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Abstract

The idea of using estimating functions goes a long way back, at least to Karl

Pearson’s introduction to the method of moments in 1894. It is now a very active

area of research in the statistics literature. One aim of this chapter is to provide an

account of the developments relating to the theory of estimating functions. Starting

from the simple case of a single parameter under independence, we cover the multi-

parameter, presence of nuisance parameters and dependent data cases. Application

of the estimating functions technique to econometrics is still at its infancy. However,

we illustrate how this estimation approach could be used in a number of time series

models, such as random coefficient, threshold, bilinear, autoregressive conditional

heteroscedasticity models, in models of spatial and longitudinal data, and median

regression analysis. The chapter is concluded with some remarks on the place of

estimating functions in the history of estimation.
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1 Prologue: Early Appearances of the Concept of

Estimating Function in Statistics

1.1 A defining moment in the history of statistics

In the history of any scientific field there is always a defining moment - a moment

that arrives with some maturity and when an authoritative figure clearly states the

purpose, progress and problems of the field. For statistics, it can be safely argued

that, the defining moment arrived in 1922 with the appearance of Fisher’s epochal

article, “ On the Mathematical Foundations of Theoretical Statistics.” After dis-

cussing the purpose of statistical methods, Fisher (1922, p.313) proclaimed the three

fundamental problems in statistics as :

“(1) Problems of Specification. These arise in the choice of the mathematical form

of the population.

(2) Problems of Estimation. These involve the choice of methods of calculating from

a sample statistical derivates, or as we shall call them statistics, which are designed

to estimate the values of the parameters of the hypothetical population.

(3) Problems of Distribution. These include discussions of the distribution of statis-

tics derived from samples, or in general any functions of quantities whose distribution

is known.”

Fisher did not dwell much on the Problem of Specification, and quickly stated

(p.315), “ The discussion of theoretical statistics may be regarded as alternating

between problems of estimation and problems of distribution.” He occupied himself

mostly with the problems of estimation and distribution. In terms of estimation,

he went on to introduce some of the fundamental concepts, such as, consistency,

efficiency and sufficiency. These concepts solely focussed on estimators which are

functions of observations alone. Fisher demonstrated that his suggested method of

estimation, namely, the maximum likelihood (ML) method [Fisher (1912)] is “su-

perior” to Karl Pearson’s method of moments [Pearson (1894, 1902)] in terms of

efficiency.

1.2 Estimating function approach: A short introduction

In the estimating function (EF) approach to estimation, the focus is on a func-

tion that involves both the parameters and the sample, such as g(y, θ) where y =

(y1, y2, . . . , yn) represent the data and, θ denotes the parameter. We obtain the esti-

mator say, θ̂ by solving g(y, θ) = 0, which we will call the estimating equation (EE).
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We can impose certain desirable properties on the function g(y, θ) rather than on

the resulting estimator θ̂. For example, g(.) is unbiased if E[g(y, θ)] = 0; g(.) is a

minimum variance unbiased (MVU) EF if V ar[g(y, θ)] is minimum among all unbi-

ased estimating functions (EFs). At the outset, the benefits of focusing on the EFs

rather than on the estimators are not so immediate. Following Durbin (1960) let us

consider the first-order autoregressive (AR) model:

yt = θyt−1 + ut; ut ∼ IID(0, σ2), t = 1, . . . , n. (1)

In the context of least squares (LS) estimation, we can focus our attention on three

quantities. First, the objective function to be minimized with respect to θ, namely

min
θ

n∑
t=2

(yt − θyt−1)
2. (2)

Second, the equation for solving the optimization problem,

g(y, θ) =
n∑

t=2

ytyt−1 − θ

n∑
t=2

y2
t−1 = 0, (3)

and finally, the estimator θ̂, itself,

θ̂ =
n∑

t=2

ytyt−1/

n∑
t=2

y2
t−1. (4)

A major part of the estimation literature is concerned with the properties of

the estimators, like θ̂ such as unbiasedness, consistency and efficiency. The robust

approaches to estimation emphasize the objective function, for example another le-

gitimate function that we can minimize is
∑n

t=2 |yt−θyt−1|. However, the function (2)

has an extra appeal of being the same objective function under the ML framework

with normality assumptions on the errors ut. Durbin (1960) observed that viewing

the LS estimators as roots of certain equations such as (3), i.e., working with the

first order conditions directly, is much more convenient than studying the objective

function like (2) or the estimator θ̂ in (4). The function g(y, θ) in (3) is linear in the

parameter θ and E[g(y, θ)] = 0. Durbin (1960) termed g(y, θ̂) = 0 as linear unbiased

estimating equation. This is a finite sample characterization of the EF g(y, θ), and

it is clear that we cannot attach desirable properties, such as linearity and unbiased-

ness, to the resulting estimator θ̂ in (4). Also, as we know, the standard ML estimator

(MLE) emphasizes asymptotic efficiency rather than finite-sample properties. This

simple example illustrates the benefits of focussing on the EFs rather than on the
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estimators. As we will see later, many of the standard methods of estimation, such

as LS, ML, minimum χ2 and M-estimation, can be considered as special cases of the

EF approach.

The literature on estimating functions and equations is indeed very vast. There

are quite a few survey articles, such as, Desmond (1989), Heyde (1989), Bhat (1990),

Godambe and Kale (1991), Liang and Zeger (1995), Naik-Nimbalkar (1996), Vinod

(1998) and Kale (2001-2002). Several books and edited volumes are also devoted on

this subject, for example, see, McLeish and Small (1988), Godambe (1991a), Chen

(1992), Basawa, Godambe and Taylor (1997), Heyde (1997) and Mukhopadhyay

(2004). However, these papers and books do not cover the very early developments on

estimating functions and equations, as discussed below. Also, apart from describing

the formal theoretical progress as done in this and the following sections, another

aim of this review paper is to explore the usefulness of this estimation technique to

econometrics. We attempt to do that in Section 3. While providing the narrative

details on some key theoretical developments, we also try to offer some personal

perspectives by adding a human element to our narration. It is our experience that

students take a greater interest in a subject when they clearly see the historical

progress and know more about the personalities involved. The overall aim of this

chapter is quite modest; our main purpose is to provide an easy-to-access description

of EF approach and its potential applications to econometrics, to attract students’

attention to this fascinating research area.

1.3 The origin of (optimal) estimating equation/ function

and some surprising findings

The idea of using EFs or equations goes a long way back, at least to Karl Pear-

son’s (1894) introduction of the method of moments. To the best of our knowledge,

the term “estimating equation” was first used by Yule (1902, p.197). It, however,

referred to estimated linear regressions like, ŷi = x′iβ̂, using the popular notation.

Therefore, it is quite different from our notion of an EE or EF. When one reads the

literature on EF, the presented history appears to be very unambiguous. With minor

reference to Fisher (1935a) and Kimball (1946) in terms of terminology and concepts,

the whole development appears to starts from Durbin (1960) and Godambe (1960).

However, this temporal clarity veils some of the much earlier, though disconnected,

developments. Here we make an attempt to record those historical developments.

Of course, it is quite possible that, we still miss certain important work.

Although, quite justifiably, R. A. Fisher [Fisher (1912)] is credited with inventing

the ML method of estimation, as we all know, nothing under the sun is completely
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new. ML estimation pre-figured many times in earlier works, such as, Edgeworth

(1908, 1909) [see Bera and Bilias (2002, fn 9)]. Edgeworth (1909) is a continuation

of Edgeworth (1908), where he attempts to prove a Cramér-Rao type inequality,

more specifically to show that the posterior mode has the smallest variance. The

treatment of 1909 article is more ambitious and the set up is quite general [for an

illuminating exposition, that we follow, see Hald (1998, pp.703-705)]. Edgeworth

(1909, p.82) stated his objective as, to “determine that function of which the several

values, each formed from a large set of observations, hover with minimum dispersion

about the true value of some constant represented by a symmetrical function of the

observations.” He considered the location model with “law of frequency” (probability

density function) f(y − θ) and a class of functions defined by the equation

n∑
i=1

h(yi − θ̂) = 0, (5)

where h is an arbitrary function satisfying E[h(y − θ)] = 0 and the derivative of h

at zero, h′(0) 6= 0. To approximate the “error” in estimation e = θ̂ − θ, let us write

h(yi − θ̂) = h(zi − e), where zi = yi − θ. Now a Taylor expansion gives

0 =
n∑

i=1

h(yi − θ̂) =
n∑

i=1

h(zi − e) =
n∑

i=1

h(zi)− e

n∑
i=1

h′(zi) + . . . , (6)

and hence a first approximation to the error term e is

e =

∑n
i=1 h(zi)∑n
i=1 h′(zi)

. (7)

Replacing sums by integrals, Edgeworth obtained the asymptotic fluctuations

(variance) of e as

V ar(e) =
1

n

∫
h2(y)f(z)dz

[
∫

h′(y)f(z)dz]2
=

1

n

P 2

Q2
, say, (8)

where f(z) denotes the probability density function. His objective was to find the

function “h” such that P 2/Q2 is minimum. A minimum is secured if h is such that,

when it receives an arbitrary variation (δh), the first term of variation vanishes and

the second term is positive. Using Schwartz’s inequality, Edgeworth (1909, p.84)

proved the positivity of the second term. Let us concentrate only on the first term of

the variation obtained by putting h + (δh) in place of h. Using a simplified notation,

we have
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∫
[h + (δh)]2 fdz[∫
[h′ + (δh′)] fdz

]2 =

∫
h2fdz + 2

∫
(δh)hfdz +

∫
(δh)2fdz[∫

h′fdz
]2

+ 2
∫

h′fdz
∫

(δh′)fdz +
[∫

(δh′)fdz
]2

=
P 2

[
1 + 2P−2

∫
(δh)hfdz + . . .

]

Q2
[
1 + 2Q−1

∫
(δh′)fdz + . . .

]

=
P 2

Q2

[
1 + 2P−2

∫
(δh)hfdz + . . .

] [
1 + 2Q−1

∫
(δh′)fdz + . . .

]−1

.

(9)

Since
∫

(δh′)fdz = (δh)f ]∞−∞ −
∫

(δh)f ′dz = − ∫
(δh)f ′dz, an approximation to (9),

is given by

P 2

Q2

[
1 + 2P−2

∫
(δh)hfdz + 2Q−1

∫
(δh)f ′dz

]
=

P 2

Q2

[
1 + 2

∫
(δh)

{
P−2hf + Q−1f ′

}
dz

]
.

(10)

Therefore, a necessary condition for minimizing V ar(e) in (8), is that the expression

in (10) is zero , or equivalently,

P−2hf + Q−1f ′ = 0

i.e., h(z) = −P 2

Q
.
f ′(z)

f(z)
= c

f ′(z)

f(z)
= c

d log f(z)

dz
, (11)

where c is a constant. In other words, for minimum variance h(z) should be propor-

tional to the score function. At this optimum h(z),

P 2 =

∫
c2

(
f ′

f

)2

fdz = c2

∫ (
f ′

f

)2

fdz = c2I,

Q =

∫
h′fdz = hf ]∞−∞ −

∫
f ′hdz = 0−

∫
f ′c.

f ′

f
dz = −c

∫ (
f ′

f

)2

fdz = −cI,

(12)

where I =
∫ (

f ′
f

)2

fdz = E

[(
f ′
f

)2
]

is the standard Fisher’s information on each

observation. From (8), V ar(e) reduces to

1

n

P 2

Q2
= (nI)−1. (13)

Therefore, the asymptotic variance of θ̂, obtained from the optimal EF, reaches the

Cramér-Rao lower bound (CRLB).

Edgeworth did not proceed further with his optimal “estimating function” ap-
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proach. He was more interested in proving that the posterior mode (which is the

same function of the observations as the ML estimate) has the smallest asymptotic

sample variance. Historically, Edgeworth’s work has been treated as precursor to

Fisher’s (1912, 1922) work on the ML method. However, now we can see that it is

much more than that. It has the fundamental result of the EF approach. Of course,

Edgeworth did not grasp the far reaching implication of his result, and neither did

R. A. Fisher (a rare occasion), in the context of his article Fisher (1935a). As noted

by several researchers [see for example, Desmond (1989, p.57)] the term “equation of

estimation” with its current meaning, first appeared in Fisher (1935a, p.45). What

is overlooked in the EF literature is another of Fisher’s pathbreaking results which

we will discuss shortly. The result is the same as Edgeworth’s, but Fisher did it quite

elegantly and under a more general set up.

To maintain a chronological order, we now present yet another result by Fisher

that may be regarded as the first substantial illustration on the use of EEs. Fisher

(1924) wanted to compare ML and minimum χ2 as methods of estimation. He

simply showed that they are asymptotically equivalent by comparing the first order

conditions of the two estimation procedures. For him, it was much easier to analyze

properties of estimators when focusing on the corresponding EEs rather than on the

objective functions or estimators themselves. The same is possibly true even after

eight decades.

To illustrate, let us consider the minimum χ2 objective function,

χ2(θ) =
k∑

j=1

[nj − nqj(θ)]
2

nqj(θ)
, (14)

where nj is the observed frequency, and qj(θ) is the probability of being in the j-th

class, j = 1, 2, . . . , k with θ = (θ1, θ2, . . . , θp)
′ as the unknown parameter vector. Let

n =
∑n

j=1 nj ; thus nqj(θ) is the expected frequency of the j-th class. We can write

χ2(θ) =
k∑

j=1

n2
j

nqj(θ)
− n.

Therefore, the minimum χ2 estimates will be obtained by solving ∂χ2(θ)/∂θ = 0,

i.e., from

k∑
j=1

n2
j

[nqj(θ)]2
∂qj(θ)

∂θl

= 0, l = 1, 2, . . . , p. (15)

To connect these equations to those from Fisher’s (1912) ML equations, we note

that, since
∑k

j=1 qj(θ) = 1, we have
∑k

j=1 ∂qj(θ)/∂θl = 0. Therefore, from (15), the
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minimum χ2 EEs are

k∑
j=1

n2
j − [nqj(θ)]

2

[nqj(θ)]2
∂qj(θ)

∂θl

= 0, l = 1, 2, . . . , p. (16)

Under the multinomial framework, Fisher’s likelihood function, denoted as L(θ) is

L(θ) = n!
k∏

j=1

[(nj!)
−1]

k∏
j=1

[qj(θ)]
nj .

Therefore, the log-likelihood function, denoted by `(θ), can be written as

log L(θ) = `(θ) = constant +
k∑

j=1

nj log qj(θ).

The corresponding ML EEs are ∂`(θ)/∂θ = 0, i.e.,

k∑
j=1

nj

qj(θ)

∂qj(θ)

∂θl

= 0,

or, equivalently,

k∑
j=1

[nj − nqj(θ)]

nqj(θ)

∂qj(θ)

∂θl

= 0, l = 1, 2, . . . , p. (17)

Fisher (1924) argued that the difference between (16) and (17) is of the factor

[nj + nqj(θ)]/nqj(θ), which tends to the value 2 for large values of n and, therefore,

these two methods are asymptotically equivalent. The point we want to emphasize

is that to compare estimates from two different methods, Fisher (1924) used the

“estimating equations” rather than the estimates themselves. Here let us mention

that, although the two EEs (16) and (17) are asymptotically equivalent, there is

a fundamental difference. Since E(nj) = nqj(θ) and E(n2
j) = nqj(θ)[1 − qj(θ)] +

[nqj(θ)]
2, the EFs corresponding to the minimum χ2 method are not unbiased, while

the EFs for the ML method are. As we will discuss later, unbiasedness of the EF

is a very important requirement. Of course, unbiased EF may not lead to unbiased

estimator.

Now getting back to Fisher (1935a), for ease of exposition, we replace Fisher’s

“summation” sign by an integral. Fisher (1935a, p.45) started with an unbiased EF

k(y, θ). Differentiating

E[k(y, θ)] =

∫
k(y, θ)f(y, θ)dy = 0, (18)
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where f(y, θ) denotes the density function. Fisher obtained

∫
dk(y, θ)

dθ
f(y, θ)dy = −

∫
k(y, θ)

df(y, θ)

dθ
dy. (19)

A Taylor series expansion of the sample equation of estimation
∑n

i=1 k(yi, θ̂) = 0,

around θ gives

0 =
n∑

i=1

k(yi, θ) + (θ̂ − θ)
n∑

i=1

dk(yi, θ)

dθ
+ . . . , (20)

i.e., approximately,

(θ̂ − θ) = −
∑n

i=1 k(yi, θ)∑n
i=1

dk(yi,θ)
dθ

. (21)

Hence, using (19), the asymptotic variance of θ̂ is given by

V ar(θ̂) =

∫
k2(y, θ)f(y, θ)dy

n
[∫ dk(y,θ)

dθ
f(y, θ)dy

]2

=

∫
k2(y, θ)f(y, θ)dy

n
[∫

k(y, θ)df(y,θ)
dθ

dy
]2 . (22)

This is same as Edgeworth’s equation as given in (8). After obtaining the expression

(22), Fisher (1935a, p.46) stated, “We may now apply the calculus of variations or

simple differentiation to find the functions of k, which will minimize the sampling

variance. Since the variance must be stationary for variations of each several values

of k, the differential coefficients of the numerator and the denominator with respect

to k, must be proportional for all classes.” Thus for the “optimal values of k,” he

obtained

k(y, θ)f(y, θ) ∝ df(y, θ)

dθ
, (23)

which is satisfied by putting

k(y, θ) =
1

f(y, θ)

df(y, θ)

dθ
=

d log f(y, θ)

dθ
. (24)

Fisher then noted that E[k(y, θ)] = 0 is the ML equation, and at the optimum

value of k(y, θ) in (24), the asymptotic variance in (22) reduces to
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V ar(θ̂) =
1

n

[∫ (
d log f(y,θ)

dθ

)2

f(y, θ)dy

] =
1

nI(θ)
, say. (25)

Fisher (1935a, p.44) defined I(θ) as the amount of information supplied by each

observation.

1.4 Asymptotically shortest confidence interval using opti-

mal estimating function

Fisher (1935b) developed a theory of fiducial inference by considering a function, say,

g(y, θ) which is pivotal, i.e., its distribution is free of θ. Wilks (1938) utilized this

approach for interval estimation [see also Wilks (1962, pp.371-376)]. He considered

the pivotal function

√
np(y, θ) =

∑n
i=1 S(yi, θ)[

1
n

∑n
i=1 S2(yi, θ)

]1/2
, (26)

where S(yi, θ) = d log f(yi,θ)
dθ

. Under certain regularity condition
√

np(y, θ) →D N(0, 1),

and, hence, asymptotically it is pivotal. Now, denoting θ̂ as MLE,

0 = p(y, θ̂) = p(y, θ) + p′(y, θ)(θ̂ − θ) + . . . , (27)

where p′(y, θ) = dp(y, θ)/dθ. Therefore,
√

n(θ− θ̂)p′(y, θ) is asymptotically equivalent

to
√

np(y, θ) and hence distributed as N(0, 1) for large enough n. Utilizing this result,

Wilks (1938) obtained the (1− α)100% confidence interval for θ as

lim
n→∞

Pr
[
−Zα/2 ≤

√
n(θ − θ̂)p′(y, θ) ≤ Zα/2

]
= 1− α, (28)

where Zα/2 is the upper α/2-quantile of the standard normal distribution. Thus we

have

lim
n→∞

Pr

[
θ̂ − Zα/2√

np′(y, θ)
≤ θ ≤ θ̂ +

Zα/2√
np′(y, θ)

]
= 1− α. (29)

Wilks (1938) further showed that, under certain regularity conditions, the ratio of

the squared length of this interval to that of a similar interval using any arbitrary

EF, converges in probability to a number that cannot exceed 1. In other words,

the asymptotically shortest confidence intervals results when the pivotal function is

constructed from the score function S(y, θ) as in (26). Wald (1942) obtained the

same result under a more general framework. Barnard (1973) further explored the

advantages of Fisher’s approach of formulating the parameter estimation problem in
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terms of pivotal quantities.

1.5 Sufficient statistical estimating function

As we mentioned in Section 1.1, Fisher (1922) suggested three important criteria

of estimation, namely, consistency, efficiency and sufficiency; and of these three, he

found the concept of “sufficiency” to be most powerful to advance his ideas on ML

estimation. He defined “sufficiency” as (p.310): “A statistic satisfies the criterion

of sufficiency when no other statistic which can be calculated from the same sample

provides any additional information as to the value of the parameter to be estimated.”

However, as it is now well known, there are certain distributions for which it is

not possible to find nontrivial sufficient statistic(s) for the underlying parameter(s).

Kimball (1946) worked with the extreme-value distribution with density function

f(y; θ) = αe−α(y−u)e−e−α(y−u)

, (30)

where α and u denote parameters. Kimball found the ordinary definition of suffi-

ciency to be inadequate for this distribution; however, he (p.299) “was struck by the

fact that certain functions of the data involving one of the parameters could be used

to play a very similar role to a set of sufficient statistic for determining α and u, in

spite of the fact that one function involved the value of α, and hence was not directly

determined by the data, - and hence not a ‘statistic’.” He argued for a broader defini-

tion of sufficiency and introduced a new terminology (p.300) that of the “statistical

estimating function.” Possibly, this was the first occurrence of the term in the sense

currently used in the literature. Kimball (1946), however, acknowledged Wald (1940)

who stated (p.290, fn 13), “An ‘estimate’ is usually a function of the observations

not involving any unknown parameters. We designate here as estimates also some

functions involving the parameter α.”

Rao (1945, p.81) also used the term “estimating function” as: “The validity of this

(ML) principle arises from the fact that out of a large class of unbiased estimating

functions following the normal distribution the function given by maximizing the

probability density has the least variance.” We see from the context that he essentially

meant “estimating function” of sample y = (y1, y2, . . . , yn) only. However, if we

consider Rao’s sentence “out of context,” he might as well be stating that ML method

is based on optimal EF! Kimball (1946) also introduced the concept of a “stable”

EF as the one whose expectation is constant in the parameter. In the context of

errors-in-variables models, Kendall (1951) introduced an “unbiased” EE which led

to an biased estimator. Kendall’s concept of unbiasedness is very close to that of

stability used by Kimball (1946). Kendall (1951, p.21) emphasized, “We must draw
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a distinction between an unbiased estimator and an unbiased estimating equation.”

Suppose the density function involves p parameters θ = (θ1, θ2, . . . , θp)
′, and we

have a sample y = (y1, y2, . . . , yn). Kimball (1946, p.302) defined a set statistical

functions g1(y, θ), g2(y, θ), . . . , gp(y, θ) to be sufficient estimating functions (SEFs) if

(i) There is a one-to-one correspondence between (g1, g2, . . . , gp) and

(θ1, θ2, . . . , θp).

(ii) It is possible to express the joint distribution (likelihood function)

f(y1, y2, . . . , yn; θ) as

f(y; θ) = f(y1, y2, . . . , yn; θ) = f1(g1, g2, . . . , gp; θ)f2(y1, y2, . . . , yn),

where the first factor is purely function of the EFs and parameters, and the

second factor is free of the parameters.

Clearly, the requirement (ii) is along the lines of Neyman-Fisher factorization. To

illustrate his approach, Kimball considered a distribution with two parameters θ1

and θ2, and claimed that the score functions

Sθ1(y; θ1, θ2) =
∂ log f(y; θ1, θ2)

∂θ1

(31)

and

Sθ2(y; θ1, θ2) =
∂ log f(y; θ1, θ2)

∂θ2

(32)

are SEFs according to the above definition. To see this, note that log f(y; θ1, θ2) can

be expressed as

log f(y; θ1, θ2) =

∫ θ1

θ0
1

Sθ1(y; θ1, θ2)dθ1 +

∫ θ2

θ0
2

Sθ2(y; θ1, θ2)dθ2 + log f(y; θ0
1, θ

0
2), (33)

where θ0
1 and θ0

2 are arbitrarily chosen from the parameter space. The first two term

in (33) entirely depends on scores Sθ1 , Sθ2 (along with the parameters) and while the

third term is free of θ1 and θ2.

For the extreme value distribution in (30), Kimball (1946, p.304) showed that

g1(y; θ) = [α(y − u)− C] , (34)

g2(y; θ) =

[
z

z0

− 1

]
, (35)

12



where C = E[α(y−u)], zi = exp[−αyi] with mean z, z0 = exp[−αu], are SEFs. Using

57 years of maximum flood data, Kimball (1946) estimated the parameters α and

u based on EFs g1(y; θ) and g2(y; θ), and compared them with the ML estimates.

Although, Kimball’s approach was very novel, it was not followed up much in the later

literature on EF, though Kale (1962) connected sufficiency to the extended CRLB,

and Bhapkar (1991) argued that for any given EF, a sufficient statistic can be used to

derive a more informative EF. McLeish and Small (1988, Ch.2) discussed ancillarity,

sufficiency and projection in the context of EFs and advocated that sufficiency for

EFs should be developed in its own right.

To summarize, in the first half of the last century, we notice some very important

but rather sporadic and disconnected progress in the EF approach. Though the

criteria unbiasedness and sufficiency have been thought of as requirements for an

EF, what was missing from all these developments is any notion of optimality of the

EF. The topic was almost forgotten for several years. It was then rekindled with

the appearance of V. P. Godambe’s seminal article in 1960, the essence of Godambe

(1960) being the introduction of an “optimality” criteria in addition to unbiasedness.

This is very much akin to Neyman and Pearson’s (1933) theory of hypothesis testing,

where they introduced the concept of optimality (through maximization of power)

to the earlier somewhat ad hoc significance and likelihood ratio tests. Godambe

(1960) introduced optimality through the minimization of the variance of “unbiased

estimating functions” for independent samples while, Durbin (1960) did it mainly for

the linear unbiased EF for dependent data in the context of AR time series model.

2 Basic Theory of Estimating Functions

Fisher (1935a) noted a basic fact of estimation that any procedure for obtaining an

estimate of parameter θ can be regarded as a solution to an equation, like

g(y; θ) = 0, (36)

where g(y; θ) is a function of the observation vector y = (y1, y2, . . . , yn)′ and param-

eter θ. The traditional approach to estimation imposes conditions on the resulting

estimator θ̂, such as linearity, unbiasedness, consistency, invariance, minimum vari-

ance etc. The EF approach shifts the attention from the estimator θ̂ to the properties

of the EF. For example, we will consider an unbiased EF instead of an unbiased θ̂,

i.e., we will require

E[g(y; θ)] = 0. (37)
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The notion of unbiasedness of an EF is an extension of that of an estimator, and it

ensures that the root of the equation (36) is close to the true value of the parameter θ

when little random variation is present. When g(y; θ) has a special form, for instance,

g(y; θ) = g(y)−θ, then θ̂ = g(y) and an unbiased EF leads to an unbiased estimator.

However, in general, the requirement (37) does not necessarily imply unbiasedness

of the resulting estimator, though under certain regularity conditions it does imply

consistency of the estimator [see Desmond (1997, p.80)]. For more on the role and

importance of unbiasedness in EFs, see Yanagimoto and Yamamoto (1991, 1993).

As we discussed in Section 1, the importance of the role of unbiasedness and

sufficiency [as in Kimball (1946)] was well recognized. The missing element was a

criterion of optimality. Durbin (1960, p.146) stated, “it seems reasonable to develop

the idea of unbiased estimating equations with minimum variance” and exploited

this idea to derive optimal linear unbiased EFs, reminiscent of the Gauss-Markov

theorem. Around the same time, Godambe (1960) started with a class of EFs sat-

isfying certain conditions, which he called regular EFs and devised a procedure to

select an optimal EF.

2.1 The fundamental result: Godambe (1960) and Durbin

(1960)

Godambe’s (1960) regular EF g(y; θ) satisfies the following conditions:

(i) E[g(y; θ)] =
∫

g(y; θ)f(y; θ)dy = 0,

(ii) dg(y;θ)
dθ

exists for all θ ∈ Θ, where Θ is the parameter space,

(iii)
∫

g(y; θ)f(y; θ)dy is differentiable under the sign of integration,

(iv) E
[

dg(y;θ)
dθ

]2

> 0, for all θ ∈ Θ,

(v) V ar[g(y; θ)] = E[g2(y; θ)] < ∞.

Godambe (1960) also assumed that the likelihood function f(y; θ) = Πn
i=1f(yi; θ)

satisfies the regularity conditions required for establishing the CRLB. For ease of

exposition, we now consider the scalar parameter case; EF for the multiparameter

case and the presence of nuisance parameters will be discussed in Sections 2.2 and

2.3, respectively. Let G denotes the class of all regular EFs.

Definition 2.1: A g∗ ∈ G is said to be optimal if

E[g∗2(y; θ)]{
E

[
dg∗(y;θ)

dθ

]}2 ≤
E[g2(y; θ)]{
E

[
dg(y;θ)

dθ

]}2 , (38)

14



for all g ∈ G and θ ∈ Θ.

Godambe’s (1960) justification for this criterion is as follows. First, it is desirable

that g(y; θ) is as close as possible to zero when evaluated at the true value of θ, i.e.,

we should minimize V ar[g(y; θ)] = E[g2(y; θ)], and hence we should have

E[g∗2(y; θ)] ≤ E[g2(y; θ)]. (39)

Second, g(y; θ + δθ) should differ from E[g(y, θ)] = 0 by as large quantity as pos-

sible. This is a kind of “sensitivity” requirement, which can also be viewed as an

“identification” condition. This translates as {E[dg(y; θ)/dθ]}2 should be as large as

possible, i.e.,

{E[dg∗(y; θ)/dθ]}2 ≥ {E[dg(y; θ)/dθ]}2 . (40)

These two goals (39) and (40) can be accomplished simultaneously by Godambe’s

criterion in (38). Now we can state and prove Godambe’s celebrated result.

Theorem 2.1: For all g ∈ G,

E[g2(y; θ)]{
E

[
dg(y;θ)

dθ

]}2 ≥
1

E
[

d log f(y;θ)
dθ

]2 , (41)

and the equality is attained by the EF g∗(y; θ) = d log f(y; θ)/dθ.

Here with a slight change of notation we denote E[d log f(y; θ)/dθ]2 = nI(θ) as

the Fisher’s information contained in the whole sample y = (y1, y2, . . . , yn). The

proof of Theorem 2.1 is very similar to that of the CRLB.

Proof: Differentiating the unbiasedness condition (37) with respect to θ, we

obtain

∫
dg

dθ
fdy +

∫
g
d log f

dθ
fdy = 0,

i.e.,

E

[
dg

dθ

]
= −Cov

[
g,

d log f

dθ

]
. (42)

Here we suppress the arguments of the functions g(y; θ) and f(y; θ) for ease of nota-

tion. Since

{
Cov

[
g,

d log f

dθ

]}2

≤ V ar[g]V ar

[
d log f

dθ

]
,

using (42) we have,
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{
E

[
dg

dθ

]}2

≤ V ar[g]E

[
d log f

dθ

]2

and the result follows immediately.

This result was also mentioned by Durbin (1960, p.145), and he acknowledged

G. A. Barnard for suggesting “extension to non-linear estimating equations” from

his linear EFs. Godambe (1960) was also aware of this as he stated (p.1210): “The

author acknowledges with pleasure that G. A. Barnard communicated to the Royal

Statistical Society, London, a result similar to the preceding theorem, independently,

and at nearly the same time when the paper was written,” and he made a reference

to Durbin (1960, p.415). Godambe’s manuscript was received by the Annals of

Mathematical Statistics on July 28, 1959, and the revised version on May 17, 1960.

Durbin’s paper, most possibly the final version, was received by the Journal of the

Royal Statistical Society on August 1959. It is quite a coincidence that Godambe and

Durbin reported “similar” (in fact the same) result “at nearly the same time.” To put

this result in an historical context, let us recall that Rao (1945) and Crámer (1946)

provided the finite sample version of Fisher’s result that the asymptotic variance

of a consistent estimator is bounded below by the reciprocal of Fisher information

measure. We can view the Godambe-Durbin result as the finite sample version of the

Edgeworth (1909) and Fisher (1935a) result [noted in equation (11) and (24)] that

asymptotically the score function d log f(y; θ)/dθ is the optimum EF. Therefore, from

the Godambe-Durbin result, for the first time we have a finite sample justification

of the ML method of estimation.

Durbin is well known among econometricians, starting from his celebrated Durbin-

Watson test statistics for serial correlation. An account of Durbin’s life and work is

also available from the ET interview [see Phillips (1988)]. However, Godambe (and

his work) is somewhat unfamiliar to econometricians. The only references to his work

on EF that we find in econometric textbooks, are in Mittelhammer, Judge and Miller

(2000, Ch.11) and Davidson and MacKinnon (2004, pp.369-372). It would not be,

therefore, out of place to add a few sentences on V. P. Godambe. Bellhouse (1992)

provides a short but illuminating discussion of his life and time. The Statistical

Science interview [Thompson (2002)] gives further insights on his work and views on

statistical methodologies. Vidyadhar (which means “bearer of wisdom”) Godambe

was born on June 1, 1926 at Poona, India. He studied sanskrit, philosophy, theoret-

ical physics and mathematics during his undergraduate years. After obtaining his

M.Sc. degree (the first batch) from the University of Bombay in 1950, he joined the

Bureau of Economics and Statistics in the Government of Bombay (the current state

of Maharastra, India). He received his Ph.D from the Imperial College, University
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of London under the supervision of George Barnard. He spent a year (1958-59) as

Senior Research Fellow at the Indian Statistical Institute, Calcutta, and the sem-

inal 1960 paper was written there. In 1967, just as the Department of Statistics

and Actuarial Science at the University of Waterloo, Canada, was being formed, he

joined that department. Upon his retirement in 1991, he was awarded the title of

Distinguished Professor Emeritus at the same University.

Godambe’s 1960 paper, which is just a little over three pages, appears to be well

ahead of its time (though in historical context it can be argued to be long overdue

given the results of Edgeworth (1909), Fisher (1935a) and CRLB). In Thompson

(2002, p.460), Godambe traced his idea on EF way back to 1948, as he recounted:

“When the conventional theory of unbiased minimum variance estimation was intro-

duced to me in 1948, my immediate reaction was that ‘modal unbiasedness’ rather

than ‘mean unbiasedness,’ was a desirable property for an estimate. And from among

all the modally unbiased estimates, one should choose the estimate whose distribution

has maximum probability at the mode for all parameter values.” Godambe (1960)

was not “noticed” by others for a long time; it had only two citations (excluding

Godambe’s own) during the period 1961-75, 37 citations during 1976-90 and around

165 during the last fifteen years. This paper played a central role in introducing,

crystallizing newer concepts and advancing the EF approach to a full fledged area of

research on its own right. It also foretold what to expect from Godambe in terms

of his own contribution. Godambe confined his research to survey sampling during

much of 1960s; then in the 1970s, he began a fruitful research collaboration on EF

with his colleague (Mary) Thompson and, as we will see later, that resulted in a

series of important papers. There was also an external factor - (George) Barnard

delivered a series of lectures at the University of Waterloo during the academic year

1972-73. As Bellhouse (1992, p.4) noted: “For Godambe the lectures stimulated him

to return to the problems of inference using estimating functions or estimating equa-

tions. His first results on the theory of optimal estimating functions in the presence

of nuisance parameters were obtained with Mary Thompson in an Annals paper in

1974.” (James) Durbin did not continue his research on EF that vigorously, and we

are aware of only one more published paper on EF by him [see Durbin (1997)].

After somewhat long digression on some personal narration, let us now return to

the Godambe-Durbin optimality result. One of the attractive properties of the MLE

is that it is invariant under a one-to-one transformation of the parameter, i.e., if θ̂ is

MLE of θ, then MLE of ϕ ≡ α(θ) with J = dα/dθ 6= 0, is given by ϕ̂ ≡ α(θ̂). This

is due to the fact that

d log f(y; θ)

dθ
=

d log f(y; α−1(ϕ))

dϕ
J. (43)
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Optimal EF shares this property of invariance. To see this note that if g(y; θ) is an

unbiased EF for θ, then g(y; α−1(ϕ)) = g1(y; ϕ) is an unbiased EF for ϕ. Let θ̂g

and ϕ̂g1 be the estimates from g = 0 and g1 = 0, respectively. Then we have the

invariance ϕ̂g1 = α(θ̂g). Many good estimators, such as the MVU estimator, do not

possess the property of invariance. Okuma (1976) provides a useful discussion on

invariance of the EF from a different perspective.

There are several ways to represent and interpret the inequality (38). The equa-

tions g(y; θ) = 0 and g̃(y; θ) = cg(y; θ) = 0, where c 6= 0 is a constant, will lead to the

same estimator, say, θ̂. V ar[g̃(y; θ)] = c2V ar[g(y; θ)] can, however, be made arbitrar-

ily small and thus the comparison of two EFs based on their variances alone is not

meaningful without some standardization. The standardized version of g ≡ g(y; θ)

is defined as

gs =
g

E
[

dg
dθ

] . (44)

Thus we have,

V ar[gs] = V ar[g̃s] =
E [g2]{

E
[

dg
dθ

]}2 . (45)

The Godambe-Durbin optimality result can now be stated as: g∗ is optimal in class

G if g∗ ∈ G and if

V ar[g∗s ] ≤ V ar[gs], ∀g ∈ G. (46)

The asymptotic properties of an estimator are inherited from the statistical behavior

(e.g., variance) of the corresponding EF. A first-order Taylor series expansion of

g(θ̂) = 0 around θ [as in equation (20) in the context of Fisher (1935a)] gives us

n1/2(θ̂ − θ) ≈ −n−1/2g(θ)×
(

n−1dg

dθ

)−1

≈ −n1/2g(θ)×
{

E

[
dg

dθ

]}−1

, (47)

i.e., the estimator θ̂ and the standardized EF gs in (44) are statistically equivalent

asymptotically. Also, a measure of finite sample performance of g(y; θ) should not

conflict with asymptotic properties of θ̂. Therefore, in order to obtain an estimator

with minimum limiting variance, the EF g has to be chosen with minimum variance

of its standardized form gs.
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Using the variance minimization criterion (46), as a basis for selecting the optimal

EFs g∗, has some further implications [see, for instance, Bera and Bilias (2001a)].

First, consider the correlation between an unbiased EFg for the parameter θ and the

score function S(θ) = d log f(y; θ)/dθ. In view of the identity in (42) we can write :

[Corr(g, S(θ))]2 =
{E[g, S(θ)]}2

E[g2]E[(S(θ))2]

=
{E[dg/dθ]}2

E[g2]

1

E[(S(θ))2]

=
1

V ar[gs]

1

V ar[S(θ)]
. (48)

Therefore, choosing g with the minimum variance of its standardized version is equiv-

alent to maximizing the correlation of g with the score function. Second, consider

the L2 distance of gs from the standardized score function Ss(θ). Upon noting that

the variance of standardized score is 1/V ar[S(θ)] and using (42), we obtain

E
[
(gs − Ss(θ))

2] = V ar[gs]− 1

V ar[S(θ)]
. (49)

Thus, minimization of the variance of the gs is equivalent to minimizing the Euclidean

distance of gs from the score function. The two results above certainly highlight the

nature of the optimal EF as a best approximation to the score function, which, in

general, is unknown.

Kale (1962) independently proved the result in (41), and called it an extension of

the CRLB for the variance of an EF g(y; θ) instead of a statistic (which is a function

of sample alone). He also proved that if the variance of g(y; θ) attains the lower

bound given by the extended inequality, then g(y; θ) is a sufficient EF in the sense of

Kimball (1946) (as discussed in Section 1.5). Kale (1962, p.82) expressed his result

as

V ar[g] ≥
{

dψ
dθ
− E

[
dg
dθ

]}2

I(θ)
, (50)

where E[g(y; θ)] = ψ(θ) = ψ and I(θ) is the Fisher information in the whole sample,

y = (y1, y2, . . . , yn). He also noted that the score function d log f(y; θ)/dθ is a suffi-

cient EF since it attains the extended CRLB. The extended inequality (50) reduces

to the standard Cramér-Rao inequality by putting g(y; θ) = T (y)− θ and writing

V ar[T (y)] ≥ 1

I(θ)
, (51)
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where T (y) is an unbiased estimator for θ. We should however, note that, the CRLB

is attained only exceptionally, whereas the optimality of ML equations among EEs

holds merely under regularity conditions.

Bhapkar (1972) defined the information contained in an EF g(y; θ) about θ by

the reciprocal of the variance of the standardized EF gs, i.e.,

Ig(θ) =
1

V ar[gs]
=

{
E

[
dg
dθ

]}2

E[g2]
, (52)

and the ratio

RE(g) =
Ig(θ)

I(θ)
, (53)

as the efficiency of the EF g(y; θ). Therefore, we can rewrite inequality (41) simply

as

Ig(θ) ≤ I(θ), (54)

and hence,

RE(g) ≤ 1, (55)

for all θ ∈ Θ and g ∈ G. Therefore, I(θ) is the maximum amount of information

contained in a regular EF g ∈ G. Let T ≡ t(y) be sufficient for θ and define

g̃ ≡ g̃(t(y); θ) = E[g(y; θ)|t], which is a Rao-Blackwellization of the original unbiased

EF g(y; θ). Bhapkar (1972, p.469) showed that

Ig(θ) ≤ Ig̃(θ), (56)

with equality iff g(y; θ) = g̃(t(y); θ). In other words, if we start with a EF that is

already a function of the sufficient statistic T , there is no room for improvement.

Also combining (54) and (56), it is easy to see that

Ig(θ) ≤ Ig̃(θ) ≤ I(θ) = Ig∗(θ), (57)

where Ig∗(θ) denotes the information contained in optimal EF g∗(y; θ).

Wedderburn (1974) observed that from a computational point of view, the only

assumptions on a generalized linear model necessary to estimate the model were a

specification of the mean and the relationship between mean and variance, without

specifying the probability density function. Let us consider a very simple model

where the random variable y has mean µ and variance V (µ) that may be dependent

on the mean. Define the function
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g(y; µ) =

∑n
i=1(yi − µ)

V (µ)
. (58)

Wedderburn (1974) noticed that (58) is very close to the true score of all the dis-

tributions that belong to the exponential family. In addition, g(y; µ) has properties

similar to those of a score function in the sense that

(i) E[g(y; µ)] = 0,

(ii) E[g2(y; µ)] = −E[dg(y; µ)/dµ].

Wedderburn termed g(y; µ) in (58) as the “quasi-score function,” the integral of

g(y; µ) the “quasi-likelihood,” and the equation g(y; µ) = 0, the “quasi-likelihood

equation.” Godambe and Heyde (1987) showed that Wedderburn method can be

regarded as a particular case of the optimal EF approach [see also Heyde (1997, pp.21-

26) and Desmond (1997, pp. 78-80)]. The attractive feature of the EF approach is

that we do not need to assume that the true underlying distribution belongs to the

exponential family. Since one good example is worth a thousand theories, we now

discuss an example, often used in the context of EF [for example, see Godambe and

Kale (1991), Desmond (1997) and Bera and Bilias (2002)].

Example 2.1: Let yi, i = 1, . . . , n be independent random variables with E(yi) =

µi(θ) and V ar(yi) = σ2
i (θ), where θ is a scalar parameter. The quasi-score approach

of Wedderburn (1974) suggests that in the class of linear EFs we should solve

g∗(y; µ) =
n∑

i=1

[yi − µi(θ)]

σ2
i (θ)

dµi(θ)

dθ
= 0. (59)

Under the assumption of normality of yi, the ML equation

d log f(y; µ)

dθ
= g∗(y; θ) +

1

2

n∑
i=1

[yi − µi(θ)]
2

σ4
i (θ)

dσ2
i (θ)

dθ
− 1

2

n∑
i=1

d log σ2
i (θ)

dθ
= 0, (60)

is globally optimal and the estimation based on the quasi-score (59) is inferior. If

one is unwilling to assume normality, one could claim that the weighted LS approach

that minimizes
∑

i[yi − µi(θ)]
2/σ2

i (θ) and yields the EE

w(y; µ) = g∗(y; θ) +
1

2

n∑
i=1

[yi − µi(θ)]
2

σ4
i (θ)

dσ2
i (θ)

dθ
= 0 (61)

is preferable. However, because of the dependence of the variance on θ, (61) delivers

an inconsistent root, in general; see Crowder (1986), McLeish (1984) and Sørensen

(1999). The application of a law of large numbers shows that g∗(y; θ) is stochastically
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closer to the score (60) than is w(y; θ). In a way, the second term in (61) creates

a bias in w(y; θ), and the third term in (60) “corrects” for this bias in the score

equation.

Let us now consider the optimal EF for this model. We start with a linear EF of

the form

g(y; θ) =
n∑

i=1

[yi − µi(θ)]bi(θ), (62)

where bi(θ)’s need to be determined. Its standardized version is

gs(y; θ) =
g(y; θ)

E
[

dg(y;θ)
dθ

]

=

∑n
i=1[yi − µi(θ)]bi(θ)

E
[
−∑n

i=1
dµi(θ)

dθ
bi(θ) +

∑n
i=1[yi − µi(θ)]

dbi(θ)
dθ

]

= −
∑n

i=1[yi − µi(θ)]bi(θ)∑n
i=1

dµi(θ)
dθ

bi(θ)
, (63)

whose variance is equal to

V ar[gs(y; θ)] =

∑n
i=1 σ2

i (θ)b
2
i (θ)[∑n

i=1
dµi(θ)

dθ
bi(θ)

]2 . (64)

The variance in (64) is minimized at

bi(θ) ∝ dµi(θ)

dθ
σ−2

i (θ). (65)

Using this value of bi(θ) in (65), leads to the optimal EF

n∑
i=1

[yi − µi(θ)]

σ2
i (θ)

dµi(θ)

dθ
, (66)

which is identical to that obtained from the Wedderburn quasi-likelihood approach

as in equation (59). Now assume that V ar(yi) = cσ2
i (θ), where c is an unknown

positive constant not depending on θ, then under the ML approach, θ and c cannot

be estimated separately. For a specified value c = c0, the ML equation now changes

from (60) to

d log f(y; µ)

dθ
=

g∗(y; θ)

c0

+
1

2c0

n∑
i=1

[yi − µi(θ)]
2

σ4
i (θ)

dσ2
i (θ)

dθ
− 1

2

n∑
i=1

d log σ2
i (θ)

dθ
= 0, (67)
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with

E

[
d log f(y; µ)

dθ

]
=

1

2

(
c

c0

− 1

) n∑
i=1

d log σ2
i (θ)

dθ
, (68)

which is also zero only when c = c0. Thus, the ML equation is biased, as was

LS equation in (61). However, the optimal EF in (62) [and also the quasi-score in

(59)] remains unaffected by the value of c. Therefore, here we have situations in

which both the LS and ML methods could be inconsistent while the EF retains its

optimality property.

2.2 Generalization to the multiparameter case

The extension of the EF approach from the single parameter case to the multiparam-

eter framework with θ = (θ1, θ2, . . . , θp)
′ is quite natural and straightforward. The

basic technique is to replace the scalars by (p× 1) vectors and variances by (p× p)

variance-covariance matrices. Therefore, instead of presenting all generalizations to

the multiparameter case, we will only mention the key results. We start with a

(p × 1) vector EF, g(y; θ) = (g1(y; θ), g2(y; θ), . . . , gp(y; θ))′ satisfying the regularity

conditions stated in Section 2.1 for the single parameter case. Let us denote the class

of regular unbiased EFs by G and define

Σg = V ar[g(y; θ)] = E[g(y; θ)g′(y; θ)], (69)

and

Dg = E

[
∂g(y; θ)

∂θ

]
, (70)

both being (p×p) nonsingular matrices. The standardized vector EF can be written

as

gs(y; θ) = D−1
g g(y; θ), (71)

and hence

V ar [gs(y; θ)] = D−1
g ΣgD

′−1

g = Σgs , say. (72)

Therefore, our objective could be stated as to minimize (maximize) a scalar measure

corresponding to D−1
g ΣgD

′−1

g (DgΣ
−1
g D

′
g). Bhapkar (1972) defined an optimal EF g∗

as follows:
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Definition 2.2: A g∗ ∈ G is said to be optimal if

V ar[g∗s ] ≤ V ar[gs] (73)

or, Σg∗s ≤ Σgs (74)

or, D−1
g∗ Σg∗D

′−1

g∗ ≤ D−1
g ΣgD

′−1

g (75)

i.e., the difference of the left hand side matrix from the right hand side matrix

is nonnegative definite (nnd) for all g ∈ G.

This is the multiparameter counterpart of Definition 2.1, given in Section 2.1.

The above criterion is called matrix optimality of g∗. Unlike in the scalar case, there

could be many ways to compare the two matrices, say, in (74) and define optimality

of g∗; for example, two other ways could be through

(i) trace optimality, i.e., Tr(Σg∗s ) ≤ Tr(Σgs),

(ii) determinant optimality, i.e., |Σg∗s | ≤ |Σgs|.

Chandrasekhar and Kale (1984) proved that these three criteria are equivalent in

the sense that if g∗ is optimal with respect one criterion then it is also optimal with

respect to the remaining two [see also Heyde (1997, pp. 19-21)]. Godambe-Durbin’s

optimality result can now be presented as: for all g ∈ G and θ ∈ Θ

D−1
g ΣgD

′−1

g − I−1 ≥ 0, (76)

where I ≡ I(θ) = E[∂ log f(y; θ)/∂θ∂θ′] is the (p × p) Fisher information matrix.

The equality in (76) holds by the optimal EF g∗(y; θ) = ∂ log f(y; θ)/∂θ = S(θ), the

(p× 1) score vector. From (76) it follows that

|Σg| ≥ |DgI−1D
′
g| =

|Dg|2
|I| . (77)

Following the scalar case, Bhapkar (1972) defined the amount of information con-

tained in the EF g(y; θ) about θ, by

Ig(θ) =
|Dg|2
|Σg| . (78)

The equality

RE(g) =
Ig(θ)

|I(θ)| (79)

provides a measure of efficiency of g. Clearly 0 ≤ RE(g) ≤ 1, and the upper bound is
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attained by the score function S(θ). In the multiparameter case, alternative measures

of efficiency can also be defined, such as,

Tr
(
DgΣ

−1
g D

′
g

)

Tr (I)
. (80)

Both the measures, (79) and (80) reduce to (53) in the scalar case.

2.3 Estimating function in the presence of nuisance param-

eters

In the 1930s, the controversy between Karl Pearson and Fisher spilled over to Jerzy

Neyman. Neyman found it difficult to accept the ML method as a general method

of estimation. As Barnard (1973, p.133) stated, Neyman’s objection to ML method

arose not because of its failure in unusual pathological cases, but because it seemed to

give “wrong” answers for some simple cases. One of the simplest cases is estimation

of θ1 when Y ∼ N(θ2, θ1). The ML method gives a biased estimate for θ1. A more

serious objection to ML approach was raised by Neyman and Scott (1948), who

showed that when the number of nuisance parameters increases with the sample

size, the MLE of a parameter of interest could be inefficient or even inconsistent.

Perhaps, for problems involving nuisance parameters, the EF approach has the most

potential.

Let us partition the p× 1 parameter vector θ by θ = (θ
′
1, θ

′
2)
′ ∈ Θ, where θ1 ∈ Θ1

is an r×1 (r < p) vector of unknown parameter of interest, and θ2 ∈ Θ2 is a (p−r)×1

vector of “nuisance” or “incidental” parameters. As noted, nuisance parameters can

have a major influence on the estimation of parameter of interest.

The problem of estimating a real parameter θ1, in the presence of nuisance param-

eter θ2 was first addressed by Godambe and Thompson (1974), yet another “concep-

tually clean” and pathbreaking paper - just over three pages long. They first defined

a class G1 of regular unbiased EFs of the form g(y; θ1). The generalization of the

earlier optimality criteria [see equations (38) and (46)] now defines an optimal EF

g∗ ∈ G1 for which

V ar[g∗s ] ≤ V ar[gs], (81)

for all g ∈ G1. Taking θ1 and θ2 scalars, Godambe and Thompson (1974) showed

that under the regularity conditions the function g∗ ∈ G1, satisfying (81) is given by
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g∗ = c1(θ1, θ2)
∂ log f(y; θ)

∂θ1

+ c2(θ1, θ2)

{[
∂ log f(y; θ)

∂θ2

]2

+
∂2 log f(y; θ)

∂θ2
2

}
, (82)

where c1(θ1, θ2) and c2(θ1, θ2) are such that the resulting g∗ is free of θ2.

Example 2.2: Godambe and Thompson (1974) considered the N(θ2, θ1) case.

Here

f(y; θ) =
1

(
√

2πθ1)n
e
− 1

2θ1

∑n
i=1(yi−θ2)2

, (83)

∂ log f(y; θ)

∂θ1

= − n

2θ1

+
(n− 1)θ̂1 + n(y − θ2)

2

2θ2
1

, (84)

∂ log f(y; θ)

∂θ2

=
n(y − θ2)

θ1

, (85)

∂2 log f(y; θ)

∂θ2
2

= − n

θ1

, (86)

where θ̂1 =
∑n

i=1(yi − y)2/(n− 1) with y =
∑n

i=1 yi/n. Using (84)− (86), it is easy

to see that by choosing c1(θ1, θ2) = 1 and c1(θ1, θ2) = −1/2n, we can get a g∗ which

is free of θ2, and it is given by

g∗ =
n− 1

2θ2
1

(θ̂1 − θ1), (87)

and g∗ = 0 gives an unbiased estimator. In this connection we should mention that

Fisher (1912), while proposing his ML method, also produced an unbiased estimator

of θ1 from the mode of the posterior distribution (inverse probability) with a non-

informative prior for θ2. At a later stage, Fisher (1922, p.326) himself did not approve

of basing his argument upon the principle of inverse probability.

Towards the end of their paper, without any fanfare, Godambe and Thompson

(1974) suggested an EF g1(y; θ1) of the form

g1(y; θ1) =

[
∂ log f(y; θ)

∂θ1

∣∣∣∣∣θ2 = θ̂2

]
− E

[
∂ log f(y; θ)

∂θ1

∣∣∣∣∣θ2 = θ̂2

]
, (88)

where θ̂2 is the MLE of θ2. They attributed their result to George Barnard (through

oral communication) who was then visiting their Department of Statistics, University

of Waterloo. Eight years later, as we discuss below, in a very influential paper,

Lindsay (1982) considered precisely this form of EF and established its importance

and usefulness.

26



Example 2.3: Let us consider yij = µi+εij, εij ∼ IIDN(0, θ1), i = 1, 2, . . . , k, j =

1, 2. Here θ2 = (µ1, µ2, . . . , µk)
′ is the nuisance parameter vector. Neyman and Scott

(1948) used this model for their famous illustration of the inconsistency of MLE of

a parameter of interest when the number of nuisance parameter increases with the

sample size. The loglikelihood and score functions, respectively, are given by

log f(y; θ) = −k log(2π)− k log θ1 − 1

2θ1

k∑
i=1

2∑
j=1

(yij − µi)
2,

∂ log f(y; θ)

∂θ1

= − k

θ1

+
1

2θ2
1

k∑
i=1

2∑
j=1

(yij − µi)
2,

∂ log f(y; θ)

∂µi

=
1

θ1

2∑
j=1

(yij − µi), i = 1, 2, . . . , k.

Therefore,

θ̂1 =
1

2k

k∑
i=1

2∑
j=1

(yij − yi)
2, (89)

where yi =
∑2

j=1 yij/2, is the MLE for θ1. Since 1
θ1

∑2
j=1(yij − yi)

2 ∼ χ2
1, if we define

zi = 1
2

∑2
j=1(yij−yi)

2, then zi ∼ IID(θ1/2, θ
2
1/2). By the weak law of large numbers,

as k →∞, θ̂1 =
∑k

i=1 zi/k converges to E(zi) = θ1/2.

Godambe resolved this inconsistency of the MLE problem by showing that under

certain conditions the optimal EF leads to a conditional ML approach and provides a

consistent estimator for θ1. The basic problem for the ML approach is that although

E[∂ log f(y; θ1, θ2)/∂θ1] = 0, (90)

E[∂ log f(y; θ1, θ̂2.1)/∂θ1] 6= 0, (91)

where θ̂2.1 is the MLE of θ2 for fixed θ1. Therefore, the use of (91) will lead to a

biased EF for θ1. Let T ≡ t(y) be a complete sufficient statistic for the parameter

θ2, for every fixed θ1 and also assume that T does not involve θ1. Suppose we can

decompose the likelihood function as

f(y; θ) = f(y|t; θ1)h(t; θ1, θ2), (92)

where f(y|t; θ1) is the conditional pdf of y given t, and h is the pdf of T . Then Go-

dambe (1976, Theorem 3.2) showed that the “conditional” score function ∂ log f(y|t;θ1)
∂θ1

gives a unique optimal EF.

Example 2.3: (Continued) It can be shown that T (y) = (y1, y2, . . . , yk)
′ is
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complete sufficient for θ1 = (µ1, µ2, . . . , µk)
′. Using (92) we can show that

g∗ =
∂ log ft(y|t; θ1)

∂θ1

= − k

2θ1

+
1

2θ2
1

k∑
i=1

2∑
j=1

(yij − yi)
2, (93)

is the optimal EF. The difference between the score ∂ log f(y; θ)/∂θ1 and the condi-

tional score g∗ is quite obvious. Solving g∗ = 0, we have the solution

θ̃1 =
1

k

k∑
i=1

2∑
j=1

(yij − yi)
2 =

1

4k

k∑
i=1

(yi1 − yi2)
2 = 2θ̂1, (94)

which converges to θ1, and hence is consistent. This was the Godambe’s (1976)

solution to the Neyman-Scott (1948) problem through the EF approach.

Godambe’s method works well as long as the conditioning statistic T (y) does not

involve θ1, which will be the case when f(y; θ) has the exponential family structure.

However, that will exclude a large class of distributions. To accommodate a gen-

eral situation, Lindsay (1982) extended Godambe’s (1976) conditional score function
∂ log f(y|t;θ1)

∂θ1
to

S∗1(θ) =
∂ log f(y; θ)

∂θ1

− E

[
∂ log f(y; θ)

∂θ1

∣∣∣∣∣tθ1

]
, (95)

where tθ1 is the minimal sufficient statistic for θ2 and the notation signifies that t

is functionally dependent on θ1. When tθ1 ≡ t, S∗1(θ) reduces to ∂ log f(y|t; θ)/∂θ1.

The closeness of (88) and (95) is unmistakable. S∗1(θ) which is sometimes also called

the effective score, is orthogonal to the space spanned by the sufficient statistic tθ1 .

Though S∗1(θ) will continue to depend on θ2, the representation in (95) implies that

the dependence on θ2 is now reduced. For a rigorous discussion of these issues and

further results see, for instance, Lindsay and Waterman (1992) and Liang and Zeger

(1995).

We end our discussion on the nuisance parameter issues by giving another, though

asymptotic, justification on Lindsay’s conditional (effective) score (95) following Ney-

man’s (1959) approach to testing in the presence of nuisance parameter [see Bera

and Bilias (2001a, 2001b)]. For simplicity, we assume that both θ1 and θ2 are scalars.

The need to leave the asymptotic distribution of EF unchanged after the substitu-

tion of a
√

n-consistent estimate of θ2 leads to the orthogonalization step: starting

from an arbitrary EF g, we will regress g on the part of the score for the nuisance

parameter S2 = ∂ log f(y; θ)/∂θ2 and keep the residual. The new EF, will be

g − bS2,
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where b denotes the regression coefficient. Next, we want to choose (g − bS2), and

therefore g, according to Godambe-Durbin optimality criterion. This dictates that

the optimal EF, in its standardized form, should have minimum variance. By differ-

entiating the moment condition

E[g − bS2] = 0 (96)

with respect to θ1, we have

E

[
∂(g − bS2)

∂θ1

]
+ Cov[(g − bS2), S1] = 0,

where S1 is the score for the parameter of interest. Since (g − bS2) is orthogonal to

S2, Cov[(g − bS2), S1] = Cov[(g − bS2), (S1 − bS2)]. Therefore,

E

[
∂(g − bS2)

∂θ1

]
= −Cov[(g − bS2), (S1 − bS2)], (97)

which, using the Cauchy-Schwartz inequality, yields :

{
E

[
∂(g − bS2)

∂θ1

]}2

= {Cov[(g − bS2), (S1 − bS2)]}2

≤ V ar(g − bS2)V ar(S1 − bS2). (98)

The inequality (98) can be rearranged so that a lower bound for the variance of the

standardized EF is formed as

V ar[(g − bS2)]{
E

[
∂(g−bS2)

∂θ1

]}2 ≥
1

V ar(S1 − bS2)
. (99)

The bound is reached when g = S1. Thus the optimal EF in the presence of nuisance

parameters is given by the effective score (S1−bS2), where b = Cov(S2, S1)/V ar(S1).

However, it should be remarked that, in contrast to Godambe’s result (Theorem 2.1)

that the score is the optimal EFs, our argument in the presence of nuisance parameter

holds only asymptotically.

2.4 The dependent case and optimal combination of (ele-

mentary) estimating functions

As noted in Section 2.1, for some time it was believed that the MM estimators are

inefficient compare to the ML estimators. Godambe’s (1960) analysis highlights, for

the IID case, the equivalence of MM and ML estimation when one replaces a ar-
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bitrary moment function with the score function. Much of his analysis also carries

over to the case of dependent data. For a general discrete time stochastic process, an

optimality criterion for an EF was established in two important papers by Godambe

(1985) and Godambe and Thompson (1989) using a “flexible” conditioning method.

Their flexible set up can cope with the estimation of parameters in dependent data,

such as those from time series processes on a real line or a spatial process on a lat-

tice. In this section, we present the theory developed for the optimum combination

of (elementary) EEs for the estimation of parameters of stochastic process. In Sec-

tion 3, we will provide its applications to some widely used models in the applied

econometrics and statistics literature.

Let us consider a discrete time stochastic process {yt; t ≥ 0} taking values in

the real line R. Also let F = {F} be a class of probability distributions on Rn

and θ = θ(F ) ∈ Θ, be a real parameter. The objective is to estimate θ by an

estimator θ̂n which is a function of observations {yt; 0 ≤ t ≤ n}. By definition, the

EF g(y1, ..., yn; θ(F )) is a real valued function of both the observation {yt} and the

parameter θ, that satisfies certain regularity conditions (such as square-integrability

and differentiability, given in Section 2.1). It is called regular unbiased EF if

EF {g(y1, ..., yn; θ(F ))} = 0, F ∈ F .

Among all regular unbiased EFs g(y1, ..., yn; θ(F )), g∗(y1, ..., yn; θ(F )) is said to be

optimum if

EF

[
g(y1, ..., yn; θ(F ))2

]
/

{
EF

[
∂g(y1, ..., yn; θ)

∂θ

]

θ=θ(F )

}2

(100)

is minimized ∀F ∈ F at g = g∗. An estimator θ̂n is obtained by solving

g∗(y1, ..., yn; θ(F )) = 0.

Suppose that we have the unbiased elementary EFs ψt, t = 1, . . . , n involving θ. The

question is what is the best way of combining these n EFs into one EF for estimation

of θ. Godambe (1985) restricted his search to the class L of linear combination of

ψt’s, namely,

{
g : g(θ) =

n∑
t=1

at−1ψt

}
, (101)

where the coefficient at−1 is a function of {y1, . . . , yt−1} and θ. Also, the elementary

EF ψt is such that EF [ψt|Fy
t−1] = 0, with Fy

t−1 being the σ-field generated by {ys; s ≤
t− 1}. This further implies that ∀F ∈ F ,
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EF [ψtψt′ ] = 0, for t 6= t′. (102)

i.e., ψt and ψt′ are orthogonal. Under this set up a new definition follows. Among

all unbiased EFs g, an optimal EF g∗ is the one that provides the smallest value of

E
[
g(y1, ..., yn; θ)2|Fy

t−1

]
/

{
E

[(
∂g(y1, ..., yn; θ)

∂θ

) ∣∣∣∣∣F
y
t−1

]}2

. (103)

Note that L is a subset of the class of all unbiased EFs where ψt and at−1 are

assumed to be differentiable with respect to θ, ∀t = 1, . . . , n. Now we state and prove

Godambe’s (1985) result on optimal EF for the dependent case.

Theorem 2.2: Within the class of estimating functions L defined in (101), the

optimal estimating function g∗ that minimizes (103) is given by g∗(θ) =
∑n

t=1 ψta
∗
t−1

where a∗t−1 = {E[∂ψt

∂θ
|Fy

t−1]}/{E
[
ψ2

t |Fy
t−1

]}.

Proof: Using the equations (101) and (102), we have

E[g2] = E

{
n∑

t=1

a2
t−1E

[
ψ2

t |Fy
t−1

]
}

(104)

and

{
E

[
∂g

∂θ

]}2

=

{
E

n∑
t=1

(
at−1E

[
∂ψt

∂θ

∣∣∣∣∣F
y
t−1

]
+

(
∂at−1

∂θ

)
E[ψt|Fy

t−1]

)}2

=

{
E

n∑
t=1

at−1E

[
∂ψt

∂θ

∣∣∣∣∣F
y
t−1

]}2

, (105)

as E[ψt|Fy
t−1] = 0. Letting B =

∑n
t=1 at−1E

[
∂ψt

∂θ
|Fy

t−1

]
and A2 =

∑n
t=1 a2

t−1E
[
ψ2

t |Fy
t−1

]
,

we have

{
E

[
∂g
∂θ

]}2

E [g]2
=
{E[B]}2

E[A2]
≤ E

[
B2

A2

]
(106)

by the Cauchy-Schwartz inequality. The equality in (106) holds if A2 ∝ B, i.e., if

at−1 = a∗t−1.

Example 2.4: Estimating function (3) for the AR(1) model in (1) can be ob-

tained through Godambe’s (1985) approach that sheds light to the distinctive nature

of the theory of EF. Here ψt = ut = yt − θyt−1, t = 2, 3, . . . , n are n elementary EFs,

and the issue is how we should combine these (n− 1) functions into one to solve for

the parameter θ. Let us consider the class of EFs
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g =
n∑

t=2

at−1ψt,

where the weights at−1 depend only on the conditioning event (y1, y2, . . . , yt−1). The-

orem 2.2 yields the optimal weights as

a∗t−1 =
Et−1[∂(yt − θyt−1)/∂θ]

Et−1[(yt − θyt−1)2]
=
−yt−1

σ2
,

where σ2 = V ar(ut). Therefore, the optimal EE for θ is

g∗ =
n∑

t=2

yt−1(yt − θyt−1) = 0

which is same as (3). Durbin (1960) arrived at the same EF by starting with an

unbiased linear EF g = T1(y) + θT2(y), where T1(y) and T2(y) are functions of

data (y1, y2, . . . , yn) only. Then, he imposed a minimum variance requirement on g,

reminiscent of Gauss-Markov theorem.

Godambe (1985, p.424) also established that in the class of all EFs of the form

(101), the partial likelihood score is an optimum EF. For this consider the joint

density function of (y1, . . . , yn), involving a parameter of interest θ and a nuisance

parameter δ

f(y1, . . . , yn; θ, δ) =
n∏

t=1

ft−1(yt; θ, δ),

where ft−1 denotes the conditional density of yt given y1, . . . , yt−1(t = 1, . . . , n). Let

Tt(t = 1, . . . , n) be a minimal sufficient statistic for δ in the density ft−1(yt; θ, δ),

so that ft−1(yt|Tt; θ, δ) = ft−1(yt|Tt; θ) is independent of δ. Now by considering the

partial likelihood score for θ,

n∑
t=1

∂ log ft−1(yt|Tt; θ)

∂θ
=

n∑
t=1

ψt, say. (107)

It is easy to see that Et−1(ψt) = 0 and E(ψtψt′) = 0, t 6= t′ = 1, . . . , n. There-

fore, from Theorem 2.2, it follows that the optimal EF within the class of linear

combination of ψt’s is
∑n

t=2 ψta
∗
t−1, where

a∗t−1 =
Et−1[∂

2 log ft−1(yt|Tt; θ)/∂θ2]

Et−1[∂ log ft−1(yt|Tt; θ)/∂θ]2
= −1.

This establishes the optimality of the partial likelihood score function in (107).

As we discussed in Section 2.1, in a parametric model the score function provides
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the optimum EF; the result of Theorem 2.2 can be extended to a theory of pseudo-

score function and the associated Fisher information. Utilizing the pseudo-score

function

Ψ = −
n∑

t=1

ψta
∗
t−1,

we derive

E

[
∂(−Ψ)

∂θ

]
= E

[
n∑

t=1

a∗t−1Et−1

(
∂ψt

∂θ

)]
= E

[
n∑

t=1

a∗2t−1Et−1

(
ψ2

t

)
]

= E
[
Ψ2

]

and obtain the EF

(
n∑

t=1

ψta
∗
t−1

)
/

{
n∑

t=1

(
a∗2t−1

)
Et−1

[
ψ2

t

]
}1/2

, (108)

which is a standardized martingale. Asymptotically, the density of EF in (108)

converges to N(0, 1). This suggests the existence of an associated pseudo Fisher

information, independent of parameter θ, given by

I =
n∑

t=1

a∗2t−1Et−1(ψ
2
t ).

Interestingly, one can interpret I as an unbiased estimate of the variance of Ψ.

Another justification of the Godambe optimality criterion is the fact that un-

der standard regularity conditions the EF estimator θ̂∗n that solves the optimal EE

g∗(y1, ..., yn; θ(F )) = 0, minimizes, at least asymptotically, the mean squared error

E(θ̂ − θ)2 where θ̂ is the estimator from g(y1, ..., yn; θ(F )) = 0. Also, one can utilize

the choice of weights a∗t−1 to get the most benefit from any knowledge about the un-

known distribution of {yt; t ≥ 0}, especially when specifications of third and fourth

moments are unknown. The suboptimal weights can reduce the efficiency of the

estimator significantly without affecting its consistency and asymptotic normality

properties.

It is important to note that, the optimal estimation procedure by Godambe (1985)

is based on martingale structure with the corresponding filtering method which, in

some sense, restricts the nature of the stochastic process. However, Godambe and

Thompson (1989) provided an extension of the concept of optimality of such an EF

into a general setting using a more “flexible” conditioning method which is related

to the concept of quasi-likelihood approach. This broadens the applicability of their

method to a wider class. Using the same set up with Y as an arbitrary sample space,
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they considered the class of EFs ψj which is a real function defined on Y × Θ such

that

EF [ψj (y1, ..., yn; θ(F )) |Yj] = 0, F ∈ F , (109)

where EF [.|Yj] is the expectation under F, conditional on Yj, Yj(j = 1, . . . , k) being

a σ-field generated by a specified partition on the sample space Y . To estimate θ on

the basis of observations {yt} they considered the class of EFs H = {h}, where

h =
k∑

j=1

ajψj

and aj is a real function on Y ×Θ. The EFs ψj, j = 1, . . . , k satisfying (109) are said

to be mutually orthogonal if EF (ψjψi|Yi) = 0 and EF (ψiψj|Yj) = 0 for F ∈ F and

i 6= j, i, j = 1, . . . , k. An estimate of θ based on the EF h is obtained by solving the

equation h(y1, ..., yn; θ(F )) = 0. For the optimal EF they defined

h∗ =
k∑

j=1

a∗jψj, (110)

where

a∗j =

EF

{(
∂ψj

∂θ

)
θ=θ(F )

∣∣∣∣∣Yj

}

EF {[ψj(y1, ..., yn; θ(F ))]2|Yj} .

The following result, a proof of which is given in Godambe and Thompson (1989,

p.140), demonstrates how to construct such an optimal EF.

Theorem 2.3 The estimating function h∗ of (110) is optimum in the class H, if

the elementary estimating functions ψj are mutually orthogonal.

The above theorem provides an optimal EF in a wide class of functions H when

the ψj’s need not necessarily be linear functions of yi’s and can be formed using

an optimal orthogonal combination involving the first few moments of yi. In some

cases, the function aj can be the functions of all yi’s except the yj itself. A similar

criterion of optimality, but without the notion of orthogonality, was also used by

Crowder (1986) based on optimum quadratic EFs. However, in Crowder (1986), the

criterion of optimality is in terms of the asymptotic variance of the estimate whereas,

for Godambe (1985), the finite sample optimality criterion for a general stochastic

process is for the EF. Also the class of unbiased and orthogonal EFs in Godambe

and Thompson (1989) is broader than the class of quadratic EFs. For more on the

theory of optimum orthogonal EFs, see Godambe (1991b).
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2.5 Estimating functions and generalized method of mo-

ments

The EF approach to estimation, while very popular among statisticians, has been

largely ignored by econometricians who were mainly absorbed by the use of gener-

alized method of moments (GMM). Today it looks as if the two methods produce

the same results from the point of view of the user. The EF methodology started by

defining a concrete optimality criterion for the choice of elementary EFs. In many

instances these elementary EFs were essentially what was called in econometrics con-

ditional moments; compare Godambe (1985) and Chamberlain (1987). Then, the EF

approach went on with the issue of how best to combine these elementary EFs into a

number of EEs that equals the number of the unknown parameters of the statistical

model. In particular, as we discussed in Section 2.4, Godambe (1985) worked the

problem for stochastic processes where the conditioning information set is formed

naturally from the past of the process. According to his solution, if we restrict our-

selves to linear combinations of the various EFs, then an optimal combination is

formed by utilizing weights given in Theorem 2.2. This result was generalized by

Godambe and Heyde (1987), who termed the optimal EF as the quasi-score.

In the econometric practice of GMM, the emphasis seem to be on the formation

of convenient unconditional moments from the conditional restrictions. Then, the

question of optimality usually concerns the optimal choice of the weighting matrix

in the objective function for a given set of unconditional moments. Consider the

framework of the generalized linear regression with strictly exogenous regressors.

The econometric practice will be to form the unconditional moments that eventually

lead to the least squares estimator. The optimal EF approach will point to the first

order conditions that correspond to the generalized least squares. It is true that the

first approach is adopted by applied researchers who want to avoid making specific

assumptions about the variances and covariances of the responses. However, it is

certainly useful to know what is the benchmark for optimality.

In econometric literature, a result similar to the one given by Godambe (1985), is

now well known and it seems that it was first given by Chamberlain (1987); see also

Newey (2004) for more results and examples, and Davidson and MacKinnon [section

17.4 (1993)] for a textbook discussion.

It should be noted that the result in econometric literature was produced from

asymptotic considerations by studying the variance matrix of the estimator, while in

the statistical literature the focus was on finite sample optimality of the EF.
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3 Applications

In this Section we apply the optimal EF approach of estimation discussed in previous

section to a number of widely used econometric models. First, we demonstrate its

applicability to various non-linear time series models and then utilize it for spatial

regression model. This is followed by applications to longitudinal data and the

median regression model.

The general expression of a non-linear univariate time series model is

Xt = ϕ(Xt−1, . . . , Xt−p; εt−1, . . . , εt−q; θ) + εt, t ∈ Z (111)

where ϕ(.) is some known non-linear function with finite dimensional parameter

vector θ, {εt} is strictly white noise, p, q are non-negative integers and Z denotes

the set of all integers. For a description of nonlinear time series models we use, see

Teräsvirta (2006). In Sections 3.1 − 3.4 we discuss the EF approach to estimate

θ for such non-linear time series models that are frequently used, sometimes even

as competing models. As long as we express the first two conditional moments of

the observed series, the EF theory is readily applicable. Our discussion is valid for

observed time series data as well as estimated residual in a regression set up.

3.1 Random coefficient autoregressive model

An important class of non-linear time series model is the random coefficient autore-

gressive (RCA) model for which a fairly extensive theory of estimation exists based

on LS and ML procedures [for instance see, Nicholls and Quinn (1982)]. One of the

common features of RCA model is the varying conditional variance that is similar

to the autoregressive conditional heteroscedastic (ARCH) type models [Tsay (1987),

Bera and Lee (1993), Granger and Teräsvirta (1993, Ch.4)]. Also since many prop-

erties of ARCH model, conditional and unconditional, can be derived directly from

the RCA model, the usefulness of the latter becomes more appealing in both a the-

oretical and an applied context. Therefore, it makes sense to apply an optimal EF

approach to obtain a more efficient estimate without any distributional assumptions,

which has important finite sample properties. The important references on which

this section is based, are Thavaneswaran and Abraham (1988), Heyde (1997) and

Chandra and Taniguchi (2001).

A stochastic process {Xt, t ∈ Z} is said to follow a RCA model of order p if it
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satisfies

Xt =

p∑
i=1

θitXt−i + εt

=

p∑
i=1

(θi + ηit) Xt−i + εt, (112)

where θ = (θ1, . . . , θp)
′ is the parameter to be estimated, ηit are random components

and εt is the innovation term. For model (112), it is customary to define Xt−1 =

(Xt−1, . . . , Xt−p)
′ and make the following assumptions: (i) For t = 1, . . . , n, {ηt =

(η1t, . . . , ηpt)
′} is a sequence of IID random vector with zero mean and variance

E(ηtη
′
t) = Σ, a p × p matrix, (ii) {εt} is a sequence of IID random variables with

E(εt) = 0 and E(ε2
t ) = σ2

ε < ∞, (iii) {ηt} and {εt} are mutually independent, (iv)

{ηt} and {Xt−1} are mutually independent.

For simplicity, let us consider the estimation of the parameter θ assuming that

the nuisance parameters (σ2
ε , Σ) are known. Consider a linear class of EFs of the

form gi =
∑n

t=1 ψtai,t−1, with

ψt = Xt − E[Xt|FX
t−1] = Xt −

p∑
i=1

θiXt−i = Xt −X′
t−1θ.

Note that, the information set FX
t is now based on {ηs; s ≤ t} and {Xs; s ≤ t};

so Xt−1 ∈ FX
t−1 and E[(∂ψt/∂θ)|FX

t−1] = −Xt−1. We derive the optimal EF using

Theorem 2.3 as

g∗i =
n∑

t=1

ψta
∗
i,t−1 (113)

where a∗i,t−1 = −Xt−i/Qt with Qt = E[ψ2
t |FX

t−1] = σ2
ε + X′

t−1ΣXt−1. Therefore, by

solving the EF g∗i = 0 we obtain the optimal estimate of θ as

θ̂EF
n =

[
n∑

t=p+1

(
Xt−1Xt−1

′

Qt

)]−1 [
n∑

t=p+1

(
Xt−1Xt

Qt

)]
. (114)

The scaling factor Qt is nothing but the conditional variance of the original ran-

dom process Xt [Bera, Higgins and Lee (1992)], as it can be seen from
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V ar(Xt|FX
t−1) = E




(
p∑

i=1

Xt−iηit + εt

)2 ∣∣∣∣∣F
X
t−1




= E








(
p∑

i=1

Xt−iηit

)2

+ 2εt

(
p∑

i=1

Xt−iηit

)
+ ε2

t





∣∣∣∣∣F
X
t−1




= X′
t−1ΣXt−1 + σ2

ε

= Qt. (115)

When Σ = 0, both LS and EF estimates of θ becomes the same, but when Σ 6= 0

Qt has an ARCH type form that need to be taken into consideration. Also, whether

Σ is diagonal or a full matrix has important implications for the joint presence of

autocorrelation and conditional heteroscedasticity. If Σ is diagonal then the scaling

factor of the optimal EF will be same as in Engle (1982). However, if Σ has non-

zero off-diagonal terms, the interpretation of the scaling factor becomes closer to

the asymmetric ARCH model proposed by Nelson (1991). For diagonal Σ, we can

write E(ηtη
′
t) = σ2

ηIp, where Ip is the identity matrix of dimension p. The optimal

estimate for a first-order RCA model based on EF g∗i =
∑n

t=1 ψta
∗
i,t−1 is given by θ̂EF

n

in (114), with Qt = σ2
ε +

∑p
i=1 X2

t−iσ
2
η. This is similar to the traditional generalized

LS estimator and is an improvement over the naive LS. This estimator was first

proposed by Thavaneswaran and Abraham (1988). To implement (114), in the first

step LS estimation can be used to obtain initial estimates of σ2
ε and σ2

η. Then, in

the second step plugging in all the relevant information an efficient estimate can be

obtained for θ̂EF
n . For example, if p = 1 the optimal EF turns out to be

g∗i =
n∑

t=2

(
Xt−1

Qt

)
ψt, (116)

where ψt = (Xt − θXt−1) and Qt = E[ψ2
t |FX

t−1] = σ2
ε + X2

t−1σ
2
η. Therefore, the

estimator based on g∗i is

θ̂EF
n =

∑n
t=2 a∗t−1Xt∑n

t=2 a∗t−1Xt−1

, (117)

with a∗t−1 = −Xt−1/(σ
2
ε + X2

t−1σ
2
η). By letting ut = ψ2

t − σ2
ε −X2

t−1σ
2
η, the estimates

of σ̂2
ε and σ̂2

η can be obtained by minimizing
∑n

t=2 u2
t with respect to σ2

ε , σ
2
η [Nicholls

and Quinn (1982, p.43)], i.e., by regressing ψ̂2
t on 1 and X2

t−1. The LS estimate

θ̂LS
n = (

∑n
t=2 XtXt−1)/(

∑n
t=2 X2

t−1) can be used to obtain ψ̂2
t .
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3.2 Threshold autoregressive model

It is widely known that many nonlinear features such as limit cycles and asymmetry

can be explained by threshold autoregressive (TAR) models [Tong (1990, Ch.1)],

where we assume that the function ϕ(.) in (111) is piecewise linear and allow the

parameters to be determined partly by past data. In simplest form of a TAR model

for a time series {Xt, t ∈ Z} is given by

Xt = θ1X
+
t−1 + θ2X

−
t−1 + εt , (118)

where X+
t = min(Xt, 0), X−

t = max(Xt, 0) and {εt} ∼ IID(0, σ2
ε ). The process is

known as “double threshold” if both the conditional mean and variance change with

thresholds [Granger (1998)].

For the general expression of model (118), we partition the range of Xt into k

parts by the set of ordered values r1 < . . . < rk−1. If the value Xt lies in the interval

Dj = (rj, rj+1] with rj, rj+1 as threshold values, the jth set of parameters is used to

generate Xt−d (d < k) where d is the delay (lag) parameter. The zero mean threshold

AR(p) (TAR(p)) process can be expressed as

Xt =

p∑
i=1

θj
i Xt−iI(Xt−d ∈ Dj) + εt,

where I(.) is the indicator function, εt is a white noise and j ∈ {1, . . . , k} is deter-

mined by Xt−d ∈ Dj. By considering the elementary EF

ψt = Xt −
p∑

i=1

k∑
j=1

θj
i Xt−iI(Xt−d ∈ Dj),

and noting that E(ψ2
t ) = σ2

ε , the optimal EF for the set of parameters (θj
i ) becomes

[see Ainkaran (2004)]

g∗
θj
i

=
n∑

t=k+1

ψta
∗
t−1,αi

= −
n∑

t=k+1

Xt−iI(Xt−d ∈ Dj)

(
Xt −

p∑
i=1

k∑
j=1

θj
i Xt−iI(Xt−d ∈ Dj)

)
/σ2

ε .

Solving the corresponding EEs, we obtain the optimal EF estimates for TAR(p)

parameters. For a discussion on generalized kernel smoothing estimate using optimal

EF approach for threshold models, see Thavaneswaran and Peiris (1996).

39



3.3 Bilinear model

In the bilinear class, we incorporate cross-product terms involving lagged values of the

time series and of the disturbance process. This class of models, originally introduced

by Granger and Anderson (1978), has many interesting statistical properties and act

as competing models with ARCH for nonlinear dependence [e.g., see Weiss (1986),

Bera and Higgins (1997)]. However, it is important to note that even though both

ARCH and bilinear process have similar unconditional moments, conditionally their

moment structure is different. The simplest form of bilinear time series {Xt, t ∈ Z}
model is given by

Xt =
r∑

i=1

s∑
j=1

θijXt−iεt−j + εt (119)

where {εt} ∼ IID(0, σ2
ε ) is the innovation that drives the bilinear process and

{θij, i = 1, . . . , r, j = 1, . . . , s} are parameters to be estimated. Here the condi-

tional mean is a nonlinear function of past values of {Xt, εt} while the conditional

variance is constant. This is in contrast with ARCH process, as we will see in Section

3.4, the conditional mean is in general, a constant, but conditional variance is time

varying.

The general expression of bilinear model BL(p, q, r, s) can be obtained by adding

a linear ARMA component to (119), such as

Xt =

p∑
i=1

αiXt−i +
r∑

i=1

s∑
j=1

θijXt−iεt−j + εt +

q∑
j=1

βjεt−j . (120)

Here, in addition to θij, we need to estimate p+q parameters αi and βj. As before let

us assume that the conditioning information set FX
t is a σ-field, based on {Xr; r ≤ t}

and {εr; r ≤ t}; so Xt−1 ∈ FX
t−1 and E[εt−i|FX

t−1] = εt−i, i ≥ 1. Also, as {εt} ∼
IID(0, σ2

ε ), an obvious choice for an elementary EF becomes ψt = Xt − E[Xt|FX
t−1],

where

E[Xt|FX
t−1] =

p∑
i=1

αiXt−i +
r∑

i=1

s∑
j=1

θijXt−iεt−j +

q∑
j=1

βjεt−j .

Therefore, following Theorem 2.3, the optimal EF is given by the following set of

equations [see Ainkaran (2004)]:
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g∗αi
=

n∑
t=m+1

ψta
∗
t−1,αi

,

g∗βj
=

n∑
t=m+1

ψta
∗
t−1,βj

,

g∗θij
=

n∑
t=m+1

ψta
∗
t−1,θij

, (121)

where

a∗t−1,αi
= E

[
∂ψt

∂αi

∣∣∣∣FX
t−1

]
/Qt = −Xt−i/Qt ,

a∗t−1,βj
= E

[
∂ψt

∂βj

∣∣∣∣FX
t−1

]
/Qt =

(
−εt−j − βj

∂εt−j

∂βj

−
r∑

i=1

θijXt−i
∂εt−j

∂βj

)
/Qt ,

a∗t−1,θij
= E

[
∂ψt

∂θij

∣∣∣∣FX
t−1

]
/Qt =

(
−Xt−iεt−j − βj

∂εt−j

∂θij

− θijXt−i
∂εt−j

∂θij

)
/Qt ,

Qt = E[ψ2
t |FX

t−1] = σ2
ε

(
1 +

q∑
j=1

β2
j +

r∑
i=1

s∑
j=1

θ2
ijX

2
t−i

)

and m = max(p, r). Solving EEs corresponding to EFs in (121), the estimates of

bilinear models (p + q + rs) parameters can be obtained.

3.4 ARCH and GARCH models

The ARCH model introduced by Engle (1982), and its various extension, have be-

come arguably the most popular and extensively used financial econometric models

[for surveys on this topic, see Bera and Higgins (1993), Bollerslev, Engle and Nel-

son (1994) and Engle (2002)]. The standard procedure is to estimate an ARCH

or GARCH model using ML approach assuming normal or Student’s t distribution.

However, such assumptions are hard to justify in practice due to the presence of

asymmetry and high excess kurtosis in real data. Li and Turtle (2000) and Chan-

dra and Taniguchi (2001) proposed EF method that is free of any distributional

assumptions.

A general expression for an ARCH(p) model is given by
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Xt = εt

√
ht, ht = α0 +

p∑
i=1

αiX
2
t−i, (122)

where {εt} ∼ IID(0, σ2
ε ) with fourth-order cumulant κ4 and α0 > 0, αj ≥ 0, ∀j =

1, . . . , p. A candidate class for unbiased and mutually orthogonal EFs is ψt = X2
t −

ht, t = 1, . . . , n. The linear combination of which becomes gα =
∑n

t=1 atψt, where

the weights at are functions of the data and the unknown parameter vector α =

(α0, α1, . . . , αp)
′. Using Theorem 2.3, we can derive the optimal EF as g∗α =

∑n
t=1 a∗t ψt,

where

a∗t =
E

[
∂ψt

∂α
|FX

t−1

]

E[ψ2
t |FX

t−1]

= −∂ht

∂α
/{E[X4

t |FX
t−1]− h2

t}

= −∂ht

∂α
/{(κ4 + 2)h2

t},

and FX
t−1 is the σ-field generated by {Xs; s ≤ t − 1}. Therefore, the optimal EF

estimate of the ARCH(p) parameters turns out to be the solution of

g∗α = −
n∑

t=1

∂ht

∂α
(X2

t − ht)

{(κ4 + 2)h2
t}

= 0.

Next let us consider ARCH(p) errors in the context of a linear regression model:

yt = ztβ + Xt, Xt|FX
t−1 ∼ (0, ht), (123)

where zt is non-stochastic regressors and β represents regression coefficient. The

conditional mean from (123) becomes nonzero as E(yt|FX
t−1) = ztβ and FX

t−1 is now

the σ-field generated by {zt, Xt−1, Xt−2, . . .}. The objective is to estimate the set

of parameters α and β. Let us denote the skewness and excess kurtosis coefficient

as γ1t =
E[(yt−ztβ)3|FX

t−1]

h
3/2
t

and γ2t =
E[(yt−ztβ)4|FX

t−1]

h2
t

− 3, respectively, and choose the

following two orthogonal EFs ψ1t = (yt−ztβ) and ψ2t = (yt−ztβ)2−ht−γ1th
1/2
t (yt−

ztβ). Then following Theorem 2.3, the optimal EF becomes g∗α,β = g∗1 + g∗2 = 0, with
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g∗1 =
n∑

t=1

E
[

∂ψ1t

∂α
|FX

t−1

]

E[ψ2
1t|FX

t−1]
ψ1t +

n∑
t=1

E
[

∂ψ2t

∂α
|FX

t−1

]

E[ψ2
2t|FX

t−1]
ψ2t

= −
n∑

t=1

∂ht

∂α

h2
t (γ2t + 2− γ2

1t)
ψ2t,

and

g∗2 =
n∑

t=1

E
[

∂ψ1t

∂β
|FX

t−1

]

E[ψ2
1t|FX

t−1]
ψ1t +

n∑
t=1

E
[

∂ψ2t

∂β
|FX

t−1

]

E[ψ2
2t|FX

t−1]
ψ2t

= −
n∑

t=1

∂ztβ
∂β

ht

ψ1t −
n∑

t=1

h
1/2
t γ1t

∂ztβ
∂β

− ∂ht

∂β

h2
t (γ2t + 2− γ2

1t)
ψ2t.

The above discussion is also valid for the class of GARCH processes with

ht = V ar(Xt|FX
t−1) = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

δjht−j. (124)

Here, in addition to α and β, we need to estimate q additional parameters δ =

(δ1, . . . , δq)
′. It is easy to see that, E[XtXt−k] = E[E(XtXt−k|FX

t−1)] = 0,∀k ≥ 1, and

hence GARCH errors are uncorrelated.

To illustrate the usefulness of optimal EF approach, we concentrate on a simple

GARCH(1, 1) process given by ht = α0 + α1X
2
t−1 + δ1ht−1. As with the ARCH

model, let us choose the same two orthogonal EFs ψ1t and ψ2t. Then by denoting

θ = (α0, α1, δ1)
′, following Theorem 2.3, we obtain the optimal EF as g∗θ,β = g∗1 +g∗2 =

0, where

g∗1 =
n∑

t=1

E
[

∂ψ1t

∂θ
|FX

t−1

]

E[ψ2
1t|FX

t−1]
ψ1t +

n∑
t=1

E
[

∂ψ2t

∂θ
|FX

t−1

]

E[ψ2
2t|FX

t−1]
ψ2t

= −
n∑

t=1

∂ht

∂θ

h2
t (γ2t + 2− γ2

1t)
ψ2t,

g∗2 =
n∑

t=1

E
[

∂ψ1t

∂β
|FX

t−1

]

E(ψ2
1t|FX

t−1)
ψ1t +

n∑
t=1

E
[

∂ψ2t

∂β
|FX

t−1

]

E[ψ2
2t|FX

t−1]
ψ2t

= −
n∑

t=1

∂ztβ
∂β

ht

ψ1t +
n∑

t=1

h
1/2
t γ1t

∂ztβ
∂β

− ∂ht

∂β

h2
t (γ2t + 2− γ2

1t)
ψ2t.
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If we impose conditional normality, i.e., γ1t = 0, γ2t = 0, the optimal EFs become

g∗1 = −
n∑

t=1

1

2ht

{
∂ht

∂θ

(
X2

t

ht

− 1

)}
= 0,

g∗2 = −
n∑

t=1

(
ztXt

ht

)
−

n∑
t=1

1

2ht

{
∂ht

∂β

(
X2

t

ht

− 1

)}
= 0

which are, as expected, similar to the first-order conditions for MLE under the nor-

mality assumption.

3.5 Spatial regression model

Recently there has been a considerable interest among economists in the applications

of spatial econometric techniques to an increasing number of problems [see Anselin

and Bera (1998) and Anselin (2006)]. Due to its unique nature and defining charac-

teristic, no existing method is dominant for modelling spatial data, and operational

implementation is still a debatable issue. In this section we discuss the implemen-

tation of the optimal EF technique of Section 2.4 in a simple spatial regression set

up following Naik-Nimbalkar (1996) [for additional references, see Lele (1997) and

Yasui and Lele (1997)].

Consider the following simple simultaneous model known as spatial autoregressive

model of first order: y = ρWy + ε, where W = ((wij)) a n× n weights matrix. For

the ith observation, the model can be written as

yi = ρ

n∑

j 6=i

wijyj + εi, i = 1, ..., n , (125)

where we use the sum over “neighbors j” of the ith cross sectional observation and

assume εi ∼ IID(0, σ2
ε ). We are interested in estimating the spatial dependence

parameter ρ and the distribution of the error term is not known. It is very difficult

to derive optimal EF for a general W matrix. However, assuming wi,i+1 = wi,i−1 = 1

for all i = 1, ..., n with all other wij = 0, we can easily obtain an optimal EF. Define

ψi = εiεi+1, where εi = yi − ρ(yi−1 + yi+1) and εi+1 = yi+1 − ρ(yi + yi+2). The

implication becomes clear as due to the independence of εi’s, ψi, i = 2, . . . , n− 2, are

mutually orthogonal for any trivial conditioning σ-field. The optimal EF in the class

{∑n−2
i=2 ψiai} with ai non-random functions of ρ, becomes
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g∗ =
n−2∑
i=2

{
E

[
∂ψi

∂ρ

]
/σ4

ε

}
ψi. (126)

Since stationarity implies E
[

∂ψi

∂ρ

]
is constant, the optimal EE becomes

∑n−2
i=2 ψi =

∑n−2
i=2 εiεi+1 = 0, which is basically the weighted LS equation suggested by Ord

(1975).

We can generalize the above discussion by using conditional moment functions

and exploiting their optimal orthogonal combinations. For example, consider the

σ-field Qi = σ{J(i)|i 6= j; i, j = 1, . . . , n} defined over the information set J(i)

which includes all locations other than i. Then if we define the following conditional

moments

E[yi|Qi] = m1i(θ; yi−1, yi+1) = m1i,

V ar[yi|Qi] = m2i(θ; yi−1, yi+1) = m2i,

the possible elementary EFs turn out to be ψi = yi−m1i(θ; yi−1, yi+1), with E[ψi|Qi] =

0,∀i = 1, . . . , n. But since {ψi}’s are not mutually orthogonal, using Besag’s (1974)

coding method we can obtain a set of mutually orthogonal EFs as the subclass of

functions {ψi for i-even} and {ψi for i-odd}. Therefore, the optimal combination of

EFs becomes

g∗1 =
∑

i=odd

(yi −m1i)
1

m2i

[
∂m1i

∂θ

]
(127)

and

g∗2 =
∑

i=even

(yi −m1i)
1

m2i

[
∂m1i

∂θ

]
. (128)

Then, under the assumption of strong stationarity of the underlying process, the

optimal linear combination of g∗1 and g∗2 will be in the class G = {ag∗1 + bg∗2}, with

a, b being real functions of θ. This class of optimum EFs is more meaningful if either

a and b are known, or a = b, suggesting the optimal equation as g∗1 + g∗2 = 0; this

is basically the same as the equation obtained from maximizing Besag’s pseudo-

likelihood (Besag 1974, 1977).

Therefore, we can see that the usefulness of EF optimality in both simultaneous

and conditional spatial models can be interpreted as the existing methods of Ord

(1975) and Besag (1974, 1977). Interestingly, the underlying notion of orthogonality

is not unique and can be achieved by many alternative ways as discussed above, i.e.,

by constructing different sub-lattices such that one is independent of other and then
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reversing the procedure and combining all separate estimates. For future research,

Godambe’s flexible approach can be generalized to accommodate higher dimensional

spatial autoregressive process with non-stochastic regressors and a general form of

simultaneous or conditional specification.

3.6 Longitudinal data analysis

The Generalized EE (GEE) approach was devised by Liang and Zeger (1986) to

deal with longitudinal data. In longitudinal data, we are presented with repeated

measurements on different cross sectional units over time. It is typically assumed

that the cross sectional units are independent, but the time series data on the same

subject are positively correlated. The GEE methodology was formulated especially

from the need to handle discrete type data where no Gaussian likelihood seemed to

be appropriate. At the end, the approach looks like an extension of the Wedderburn’s

(1974) quasi-likelihood to a class of correlated data, which models only the mean and

the variance of the responses instead the full joint distribution.

To establish notation, suppose the (balanced) panel data set consists of responses

yit, i = 1, 2, . . . , n; t = 1, 2, . . . , T on n units over a T periods. The nT × 1

vector y = (y11, . . . , y1T , . . . , yn1, . . . , ynT )′ has a corresponding mean model µ =

(µ11, . . . , µ1T , . . . , µn1, . . . , µnT )′ and by assumption has a variance-covariance matrix

V with block diagonal structure

V = diag(V1,V2, . . . ,Vn).

Also, we will assume that Vi = Vi(µi1, . . . , µiT , λi) for i = 1, 2, . . . , n, where λi is

a parameter characterizing variance and correlation components. In addition each

mean µit = µit(θ) depends on a p× 1 coefficient vector θ.

From the family of EFs

{A(y − µ)} (129)

where A = nT × nT , the quasi-score EF, i.e., the optimal EF, is given by

µ̇′V−1(y − µ)

or, by exploiting the block-diagonal structure of the covariance matrix V,

U(θ) =
n∑

i=1

µ̇i
′Vi

−1(yi − µi), (130)

where yi = (yi1, . . . , yiT ), µi = (µi1, . . . , µiT ), and µ̇i = ∂µi/∂θ. The GEE is based
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on the EF U(θ) at (130), and the estimator is obtained by finding the root of (130).

One characteristic of the GEE methodology is the use of the so-called “work-

ing” covariance matrix in place of the generally unknown matrix V. Even if the

“working” covariance matrices are misspecified, Liang and Zeger (1986) show that

the GEE estimator will be consistent although generally inefficient. When a consis-

tent estimator of true V is utilized, then the estimator from (130) is efficient. The

consistency of the estimator requires only correct specification of the mean functions

µit.

As it has been presented in the literature, GEE corresponds to the random ef-

fects models but it treats the variance components λi as nuisance parameters. The

advantage of this approach is that it can handle in a unified way a variety of types

of data as continuous data, discrete data, or count data. For a detailed review of the

literature and related references see Fitzmaurice, Laird and Rotnitzky (1993).

3.7 Median regression model

Consider the median regression model proposed by Koenker and Basset (1978):

yi = µi(β) + εi, i = 1, 2, . . . , n

where εi is a random variable with median zero and marginal pdf fi. Let

fi(0) =
1

φ
γ(µi),

be the pdf of yi at µi, where φ > 0 is a scale parameter, and γ is considered a known

function. We will assume the regularity condition that γ(µi) > 0, which is needed

for the median to be unique. For the later use we will denote the n × 1 vector of

medians of yi’s by µ = (µ1(β), . . . , µn(β))
′
. Jung (1996) analyzed the estimation of

median regression models using the approach of Wedderburn (1974) and Godambe

and Heyde (1987). In the following we use Jung’s framework and notation; a similar

analysis is given by Godambe (2001).

For estimation of β, the p× 1 vector parameter, we start from the n elementary

EFs

{
I(yi − µi(β) ≥ 0)− 1

2

}
, i = 1, 2, . . . , n; (131)

which clearly have zero expectation. Let V denote the n × n variance-covariance

matrix of the elementary EFs; the n diagonal elements of V equal 1/4.

The n elementary EFs can be combined linearly in an optimal way by using the
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theory developed by Godambe and Heyde (1987). Consider any n × p matrix H of

rank p. The unbiasedness of the elementary EFs ensures that p× 1 EF

UH(β) = φ−1H
′




I(y1 − µ1(β) ≥ 0)− 1
2

...

I(yn − µn(β) ≥ 0)− 1
2




will deliver a consistent estimator of β.

The choice of weighting matrix H
′

= D
′
ΓV −1, where D = ∂µ/∂β, and Γ =

diag{γ(µ1), . . . , γ(µn)}, yields the optimal EF Uopt within the class of linear combi-

nations of (131). By solving the system of p equations Uopt(β) = 0, we obtain the so

called quasi-likelihood estimator β̂. If the true model is double exponential, β̂ is the

MLE. We note that the use of optimal EF theory makes clear from the outset the

role of the density fi of yi’s. Optimality dictates weighting the elementary EFs (131)

in a way that is reminiscent of weighted LS. In case of identically and independently

distributed random variables, the density is constant and it falls out of the picture.

The optimum EF reduces to

Uopt = D
′




I(y1 − µ1(β) ≥ 0)− 1
2

...

I(yn − µn(β) ≥ 0)− 1
2


 . (132)

Furthermore, in case of the linear median regression model, µi(β) = x′iβ, the

resulting system of EEs (132) is the familiar sum of cross products of the xi’s with

the elementary EF’s (131).

The advantage of the optimal EF approach to estimation of the median regression

model, is that the form of optimal EEs Uopt(β) = 0 allows for a wide variety of data

structures, such as dependent or heteroscedastic data, offering a unified treatment.

In addition, due to the invariance of medians to monotone transformations, we can

handle censored [Powell (1984)] or binary data [Manski (1975)] as well.

4 Epilogue

It was the 1930s. The conflict between the two statistical giants Karl Pearson and

R. A. Fisher was at its height. One issue of their heated arguments was the relative

merits of the MM and ML approaches. “I am even ready to adopt new methods,”

Karl Pearson wrote to Fisher on August 28, 1935, “if they are quicker and more

exact than the old. Now I do not suppose you spend much, if any, time in fitting

frequency curves; nevertheless I should like to have your method of fitting them to
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observations, which avoids the ‘traditional but inefficient method of fitting them by

moments.’ (Annals of Eugenics Vol VI p.252) It would aid me in many inquiries,

if you would let me know the more efficient way.” On August 30, 1935, Fisher sent

a prompt reply, “The fullest examination of the method of moments in fitting the

Pearsonian curves is in a paper ‘On the mathematical foundations of theoretical

statistics,’ Phil. Trans. A, ccxxii. 309-368. High efficiencies are only obtained in

the neighborhood of normal curve. Efficient equations of estimation may always

be obtained by the maximum likelihood.” The acrimonious debate culminated in

two final papers. Karl Pearson in one of his very last papers that was published in

June 1936 issue of Biometrika after he passed away on April 26, 1936, began with

the italized and striking line, “Wasting your time fitting curves by moments, eh ?”

Fisher, not to be outdone, sent an equally scathing reply. After his step by step

rebuttal to Pearson’s (1936) arguments, Fisher (1937, p.317), now feeling free after

Pearson’s death, bluntly stated : “So long as ‘fitting curves by moments’ stands

in the way of students’ obtaining proper experience of these other activities, all of

which require time and practice, so long will it be judged with increasing confidence

to be waste of time.” MM was basically swept away by ML revolution; Fisher and

his method came out to be winner from this battle. For several decades chapters

were devoted to ML method in statistics (and econometrics) textbooks, while MM

had only scant mentions. However, now it appears that after all MM did not lose

the war, and econometricians can take credit in reviving the MM approach through

GMM.

Looking back at the Fisher-Pearson conflict after nearly seven decades on the

light of Godambe’s EF approach, much of the sharpness of their debate is lost, as

Desmond (1997, pp.116-117) noted, “One of the advantage of estimating functions

framework is that the apparent dichotomy between these two methods (MM and

ML) is nullified and it is possible to see these methods as lying within a unifying

framework of continuum, ranging from weak second-order assumption to fully spec-

ified parametric models.” It is indeed ironic that EF method which is essentially

a Pearsonian-type moment-based approach provides, as we discussed in Section 2,

a finite sample justification to Fisher’s asymptotically efficient ML method. Apart

from the potential practical applications some of which are discussed in Section 3,

this unifying feature of the EF method is very attractive along with its philosophical

and foundational approach.

Of course, we could not do full justice to the proliferations of papers written in

theory and applications of EFs. For instance, we did not cover the topic of hypothesis

testing based on EFs. McLeish and Small (1988, p.10) argued that EFs can be

regarded as vehicles for more general focus on inference than simple estimation, and
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they preferred to call these functions “inference functions.” For discussion on tests

utilizing EFs, see Basawa (1985, 1991), Hall and Mathiason (1990), Thavaneswaran

(1991), Bhat (1996) and Heyde (1997, Ch.9). A very related area to EF method

of estimation is the empirical likelihood (EL) approach. The link between EF and

EL method and how to combine different sources of information on parameters are

discussed in Qin and Lawless (1994) and Owen (2001, pp.39-42, 51-55). We have

tried to project EF method emphasizing its finite sample justification. However, the

consistency and asymptotic normality of the resulting estimator are also important

issues and good references on these are Crowder (1986), Heyde (1997, Ch.12) and

Sørensen (1999).

To conclude, in this chapter we have reviewed the important phases in the devel-

opment of EF method which now appears to have at least a century-old history. We

have stressed the historical continuity in our discussion. It appears that regarding the

choice of estimation techniques, we are now back to the Pearsonian MM paradigm

which now looks more useful than ever after a very long devotion to Fisher’s ML ap-

proach. Given that economic theory provides characterization of the stochastic laws

mostly in terms of moment restrictions and EF approach is a sufficiently flexible

moment-based method, usefulness of this estimation technique looks very promising

in econometric applications.
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