector of all the integers within [1, 10,000]. For an arbitrary

integer v within [1, 100], the R2 is always larger than 0.999, indicating that log(1+z2/v)

can be well approximated by z2 and log(1 + z2).

Compared with the generalized t distribution, our specification has two advantages:

i) it nests the normal distribution as a special case rather than a limiting case; ii) it is

numerically more stable, as the saddle point problem involved in the estimation of the
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generalized t family distribution can behave irregularly and does not always converge

to a global optimum, especially in the presence of other moment constraints such as

terms to capture the degree of asymmetry.

The Sine and Cosine terms are employed to capture skewness and other deviations

from the bell shape of symmetric distribution, such as that of normal or t distribution.3

These two terms introduce considerable flexibility to the density function. For example,

multi-modal distributions are allowed for under this specification. The combination of

low order polynomial and trigonometric series, referred to as Flexible Fourier Trans-

forms (FFT), was first proposed by Gallant (1981) and shown to approximate curves

with various shapes well. For non-periodic functions, the linear and quadratic terms

reduce the number of necessary trigonometric terms considerably.

Alternatively, we can use higher order polynomials in the exponent of a maxent

density. However, higher order sample moments are sensitive to outliers and conse-

quently, so are the density estimators involved higher moments. Also, Dalén (1987)

showed that the sample moment ratios, such as skewness and kurtosis, are restricted

by the sample size. In what follows in order to obtain the partially adaptive estimators

we will use a number of variant maxent estimators based on the density (5), depending

on which terms are included on the right hand side.

3 Partially Adaptive Estimator

Consider the classical linear regression

yi = α0 + xiβ0 + ui, i = 1, 2, . . . , n, (6)

where y is the dependent variable, x is a n×k full-rank design matrix and u is an i.i.d.

error which is independent of the regressors.

3Since the error terms are generally aperiodic, the domain of the density is scaled to be within (−π, π).
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We first estimate the error distribution, based on the consistent OLS residuals,

using the maxent density f (·, θ). In the second stage, we take the estimated error

density f
(
·, θ̂

)
as given and estimate β using the MLE

β̃ = arg max
β

n∑

i=1

ln f
(
yi − α̂− xiβ, θ̂

)
.

Under the “block-diagonal” condition that β and θ are independent, we can estimate β

adaptively, that is, we can do as well in terms of asymptotic variance as if we knew the

true error distribution. The OLS and the Least Absolute Deviation (LAD) estimator fit

into this framework when f is the normal and double exponential (Laplace) distribution

respectively. Usually, estimate of the intercept α varies with the error distribution and

is not identified. Hence, we will focus on the slope vector β below.

Under the “block diagonality” property of condition (1) , there is no loss of asymp-

totic efficiency in using preliminary estimates of the distributional parameters θ̂ in the

final estimation of the slope parameter. Following McDonald and Newey (1988), we

denote

ûi = yi − α̂− xiβ̂,

l̂ui =
∂ ln f

(
ûi, θ̂

)

∂ûi
,

υ̂1 =

[
1
n

n∑

i=1

(
l̂ui

)2
]
−

[
1
n

n∑

i=1

l̂ui

]2

,

υ̂2 =
1
n

n∑

i=1

∂l̂ui

∂ui
,

υ̂ =
υ̂1

(υ̂2)
2 .

An estimator of the asymptotic covariance matrix of the slope vector β̂ is given by

Ω̂ = υ̂Q̂−1
x ,
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where Q̂x =
(

1
n

∑n
i=1 x′ixi

)− x̄′x̄ and x̄ = 1
n

∑n
i=1 xi.

Under some mild regularity conditions, McDonald and Newey (1988) proved the

asymptotic normality of the estimated slope vector:

√
n

(
β̂ − β0

)
d→ N

(
0, υQ−1

x

)
,

where ν̂ → ν and Q̂x → Qx. When the error term is distributed according to f (·, θ) , β̂

is the MLE; otherwise, it is the Quasi-Maximum Likelihood Estimator (QMLE). If the

estimated error density approximates the underlying distribution well, the efficiency is

expected to be close to that of the MLE.

The partially adaptive estimator offers some advantages over the fully adaptive

estimators. The fully adaptive estimation requires nonparametric estimation of the

score function (3), which depends crucially on the choice of bandwidth. Generally, the

converge rate of a nonparametric estimator is different for the density function itself

and its first derivative. Hence, an optimal bandwidth for the density function may not

be optimal for its first derivative. As separate derivations of an optimal bandwidth for

the density and its first derivative are rather complicated in the adaptive estimation,

in practice often one single bandwidth is used for the density estimation and its first

derivative. In contrast, a root-n consistent parametric estimate of the density function

remains root-n consistent for its first derivative for differentiable densities. Also, non-

parametric estimation of the score function (3) encounters numerical difficulties when

f (ui (β)) in the denominator is close to zero. Some trimming procedures are usually

needed to restrict the behavior of this estimator. Our parametric estimator does not

suffer from this difficulty and no trimming is required.
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4 Simulations

In this section, we use Monte Carlo simulations to investigate the performance of

the proposed partially adaptive estimator. For the error distribution, we consider

the standard normal, the Laplace distribution, the t distribution with 3 degrees of

freedom and the standard log-normal distribution. The Laplace and t distributions

are leptokurtic, and the log-normal distribution is both skewed and leptokurtic. All

distributions are standardized to have zero mean and unit variance. The explanatory

variables, excluding the constant term, are generated as an n × k matrix of standard

normal random variables, with n = 50, 100, 200 and 500, and k = 1, 2, 3. Altogether,

we have 48 possible combinations, and each specification is repeated 5,000 times. We

study the classical linear model as specified by Equation (6). Without loss of generality,

we set α0 = −1 and β0 = 1 for all the Monte Carlo simulations.

We consider the following estimators in our experiments:

• OLS

• LAD: the least absolute deviation estimator. Note that the LAD is the MLE

for a Laplace error distribution, which is also a maxent density with a single

characterizing moment E |z|.

• FAE: fully adaptive estimator. We use kernels to estimate the error distribution

and its first derivative nonparametrically. The bandwidth is chosen according

to Silverman’s rule of thumb. The trimming conditions set the value of score

function to zero if: i) the absolute value of residual |ui| > tr1; ii) the estimated

density f̂ < tr2; iii) the value of the ‘updating step’
∣∣∣f̂ ′/f̂

∣∣∣ > tr3. Following Hsieh

and Manski (1987), we set tr1 = m, tr2 = exp
(−m2/2

)
and tr3 = m, where

m = 8.

• PAE1: partially adaptive estimator with the maxent error distribution

f1 (z, θ) = exp
(−θ0 − θ1z − θ2z

2 − θ3 log
(
1 + z2

))
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• PAE2: partially adaptive estimator with the maxent error distribution

f2 (z, θ) = exp
(−θ0 − θ1z − θ2z

2 − θ3 sin (z)− θ4 cos (z)
)

• PAE3: partially adaptive estimator with the maxent error distribution

f3 (z, θ) = exp
(−θ0 − θ1z − θ2z

2 − θ3 log
(
1 + z2

)− θ4 sin (z)− θ5 cos (z)
)

For the partially adaptive estimators, we also estimate the one-step estimator de-

scribed in McDonald and Newey (1988). The results are very close to those obtained

from the iterative estimates and therefore not reported.

Following Phillips (1994), we use the relative inefficiency measure to gauge the

efficiency of an alternative estimator β̃ relative to that of OLS estimator β̂.4 This

measure is defined as

RIF
(
β̃
)

= E
∥∥∥β̃ − β0

∥∥∥
2
/E

∥∥∥β̂ − β0

∥∥∥
2
,

where ‖·‖ denotes the Euclidean norm. Because E
∥∥∥β̃ − β0

∥∥∥
2

= σ2
0tr

[
(X ′X)−1

]
, where

σ2
0 =E

(
u2

i

)
and tr(A) is the trace of matrix A, RIF

(
β̃
)

is invariant to variation of β.

The lower RIF is, the more efficient the estimator is compared to the OLS.

The results for the regression with a single explanatory variable are reported in

Table 1. As expected, the FAE, which estimates the score function consistently and

is asymptotically efficient independent of the functional form of the error distribution,

improves with sample size. Despite the fact that its error density only approximates the

underlying error distribution in all cases with non-normal error distributions, the PAE3

also improves with sample size, indicating its flexibility in accommodating various error

distributions used in the simulations. On the other hand, the LAD, PAE1 and PAE2

4Phillips (1994) used a mixture of normal with zero mean and varying variance in the adaptive estimation,
focusing on symmetric error distributions.
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do not generally improve with sample size. Because of their restrictive functional forms

for the error distribution, when the true error distribution differs from the assumed

error distribution, those estimators can be severely mis-specified and a larger sample

size does not help.

For all the experiments (except for the case of a Laplace error distribution with

sample size 500), the PAE3 outperforms the FAE. In most of these cases, the margin

is substantial. The nonparametric score estimates by the FAE may be consistent and

asymptotically efficient, but the maxent estimates of the error distribution of the PAE3

appear to be flexible enough and perform quite well for small and medium sample size.

The PAE3 generally outperforms the PAE1 and PAE2 when the error distributions

are non-normal. For normal error distributions, the PAE1 and PAE2 provide better

results, but their efficiency gains over the PAE3 are at best marginal.

The pattern of the comparisons varies across the error distributions. For normal

errors, as expected, the OLS is efficient and outperforms all other estimators. However,

the efficiency loss due to redundant nuisance parameters in the PAEs is rather small.

For example, when the sample size n = 50, the average efficiency loss of the PAEs

is about 10%. When n = 500, the average efficiency loss reduces to 2%. Across

different sample size, the FAE is less efficient than the PAEs, probably due to the

large number of nuisance parameters involved in the nonparametric estimation of the

score functions. The efficiency loss is 34% for n = 50 and 9% for n = 500. The LAD

has the largest efficiency loss and does not improve with sample size. While the FAE

is asymptotically efficient and all the PAEs’ error specifications nest the normal, the

assumed error distribution of the LAD is Laplace and does not nest the normal as a

special or limiting case. Therefore, the LAD is mis-specified and does not benefit from

a larger sample size. Comparing the PAEs, we note that the PAE3 is less efficient than

the PAE1 and PAE2. When the underlying error distribution is normal, the PAE3 has

more redundant nuisance parameters than the PAE1 and PAE2, but our results suggest

that the efficiency loss is quite small. The average efficiency loss of the PAE3 relative
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to the PAE1 and PAE2 is 7% for n = 50, and it reduces to 1% for n = 500.

For the Laplace error distribution, the LAD is the Maximum Likelihood estimator

and therefore efficient. All the adaptive estimators improve on the OLS except for the

FAE with n = 50. For sample size no greater than 100, the relative efficiency of LAD

compared to that of the PAE3 is less than 7%.

When the errors are generated from the student t distribution, the PAE1, whose

assumed error distribution approximates the t distribution closely, performs best for

n = 50. However, the PAE3, which is more flexible, is more efficient than the PAE1

when the sample size is larger than 50. The LAD also improves on the OLS, largely

because of its resistance to outliers as a robust estimator and the fact that its assumed

error distribution is more leptokurtic than the normal.

In both of the cases where the error distribution is symmetric and leptokurtic,

the PAE1, which is designed for fat-tailed error distributions, outperforms the PAE2

considerably. The FAE improves with the sample size, but it is always less efficient

than the PAE3 except for the Laplace error distribution case with n = 500.

When the error distribution is generated from the log normal distribution, which

is both skewed and leptokurtic, all the estimators improve on the OLS substantially.

Across different sample sizes, the average efficiency gain of the PAE3 is about 88%.

The PAE2, whose assumed error distribution allows for asymmetric densities, shows a

79% improvement in efficiency. The consistent FAE averages a 57% efficiency gain. On

the other hand, the LAD and PAE2, although assuming a symmetric error distribution,

also improve on the OLS because they allow for leptokurtic error distributions.

Table 2 and 3 report the regression results with two and three explanatory variables.

The general patterns resemble those with a single explanatory variable. Consistent

with previous studies, the relative efficiency of all the estimators does not appear to

be affected by the number of explanatory variables.

Following one of the referee’s suggestions, we also investigate the performance of

out-of-sample prediction of the adaptive estimators. Although it is known that the
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OLS minimizes the mean square errors, we find that the adaptive estimators often have

slightly smaller mean square errors for out-of-sample prediction than that of the OLS

when the error distribution is non-normal. Among the adaptive estimators considered

in our experiments, the PAE3 is the only one that out-performs the OLS in all cases

with non-normal error distribution.

5 Empirical Applications

In this section we apply the proposed partially adaptive estimator to a stochastic

frontier model. Stochastic frontier models have been commonly used in the empirical

study of firm efficiency and productivity. A production frontier represents the maxi-

mum amount of output that can be obtained from a given level of inputs. Similarly,

cost frontiers describe the minimum level of cost given a certain output level and certain

input prices. In practice, the actual output of a firm will typically fall below the maxi-

mum that is technically possible. Hence, these models typically combine two stochastic

elements in the specification of the sampling model: one is a symmetric error term,

corresponding to the usual measurement error, and another is the one-sided inefficiency

term. Due to the presence of the inefficiency term, the distribution of the compounded

error term is skewed. Therefore, estimators assuming normal error distribution are not

efficient.

To account for the skewed error distribution commonly occurred in production and

cost function analysis, Aigner et al. (1977) proposed the original stochastic frontier

model

yi = xiβ + vi − |ui| ,

where vi and ui are normally distributed with zero means and constant variance σ2
v

and σ2
u. Other commonly used specifications of production frontier analysis model ui as

half normal, truncated normal or exponential. Some researchers noted the restrictive
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functional form assumption on the inefficiency distribution and proposed further ex-

tensions to the original model. For example, Greene (1990) proposed a normal-gamma

stochastic frontier model. Although it provides a richer and more flexible parameteri-

zation of the inefficiency distribution, the normal-gamma model is practically difficult

due to its complicated log likelihood function.

Instead of estimating separate error and inefficiency distributions, we use the pro-

posed partially adaptive estimator for the model

yi = xiβ + εi,

where εi = vi−|ui| . We use the maxent density to estimate the potentially non-normal

distribution of the composite error ε.

We use data on the production cost of 145 American electricity generating compa-

nies from Nerlove (1963), which were also studied by Christensen and Greene (1976).

The model takes the form

log
(

c

pf

)
= β0 + β1 log (q) + β2 log2 (q) + β3 log

(
pl

pf

)
+ β4 log

(
pk

pf

)
+ ε,

where c is total cost, q is total output, pf , pl and pk is the price of fuel, labor and

capital respectively, and ε is an i.i.d. error term from an unknown distribution. We

first estimate the model using the OLS. We then perform the normality test on the

OLS residuals. Not surprisingly, normality is rejected decisively by both the Jarque

and Bera test and the Kolmogorov-Smirnov test. Therefore, estimators with more

flexible error distributions are called for.

In Table 4, we report the estimates from the OLS, the normal, half-normal model

and the partially adaptive estimator. The partially adaptive estimates from the PAE3

are generally very close to those from the classical normal, half-normal stochastic fron-

tier model yet the coefficients are estimated more precisely. Compared with the OLS
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estimates, the partially adaptive estimator reports a larger coefficient for the linear

output term (0.268 vs. 0.153) but smaller quadratic coefficient (0.043 vs. 0.051). As

for the other two inputs, the coefficient for labor is essentially the same while the

coefficient for capital is larger yet estimated more precisely.

6 Concluding Remarks

The classical ordinary least squares estimator is not efficient when the errors are not

normally distributed. The adaptive estimation tackles this problem by adapting to the

unknown error distribution and maximizing a likelihood function based on an estimate

of the error distribution. When the coefficients of the model are independent of the

nuisance parameters of the error distribution, one can do as well in terms of asymptotic

variance as if one knew the true error distribution.

A fully adaptive estimator requires estimating the score of the likelihood func-

tion consistently. In practice, this is achieved through nonparametric estimates of the

score function, which might be sensitive to the choice of bandwidth. An alternative

procedure is to obtain partially adaptive estimators, which approximate the error dis-

tribution parametrically. In this study, we propose a partially adaptive estimator based

on certain maximum entropy (maxent) estimates of the error distribution. The max-

ent densities used in this study have simple functional forms, and at the same time

are flexible enough to “adapt” to various distributions. In particular, we show that

the more general proposed maxent density works well with skewed and/or leptokurtic

distributions, which are frequently encountered in empirical works. Our Monte Carlo

simulations and empirical example demonstrate that the proposed estimator achieves a

very promising small sample performance and compares favorably with existing meth-

ods.
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Table 1: Relative efficiency for regression with one explanatory variable
n Normal Laplace T-3 Log-normal
50 LAD 1.560 0.744 0.854 0.536

FAE 1.340 0.957 0.910 0.541
PAE1 1.056 0.793 0.740 0.536
PAE2 1.094 0.942 0.878 0.205
PAE3 1.148 0.795 0.762 0.154

100 LAD 1.630 0.666 0.767 0.447
FAE 1.194 0.830 0.758 0.426
PAE1 1.028 0.758 0.667 0.511
PAE2 1.055 0.892 0.815 0.198
PAE3 1.102 0.717 0.649 0.118

200 LAD 1.551 0.620 0.751 0.408
FAE 1.130 0.751 0.685 0.359
PAE1 1.019 0.753 0.656 0.504
PAE2 1.028 0.889 0.825 0.201
PAE3 1.050 0.708 0.618 0.109

500 LAD 1.624 0.573 0.643 0.382
FAE 1.094 0.667 0.604 0.378
PAE1 1.011 0.757 0.660 0.553
PAE2 1.020 0.891 0.824 0.236
PAE3 1.029 0.700 0.599 0.118

LAD: least absolute deviation estimator
FAE: fully adaptive estimator
PAE: partially adaptive estimator

Table 2: Relative efficiency for regression with two explanatory variables
n Normal Laplace T-3 Log-normal
50 LAD 1.545 0.783 0.857 0.512

FAE 1.341 0.992 0.950 0.509
PAE1 1.055 0.812 0.736 0.525
PAE2 1.092 0.936 0.858 0.206
PAE3 1.132 0.807 0.761 0.167

100 LAD 1.590 0.708 0.787 0.439
FAE 1.205 0.863 0.765 0.385
PAE1 1.031 0.771 0.666 0.486
PAE2 1.052 0.906 0.813 0.194
PAE3 1.087 0.740 0.646 0.118

200 LAD 1.553 0.642 0.709 0.397
FAE 1.125 0.775 0.668 0.304
PAE1 1.020 0.769 0.651 0.492
PAE2 1.034 0.902 0.816 0.202
PAE3 1.060 0.725 0.607 0.110

500 LAD 1.557 0.573 0.694 0.376
FAE 1.089 0.676 0.630 0.302
PAE1 1.007 0.755 0.683 0.535
PAE2 1.013 0.887 0.858 0.232
PAE3 1.017 0.693 0.621 0.119

LAD: least absolute deviation estimator
FAE: fully adaptive estimator
PAE: partially adaptive estimator



Table 3: Relative efficiency for regression with three explanatory variables
n Normal Laplace T-3 Log-normal
50 LAD 1.564 0.825 0.850 0.497

FAE 1.361 1.037 0.961 0.528
PAE1 1.055 0.821 0.742 0.546
PAE2 1.093 0.949 0.857 0.227
PAE3 1.152 0.840 0.773 0.194

100 LAD 1.569 0.705 0.790 0.448
FAE 1.211 0.852 0.769 0.373
PAE1 1.034 0.764 0.666 0.490
PAE2 1.054 0.902 0.811 0.198
PAE3 1.091 0.737 0.653 0.123

200 LAD 1.550 0.642 0.723 0.395
FAE 1.149 0.784 0.690 0.275
PAE1 1.021 0.761 0.658 0.483
PAE2 1.030 0.896 0.824 0.199
PAE3 1.060 0.723 0.621 0.107

500 LAD 1.574 0.572 0.669 0.370
FAE 1.085 0.686 0.636 0.241
PAE1 1.006 0.771 0.683 0.522
PAE2 1.010 0.890 0.872 0.230
PAE3 1.020 0.710 0.625 0.117

LAD: least absolute deviation estimator
FAE: fully adaptive estimator
PAE: partially adaptive estimator

Table 4. Cost function estimation
Intercept log(q) log2(q) log(pl/pf) log(pk/pf)

OLS -3.764 0.153 0.051 0.481 0.074
0.702 0.062 0.005 0.161 0.150

NHN -4.488 0.268 0.043 0.479 0.084
0.719 0.085 0.006 0.150 0.141

PAE -3.998 0.207 0.047 0.491 0.098
0.559 0.073 0.006 0.120 0.109

NHN: normal, half-normal stochastic frontier model
PAE: partially adaptive estimator
Standard errors below coefficients for each estimator




