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Abstract

This paper shows that a near-stationarity boundary condition for heteroskedastic and
autocorrelation consistent estimators can solve the problem of non-monotone power of the
CUSUM test for a single break in the mean of a weakly dependent process.

JEL classifications: C12;C22.

Keywords: Heteroskedastic and autocorrelation consistent estimator; structural break test.

1 Introduction.

The CUSUM test for structural breaks is consistent and has good local asymptotic properties for

given fixed values in the relevant set of alternative hypotheses (e.g. Kramer and Ploberger, 1990).

However in finite samples, its power function can be non-monotone and even reach a zero value as

the alternative considered is further away from the null value. This was shown by Perron (1991)

and Vogelsang (1999) for a family of tests. We focus on the CUSUM test but the results presented

here apply to other tests (e.g. Vogelsang, 1999).

The non-monotone power is due to the variance estimate which scales the CUSUM statistic. The

estimated variance is based on the demeaned observed process or the errors. In the general case

of dependence this is the spectral density function at zero frequency or a Heteroskedastic and

Autocorrelation Consistent (HAC) estimator. The HAC is evaluated under the null hypothesis

which implies that under the alternative the variance yields an inflated estimate. This leads to a
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support of the University of Cyprus research grant 8037-3312-32001 and the 2005 EU Jean Monnet fellowship.
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small scaled CUSUM and thereby loss of power. There are two related sources of overestimation:

(i) The variance is usually based on least-squares or recursive residuals that are contaminated by

the shift under the alternative. As the shift gets larger the variance increases. (ii) When there is

dependence in the process the power problem is exacerbated because the shift induces a bias of the

autoregressive coefficient towards one (Perron, 1989) thereby inflating the variance estimator.

This paper shows that a simple near-stationarity boundary condition for the HAC estimator restores

the monotone power of the CUSUM test for a mean shift in a weakly dependent process. This is

inspired by Andrews (1991) and Sul, Phillips and Choi (2005). We show that this boundary

condition solves the overestimation problem of the variance under the change-point alternative and

preserves the
√
T consistency of the HAC estimator. Simulation and empirical evidence support

this method.

2 HAC estimators for the CUSUM test.

Consider the following stochastic process for a univariate time series, yt :

yt = µ+ ut, t = 1, ..., T, (2.1)

where ut is a second-order stationary mean zero error process. The partial sums process St =Pt
j=1 uj satisfies the Functional Central Limit Theorem (FCLT), for regularity conditions found,

for instance, in Herrndorf (1984), such that T−1/2S[mT ] → σW (m), where W (m) denotes the

standard Wiener process defined on [0, 1] and σ2 = limT→∞E

·
T−1

³PT
t=1 ut

´2¸
.

The CUSUM statistic for detecting structural changes in the mean of yt in (2.1):

CUSUM =
³
σ
√
T
´−1

sup1≤j≤T

¯̄̄̄Xj

t=1
yt −

XT

t=1
yt

¯̄̄̄
→ sup |B(m)|. (2.2)

converges to the supremum of a Brownian Bridge, B(m) =W (m)−mW (1). Equivalently (2.2) can

be expressed in terms of the OLS residuals buOLSt = yt − 1/T
PT

t=1 yt:

CUSUM =
³bσ√T´−1 sup1≤j≤T ¯̄̄Xj

t=1
buOLSt

¯̄̄
(2.3)

where bσ is a consistent estimator under the null of stability. Traditional estimators of σ2 include the
class of non-parametric spectral density estimators given by bσ2 =PT−1

j=−(T−1)K (j/s(T )) bγj , where
K(.) is the kernel function, bγj = T−1

PT
t=j+1 butbut−j , s(T ) is the bandwidth and bσ2 is consistent if

s(T )/T → 0 and s(T ) → ∞ as T → ∞. For instance, Andrews and Monahan (1992) propose the
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prewhitened estimator bσ2PW given by:

bσ2PW = bσ2ε/(1− bρ)2 and bρ =XT

t=2
butbut−1/XT

t=2
bu2t−1, where (2.4)

bσ2ε =XT−1
j=−(T−1)K (j/bsPW (T )) bγεj , bγεj = T−1

XT

t=j+1
bεtbεt−j and bεt = but − ρbut−1. (2.5)

The bandwidth bsPW (T ) is based on the AR(1) plug-in method and depends on the parameterbαPW (1) given by:
bsPW (T ) = 1.1447(bαPW (1)T )1/3, bαPW (1) = 4bρ2ε/(1− bρ2ε)2, bρε =XT

t=2
bεtbεt−1/XT

t=2
bε2t−1, (2.6)

which uses the autoregressive estimate bρε obtained from bεt instead of but.
The recoloring procedure in prewhitened HAC estimators (2.4) involves bρ. Andrews and Monahan
(1992) suggest to replace any bρ that exceeds 0.97 by 0.97 and is less than -0.97 by -0.97. Using
this rule the literature shows that the CUSUM test exhibits non-monotone power. Andrews (1991)

suggests a boundary condition based on the idea of a confidence interval for bρ which can lead
to accurate size of a test and reduce its variance. Sul, Phillips and Choi (2005) propose another

recoloring rule based on T given by the boundary condition bρ0 = min[1− 1/√T ,bρ]. This represents
the maximum allowable value for ρ to be unity minus its asymptotic standard error, 1/

√
T . We

generalize this boundary to represent deviations from unity by some fixed local coefficient c, in the

spirit of the ‘stationary order of magnitude’ distance from unity in Sul, Phillips and Choi (2005),

so that any root preserves near-stationarity and recoloring is based on:

bρ0 = min[1− c/
√
T ,bρ]. (2.7)

The effects of this condition on the finite properties of the CUSUM for given c are evaluated via

simulations in the next section. One could consider c = 1, 1.28, 1.65 in (2.7) where c = 1 is proposed

by Sul, Phillips and Choi (2005) and c = 1.28 and 1.65 are the one-sided confidence intervals values

for near-stationarity deviations from ρ = 1 (given c > 0 such that ρ < 1) that correspond to the

10% and 5% standard normal probabilities, respectively. On theoretical grounds any c > 0 in (2.7)

preserves the consistency of the variance estimator under the null and alternative.

In order to show that condition (2.7) yields a consistent variance estimator consider the process

(2.1) where for simplicity we assume that ut is an AR(1):

ut = ρut−1 + εt, εt ∼ NIID(0, σ2ε). (2.8)

The limiting distribution of the CUSUM depends on bρ and bσ2ε that define the long-run variance
of ut in (2.3). In the parametric model (2.8) the least squares estimate of the long-run variance is
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bσ2u = bσ2ε/(1 − bρ)2. In the non-parametric setting the estimates of 1/(1 − bρ)2 are used in the final
stage of recoloring to obtain the HAC estimator (2.4). Perron (1989) shows that neglected shifts

in (2.8) cause bρ→ 1 which imply bρ = 1+Op(T
−1), (1−bρ)2 = Op(T

−2) and bσ2ε/(1−bρ)2 = Op(T
2).

Consequently, bσu does not satisfy the √T consistency. On the contrary, the near-stationarity

boundary (2.7) controls the order of magnitude of the long-run variance under the alternative of a

spurious unit root and yields bσ2ε/(1− bρ)2 = Op(T ) which is bounded by bσ2u = Tbσ2ε/c2.
Turning now to the prewhitened HAC estimators we explain the effects of spurious unit root

due to neglected breaks. Under the alternative of large shifts ut is I(1) and εt is I(0). HencebαPW (1) = Op(T ) which implies bsPW (T ) = Op(T
2/3). This preserves the consistency of the non-

parametric variance bσ2ε in (2.5) since bsPW (T )/T = Op(T
−1/3) → 0 as T → ∞. The problem

arises at the recoloring stage since the PW HAC estimator (2.4) involves the spurious unit rootbρ = 1 + Op(T
−1) and thereby bσ2PW = Op(T

2) which hurts power. In contrast if we adopt the

near-stationarity recoloring rule (2.7) then bσ2PW = Op(T ) which yields a
√
T consistent bσPW .

In the same vain we show that if we adopt a HAC estimator without prewhitening and condition (2.7)

we maintain consistency under the alternative. When there is no prewhitening bα(1) = 4bρ2/(1−bρ2)2
where bρ is defined in (2.4), bs(T ) = 1.1447(bα(1)T )1/3 and bσ2 =PT−1

j=−(T−1)K (j/bs(T )) bγj (Andrews,
1991). Given the spurious unit root bα(1) = Op(T

2) and bs(T ) = Op(T ) which implies thatbs(T )/T = Op(1) and bσ2 is inconsistent.1 We suggest using (2.7) as the plug-in estimate in obtainingbα(1). This implies that bα(1) = Op(T ), bs(T ) = Op(T
2/3) and bsPW (T )/T = Op(T

−1/3) → 0

as T → ∞. Hence the near-stationarity boundary (2.7) yields
√
T consistent long-run variance

estimators when used as the plug-in estimate in bα(1) for HAC estimators with no prewhitening and
when used as a recoloring method for prewhitened HAC estimators.

3 Simulation and empirical results.

A Monte Carlo analysis is performed to evaluate the effects of the near-stationarity boundary (2.7)

on the finite sample power of the CUSUM test and on the properties of the HAC estimators. The

Monte Carlo design considers the following Data Generating Process:

yt = µ+ δDt + ut, ut = ρut−1 + εt, t = 1, ..., T, (3.9)

where εt ∼ NIID(0, 1), Dt = 0 for t < τ and 1 otherwise and τ = 0.5T is the change-point. The

size of the break δ = 1, 2, ..., 20 represents the alternative hypotheses and δ = 0 denotes the null

hypothesis of stability. In (3.9) we consider ρ = 0.7 and 0.9, T = 100 and 200. The H0 : δ = 0 is

1Vogelsang (1999) and Crainiceanu and Vogelsang (2001) also show that under the alternative the bandwidth
increases at a rate T as the size of the break increases.
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examined using the statistic (2.3) for alternative bσ2PW in (2.4)-(2.6). For K(.) in (2.5) we use the

Quadratic Spectral (QS) and the Bartlett (BT) kernels.2

The power functions of the CUSUM test (adjusted for the empirical size) can be found in Figures

1-8. Each figure compares the four recoloring rules, 0.97 and c = 1, 1.28, 1.65, in (2.7) applied to

the QS and BT kernel HAC estimators. Figures 1-4 refer to ρ = 0.7 in (3.9) while the rest to

ρ = 0.9. Two broad results can be drawn from Figures 1-8: (i) As the size of the break δ increases

the power functions for all c = 1, 1.28, 1.65 in (2.7) approach one, irrespective of the correlation,

sample size or kernel. In contrast, as documented previously in the literature, the power functions

that correspond to 0.97 recoloring yield power as poor as zero for large δ. (ii) For the alternative

values of c in (2.7) we find that there is still some weak evidence of non-monotone power in the

CUSUM for c = 1 when ρ = 0.7 (Figures 1-4), which disappears when ρ = 0.9. In general, c = 1.65

for the near-stationarity boundary condition (2.7) in bσPW yields not only monotone power functions

but also relatively better power compared to c = 1 and 1.28.

Next we turn to the finite sample efficiency of the HAC estimators. Figures 9-14 show the Mean

Absolute Error (MAE) of the HAC estimators (for ρ = 0.7 and T = 200 for conciseness) as a function

of the break, δ. The inflated MAEs for bσPW with the 0.97 recoloring under the alternatives are

shown in Figures 9 and 10 for the QS and BT, respectively. In contrast, for bσPW with 1− c/
√
T

the MAEs in Figures 11-14 are only a fraction of the aforementioned ones. Moreover, the QS for

c = 1.65 yields the lowest relative MAE compared to the BT kernel and alternative c values.

Robustness checks for the finite sample properties of the CUSUM are also performed. The above

results are robust to T ≤ 300, ρ ≤ 0.9 and τ = 0.7T in (3.9) as well as other kernels and

data-dependent bandwidths. The above OLS CUSUM results use a HAC estimator for the sample

demeaned residuals. The OLS CUSUM results are also robust to recursive demeaning of residuals

i.e. buRDt = but− but where but is the recursive mean. Similar results are found for the Recursive Least
Squares CUSUM test. Finally, the above results are valid for a single break alternative hypothesis.3

Summarizing, the simulation results show that the near-stationarity bound (2.7) can restore the

monotone power functions of the CUSUM test and yield HAC estimators which are relatively more

efficient both under the null and the change-point alternative.

This section concludes with an empirical illustration of the above method using the money market

rate of two Asian economies that went through a financial liberalization period in the 1990s. The

data source is the International Financial Statistics and the samples for Korea and Thailand are

8/1979-2/2005 and 1/1977-5/2005, T = 343 and T = 341 monthly data, respectively. The money

2All computations were carried in GAUSS using the random number generator RNDNS from the GAUSS library.
The reported simulation results are based on 2000 Monte Carlo replications.

3These robustness results are available upon request from the author.
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market rates (in logs) in Figures 15 and 16 show a large permanent shift in the late 1990s.4

The empirical results of the CUSUM test for HAC estimators with prewhitening using alternative

boundaries are summarized in Table 1. Whilst bσPW with the 0.97 recoloring rule fails to detect a

break, the boundary 1− c/
√
T , for all c = 1, 1.28, 1.65, estimates July 1998 and September 1998 as

the change-points in the money rates of Korea and Thailand, respectively, at the 5% critical level.

These results are supported by the two kernel estimates, the QS and BT, and both sample and

recursive demeaning methods of residuals. Moreover the sequential sample segmentation method of

Bai (1997) does not provide evidence for multiple change-points. The vertical time lines in Figures

15 and 16 show the location of the estimated breaks which are related to reforms in the money

market instruments in Korea and to the banking system in Thailand.

4 Final remarks.

Other HAC estimators to overcome the non-monotone power problem of the CUSUM test are

proposed in Altissimo and Corradi (2003) where the long-run variance is based on local mean

estimates. This method directly deals with the inconsistency of the mean and variance estimates

under the alternative. The results here are complementary since an alternative approach is pursued

that does not involve local mean estimates but annihilates the divergence of the HAC estimator

(caused by bρ→ 1 due to the mean shift) via the near-stationarity boundary condition (2.7). This

condition also retains
√
T consistency of the HAC under the alternative hypothesis of a single break.

At the same time this is a simple procedure that restores the monotone power of the CUSUM test

as shown by the simulation and empirical results.
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Table 1: CUSUM tests for the money market rate using alternative HAC estimators
KOREA THAILAND
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Residual
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1-1.28/
√
T 1.594 (7/1998) 1.868 (7/1998) 1.634 (9/1998) 2.193 (9/1998)

1-1.65/
√
T 1.662 (7/1998) 1.797 (7/1998) 1.728 (9/1998) 2.717 (9/1998)

Recursive 0.97 1.078 1.244 1.059 0.972
1-1/

√
T 1.446 (7/1998) 1.771 (7/1998) 1.541 (9/1998) 1.744 (9/1998)

1-1.28/
√
T 1.580 (7/1998) 1.844 (7/1998) 1.644 (9/1998) 2.203 (9/1998)

1-1.65/
√
T 1.645 (7/1998) 1.765 (7/1998) 1.734 (9/1998) 2.728 (9/1998)
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Figure 1: Pow er functions of the CUSUM test for QSHAC 
estimators of OLS residuals of an AR(1) w ith ρ=0.7, T=100
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Figure 2: Pow er functions of the CUSUM test for BTHAC 
estimators of OLS residuals of an AR(1) w ith ρ=0.7, T=100
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Figure 3: Pow er functions of the CUSUM test for QSHAC 

estimators of OLS residuals of an AR(1) w ith ρ=0.7, T=200
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Figure 4: Pow er functions of the CUSUM test for BTHAC 
estimators of OLS residuals of an AR(1) w ith ρ=0.7, T=200
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Figure 5: Pow er functions of the CUSUM test for QSHAC 

estimators of OLS residuals of an AR(1) w ith ρ=0.9, T=100
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Figure 6: Pow er functions of the CUSUM test for BTHAC 
estimators of OLS residuals of an AR(1) w ith ρ=0.9, T=100
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Figure 7: Pow er functions of the CUSUM test for QSHAC 

estimators of OLS residuals of an AR(1) w ith ρ=0.9, T=200
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Figure 8: Pow er functions of the CUSUM test for BTHAC 
estimators of OLS residuals of an AR(1) w ith ρ=0.9, T=200

-0,2
0

0,2
0,4
0,6
0,8

1
1,2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Break size

Po
w

er
 a

dj
us

te
d

BT_0.97 BT_(1-1√T)
BT_(1-1.28/√T) BT_(1-1.65/√T)

 



 9

 
 

Figure 9: MAE of the QSHAC estimators of OLS residuals of an 
AR(1), ρ=0.7, T=200
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Figure 10: MAE of the BKHAC estimators of OLS residuals of an 
AR(1), ρ=0.7, T=200
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Figure 11: MAE of the QSHAC estimators of OLS residuals  of an 

AR(1), ρ=0.7, T=200
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Figure 12: MAE of the BKHAC estimators for OLS residuals of an 
AR(1) , ρ=0.7, T=200
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Figure 13: MAE of the QSHAC estimators of OLS residuals of an 

AR(1), ρ=0.9, T=200
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Figure 14: MAE of the BKHAC estimators for OLS residuals of an 
AR(1) , ρ=0.9, T=200
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Figure 15: Korea monthly money market rate 

and estimated break point  

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

1976/8 1981/5 1986/2 1990/11 1995/8 2000/5 2005/2

M
on

ey
 ra

te

Figure 16: Thailand montly money market rate 
and estimated break point  
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