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Abstract

We study the optimal targeting strategy of a planner who seeks to maximize the
diffusion of an action in a society where agents imitate successful past behavior of
others. The agents face individual decision problems under uncertainty and interact
locally, so that each agent affects only his neighbors. We find that the optimal
targeting strategy depends on two parameters: (i) the likelihood of the action being
more successful than its alternative and (ii) the planner’s patience. More specifically,
for an infinitely patient planner the optimal strategy is to concentrate all the targeted
agents in one connected group when her preferred action has higher probability of
being more successful than its alternative; whereas it is optimal to spread them
across the population when this probability is lower. Interestingly, for an impatient
planner the optimal targeting strategy is exactly the opposite.

JEL classification: D83, D85, M37, O33
Keywords: Targeting, Diffusion, Imitation, Local Interactions.

1. Introduction

1.1. Motivation

The importance of social interactions for the diffusion of innovations, ideas and
behavior is a topic that has attracted a lot of research interest over the years (see
Jackson, 2008). Recent technological advances have made the collection and analysis
of data related to the structure of relationships inside societies, as well as the rules
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guiding the behavior of their members possible. The appropriate use of this infor-
mation can provide helpful tools for the effective diffusion of products, technologies
and ideas in societies.

In this paper, we describe the optimal intervention of an interested party (from
now on called planner) who seeks to maximize the diffusion of a given action in a
society where agents imitate successful past behavior of their neighbors. Effective
design of social influence campaigns appears to be a crucial problem in several real–
life situations, usually when the planner has limited resources available.

The direct example that comes to ones mind is a firm that produces a new
product and wants to establish it in a new market. In such a setting, it is rather
common for people to seek advice from previous users before purchasing such. More-
over, firms tend to advertise the product initially to a limited number of people that
will then spread the word to the rest of the society. The correct selection of initial
targets might be crucial for the success or not of the product. Furthermore, the
effectiveness of this selection is affected by several factors, such as the horizon in
which the firm expects to observe the outcome of the targeting strategies, or how
the initial targets are going to be distributed around the society.

There are several other examples that fit the general idea of our work. For
instance, an NGO or government that wishes to promote a new highly productive
agricultural technology and for doing so it wants to select a few farmers in one or
several villages to adopt the technology initially. Or else, a government that wishes
to reduce criminal activity and is willing to sponsor a number of ex–criminals to
change their lifestyle. Or even, a political or religious organization that wishes to
propagate its ideology and needs to locate a number of initial seeds in the society to
spread the word to their neighborhood. As one can see, the problem of optimal social
influence is directly applicable to a bunch of different environments and seemingly
unrelated areas.

The particular focus of this paper is twofold. First, we highlight the importance
of the distribution of targeted agents in the society and not on their individual
characteristics. As it will become apparent, this turns out to be a very crucial feature
that has been overlooked until now. Second, we compare the optimal strategy of
a short–sighted versus that of a far–sighted planner, which turn out to have very
distinct characteristics. To the best of our knowledge this is the first paper to
discuss thoroughly these two aspects; thus opening a number of interesting avenues
for further research.

More specifically, most of the existing literature on targeting has focused on the
importance of central agents (see Ballester et al., 2006). Having a high or a low
number of connections (see Galeotti and Goyal, 2009, Chatterjee and Dutta, 2011),
or diffusing information to many others who are poorly connected (see Galeotti et
al., 2011) are some usual characteristics of influential agents. The importance of
these characteristics is obvious and beyond doubt. Nevertheless, we show that there
is another important factor with significant effect on diffusion. This is whether the
targeted agents are concentrated all together, in the sense that they are connected
between them, or they are spread across the society.

Furthermore, throughout our analysis we highlight the differences between opti-
mal targeting strategies of a patient versus an impatient planner, i.e. who care about
diffusion in the long–run and short–run respectively. It turns out that the two cases
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differ sharply and these differences persist independently of the parameters’ values.
This comparison is important in several realistic scenarios, since different targeting
strategies may be appropriate depending on the time horizon.

Undoubtedly, in order to obtain tractable and intuitive results we need to make a
set of simplifying assumptions, which might reduce the applicability of our analysis
to certain problems. Nevertheless, we provide a framework that can help us un-
derstand better which are those parameters that affect problems of social influence
crucially and we illustrate how beneficial the knowledge about society’s structure
may be for the efficient design of marketing and general social influence campaigns.

1.2. Setting and Results

Formally, we consider a finite population of behaviorally homogeneous agents
located around a circle. In each period, all agents choose simultaneously between
two alternative actions. The stage payoff each action yields is uncertain and depends
on a random shock, which is common for all the agents who have chosen the same
action in that period.1 Shocks are independent across actions and across periods.
There are no strategic interactions between agents. After making their decisions, all
agents observe the chosen actions and the realized payoffs of their two immediate
neighbors. Subsequently, they update their choice myopically, imitating the action
that yielded the highest payoff within their neighborhood in the preceding period.

There are several reasons why economic agents adopt simple behavioral rules,
such as the imitation of successful past behavior. For example, they often need to
make decisions without knowing the potential gains or losses of their possible choices.
Furthermore, such situations may arise with high frequency and the agents’ com-
putational capabilities are limited, then they tend to rely on information received
from past experience of others, rather than experimenting themselves.2 These ar-
guments are also supported by a recent, but growing, empirical and experimental
literature which provides strong evidence in favor of the fact that in several decision
problems the agents tend to imitate those who have been particularly successful (see
Apesteguia et al., 2007, Conley and Udry, 2010, Bigoni and Fort, 2013).

A simple problem that fits our model particularly well is that of the diffusion
of agricultural technologies.3 Farmers’ harvests depend mostly on common factors
such as the weather and the fertility of the land. Moreover, it is normal to assume
that farmers are aware of the technologies and crops used by their neighbors, as
well as the payoffs they receive. In particular, Conley and Udry (2010) show that
farmers tend to imitate those who have been very successful in the past, whereas as
it is pointed out by Ellison and Fudenberg (1993) the farmers’ technology decisions
are guided mainly by short–term considerations, especially when capital markets are
poorly developed or malfunctioning.

The planner is interested in maximizing the diffusion of her preferred action
in the population. She can be either infinitely patient, therefore interested in the

1This assumption is made only in order to facilitate the tractability of the results.
2These are some of the reasons why imitation has been subject to extensive theoretical study

in different environments (see Ellison and Fudenberg, 1993, 1995, Vega-Redondo, 1997, Eshel et
al., 1998, Schlag, 1998, Alós-Ferrer and Weidenholzer, 2008, Duersch et al., 2012).

3See also Ellison and Fudenberg (1993).
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diffusion of the action in the long run; or impatient, therefore interested in the
diffusion of the action after just one period. She is assumed to know the structure
of the society, as well as how agents behave and can intervene by enforcing a change
at the initial choice of a subset of the population. Ideally, she would like to target
the whole population, but doing so in reality would be extremely costly. Hence,
our goal is to identify the planner’s optimal targeting strategy given the number of
agents that can be targeted.

Observe that, all the agents are identical with respect to any measure of central-
ity. In fact, none of them has any positional advantage or disadvantage compared to
the rest of the population. This is an important feature, given that we want to focus
on the distribution of targeted agents in the society. Despite this fact, we find that
expected diffusion changes substantially depending on the subset of the population
that has been targeted by the planner.

We show that the optimal targeting strategy depends on two parameters: (i) the
likelihood of the planner’s preferred action being more successful than its alternative
and (ii) the planner’s patience. In fact, we observe a sharp contrast between the opti-
mal strategies of a patient planner versus that of an impatient one. More specifically,
when the planner’s preferred action has higher probability of being more successful
than its alternative, then the optimal targeting strategy for a patient planner is
to concentrate all the targeted agents in one connected group;4 whereas when this
probability is lower it is optimal to spread them uniformly across the population.
Interestingly, for an impatient planner, the optimal targeting strategy is exactly the
opposite.

The intuition is relatively simple and depends on the fact that in the long run
only one of the two actions survives. Therefore, when the action is likely to be
successful, then an infinitely patient planner wants to prevent its disappearance due
to a few consecutive negative shocks in the first periods. For this reason she prefers
to concentrate all the targeted agents together. To the contrary, if the action is
unlikely to be successful, then the optimal strategy for the planner is to try and
take advantage of a possible sequence of successful shocks during the first periods.
By concentrating all targeted agents together, she would only manage to make the
action disappear more slowly, since for its diffusion a large number of consecutive
successful shocks would be needed, which is rather unlikely to happen.

For an impatient planner the arguments are reversed. When the preferred action
is likely to be successful, then the planner wants to make it visible to as many agents
as possible, therefore she should spread the targeted agents around the society. On
the other hand, if the action is more likely to be unsuccessful, then the planner wants
to prevent as many of the targeted agents as possible from observing the alternative
action, therefore she should concentrate them all together.

At this stage, one could question how important is the role of the particular
behavioral rule for obtaining these results and how robust they would be under
either Bayesian (see Gale and Kariv, 2003) or De Groot (see DeGroot, 1974, Golub
and Jackson, 2010) learning rules. A crucial aspect for the current results is that
the agents do not accumulate information through time, which has two negative

4In the circle a connected group is a segment of the circle.
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and one partially positive effect. On the one hand, the society is vulnerable to
misguidance by certain unexpected events even at later stages, which for example
should not be the case if the agents perform Bayesian learning. Moreover, under
any initial conditions there is no guarantee that the society would converge to the
planner’s desired action (even if this is the socially optimal). On the other hand, the
process is less path dependent than De Groot learning, where initial opinions may
drive a society towards an inefficient state, sometimes even with certainty. Once
again, this would not be a problem under Bayesian updating, which however has
been acknowledged by large part of the literature of learning in networks to require
extremely complex calculations.

We extend our analysis in many different directions.5 We discuss the optimal
strategies of planners with intermediate levels of patience, thus intending to identify
how the transition between the two extreme cases occurs. Moreover, we quantify the
practical meaning of infinite patience by characterizing the expected waiting time
before convergence occurs. We observe that, for those cases in which the planner’s
optimal strategy is to concentrate all the targeted agents in one group the process is
slowed down substantially. In addition to this, we discuss what happens if we allow
for inertia and show that the results remain unchanged. This extension captures
many realistic features, such as the existence of switching costs and some forms of
conformity. Finally, we repeat our analysis for the line and the star and provide
numerical simulations for other network structures, as an attempt to identify the
effect of centrality on our results.

1.3. Related Literature

The role of influential agents in environments with local interactions has been
studied in different disciplines, such as computer science (see Kempe et al., 2003,
Richardson and Domingos, 2002), marketing (see Kirby and Marsden, 2006) and
physics (see Bagnoli et al., 2001), as well as in economics. Intuitively, a crucial
feature is the centrality of an agent, which depicts either its number of immedi-
ate neighbors or its important importance for the connectivity of the society (see
Ballester et al., 2006).

Our paper is closely related to Galeotti and Goyal (2009) and Goyal and Kearns
(2012). Although the modeled processes are different, the research questions are
similar. However, neither of the papers focuses on either of our two main points of
interest, i.e. the distribution of targeted agents and the contrast between short–run
and long–run strategies. Galeotti and Goyal (2009) study the problem of a firm that
seeks to maximize the diffusion of its product in a society, under word–of–mouth
communication and social conformism. The authors focus exclusively on short–run
strategies and on the degree distribution of the agents, assuming that agents meet
randomly. This feature is crucial, since it does not allow us to study effect of the
distribution of targeted agents across the population. Similarly, Goyal and Kearns
(2012) study competition between two firms who distribute their resources trying to
maximize the long–run diffusion of a product in a social network. The paper focuses
more on how efficiently the resources are allocated, as well as on the effect of budget
asymmetries on the equilibrium allocations.

5A thorough discussion of the extensions can be found in the online appendix.
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As it has already been mentioned, large part of the literature has focused on the
identification of particular characteristics of influential agents, highlighting the im-
portance of different measures of centrality.6 In another recent paper, in an setting
where agents are able to learn from their neighbors about the quality of a product,
Tsakas (2014) finds decay centrality to be a crucial measure for the characterization
of optimal strategies both in the short and in the long–run. Furthermore, in an en-
vironment with strategic information transmission, Galeotti et al. (2011) show that
influential agents are those who diffuse information to many others, who themselves
are poorly connected.

More broadly related are also the areas of cellular automata and voter models,
used mainly in the physics literature but also in economics. For instance Bagnoli
et al. (2001) study the long-run behavior and the phase transition of a system with
characteristics similar to ours, without focusing on the initial conditions,7 which
is the main focus of our paper. In economics, Yildiz et al. (2011) generalize the
standard voter model by introducing “stubborn” agents, i.e. who never change
their choice, and they discuss the problem of optimal placement of such agents.
Also, Ortuño (1993) considers a standard voter model setting, where agents are
located in a two dimensional infinite lattice in which a planner seeks the diffusion
of a technology. This is the only article where centrality does not play a role.

Regarding agents’ behavior, we focus on imitation of successful past behavior.
Similar rules have been studied extensively in several theoretical settings,8 with the
focus being mostly on the characterization of stochastically stable configurations.
There is also a recent but growing empirical literature9 that provides empirical
evidence on the adoption of this behavior in real environments. In a more general
framework, the current analysis builds upon the work on learning from neighbors,10

where most of the papers focus mainly conditions under which efficient actions
spread to the whole population and not on optimal influence strategies.

The rest of the paper is organized as follows. In Section 2 we define the model for-
mally. Sections 3 and 4 contain the characterizations of optimal targeting strategies
for an impatient and a patient planner respectively. In Section 5 we briefly discuss
some extensions and Section 6 concludes. All proofs can be found in the Appendix.
A thorough study of the extensions can be found in the online appendix.11

2. The Model

2.1. The Agents

There is a finite set of agents N = {1, ..., n}, referred to as population of the so-
ciety. Agents are located around a circle. Each agent can observe his two immediate
neighbors, i.e. one to his left and one to his right. At time τ = 1, 2, ..., each agent

6Bonacich centrality in Ballester et al. (2006), decay centrality in Chatterjee and Dutta (2011).
7Given that they refer to initial positions of particles.
8See Vega-Redondo (1997), Alós-Ferrer and Weidenholzer (2008), Eshel et al. (1998), Fosco and

Mengel (2011).
9See Apesteguia et al. (2007), Conley and Udry (2010), Bigoni and Fort (2013).

10See Banerjee (1992), Banerjee and Fudenberg (2004), Bala and Goyal (1998), Chatterjee and
Xu (2004), Ellison and Fudenberg (1993, 1995), Gale and Kariv (2003).

11https://sites.google.com/site/nikolastsakas/research
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i ∈ N chooses between two alternative actions, aτi ∈ {A,B}. Each action yields
random payoff. The payoff of agent i is independent of the other agents’ choices.
Therefore, interactions among agents are not strategic and their connections rep-
resent only an exchange of information.12 Moreover, agents who choose the same
action at a given period receive equal payoffs.13 The payoffs of both actions change
in each period, with the realizations being independent across periods. Action B
yields strictly higher payoff than action A with probability p ∈ (0, 1), while action
A yields strictly higher payoff than B with probability q. For the derivation of the
main results we focus on the case where q = 1 − p. Relaxation of this assumption
does not affect the results, as it is only about the case where the distributions of the
payoffs are not atomless, so that both actions yield the same payoff with positive
probability. In fact, the important factor for our analysis is the ratio between p
and q, which we define as r = p

q
. From now on, we will say that there is a success

(failure) in period τ if action B (A) yielded higher payoff in this period. 14

The planner is an agent, outside of the population, who seeks to maximize the
diffusion of action B in the population.15 She can do so by changing to her favor
the choice of a subset of the population before the beginning of the first period.16

Throughout the paper, these are mentioned as targeted agents. Optimally, she would
like to affect the whole population, but in reality this would be extremely costly. This
cost enters implicitly if we assume that the cardinality of the subset she can affect
is fixed exogenously.17 More specifically, given that at period τ = 0 all the agents
are choosing action A, the planner can target t ≤ n agents from the population
and make them choose B in period τ = 1. After that, the planner cannot affect
the society anymore. The goal of this paper is to characterize the planner’s optimal
targeting strategy.

The planner can be either impatient or infinitely patient. A planner is called
impatient if she cares about the diffusion of her preferred action after only one
period. Similarly, a planner is called infinitely patient if she cares only about the

12Non–strategic nature of communication is a behavioral assumption often employed in the
literature for two reasons. First, because it facilitates the tractability of the results and second
because a possible strategic behavior of the agents would interact with their imperfect knowledge
of the network structure in very complex ways.

13This assumption is imposed mainly in order to facilitate the tractability of the results. Doing
so allows us to summarize all stochasticity in one parameter, as well as to reduce the dimensionality
of the stochastic processes that describe it.

14Later on, we will also define success and failure in a random walk in a similar way.
15Throughout the paper, by diffusion of an action we refer to the expected number of adopters

over a certain number of periods, either one or infinite. Implicitly, this means that the planner is
assumed to be risk neutral.

16Assuming that the planner intervenes only once is a simplifying assumption. Nevertheless, if
the planner could target agents in multiple periods, a similar analysis would be repeated several
times. Intuitively, multiple periods of targeting could allow the planner to be more risky in the
beginning, in the sense of targeting larger number of groups, thus intending to attract the whole
society quickly and then condition her future strategy on the realized history. In a slightly different
environment, where the planner does not know perfectly the likelihood of success of each action,
multiple periods of targeting could help the planner improve the accuracy of her beliefs over this.
Such an explanation would be more plausible for environments such as in Tsakas (2014).

17Later on, we endogenize the number of affected agents and we discuss the returns to investment
for different values of it.
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diffusion of her preferred action in the long–run. We find that the optimal behavior of
an impatient planner is exactly the opposite to that of an infinitely patient planner.
Later on, we also discuss some intermediate levels of planner’s patience.

2.2. The Behavior

At the end of each period, the agents observe the actions and realized payoffs of
themselves and their neighbors. Subsequently, they have the opportunity to revise
their choices. Revision occurs happen simultaneously for all agents.18 According to
these observations, the agents revise their choices by imitating the most successful
action within their neighborhood in the preceding period. Notice that, an agent
never switches to an action that she did not observe, i.e. that neither her nor any of
her neighbors chose in the previous period. Moreover, if an action disappears from
the population it never reappears.

The important aspect of this myopic behavior is that the agents discard most
of the available information. They ignore whatever has happened before the pre-
vious period, hence they are unable to form beliefs about the underlying payoff
distributions of their alternative choices.

2.3. The Problem

After the planner has chosen its targets, the population consists of s agents
choosing action A (from now on called non–adopters) and t agents choosing action
B (from now on called adopters); obviously s+ t = n. We call a group a sequence of
neighboring agents all of whom choose the same action and are surrounded by agents
choosing the opposite action. The population is formed of m groups of neighboring
agents who choose action A, with sizes {s1, s2, . . . , sm}, where

∑m
k=1 sk = s and

analogously m groups of neighboring agents who all choose action B, with sizes
{t1, t2, . . . , tm}, where

∑m
k=1 tk = t.19 We refer to these groups as groups of type

A and type B respectively. The numbering of the groups is based on their size in
increasing order, s1 ≤ s2 ≤ · · · ≤ sm and t1 ≤ t2 ≤ · · · ≤ tm. With some abuse of
notation we also use s1, s2, . . . , sm and t1, t2, . . . , tm to name the groups.

Our aim is to find the optimal initial size of all sk and tk for k = 1, . . . ,m,
their optimal initial position (if it matters), as well as the optimal initial number of
groups, m.

In order to avoid unnecessary complications in the calculations (which arise with-
out the gain of any additional intuition) we assume that every group must have an
even number of agents. The qualitative intuition of the results would be the same
even without imposing this assumption, and in most of the cases it would not affect
them at all. It is only imposed for better exposition of the results.20 Formally:

Assumption 1 (A1). si and ti are even numbers for all i ∈ {1, . . . ,m}.

18Simultaneous updating is assumed to keep the problem tractable. In extensions, we provide a
simple intuition of how this, as well as not perfectly correlated payoffs, would affect them quanti-
tatively, but not qualitatively.

19Notice that, the fact that the network is a circle and there exist exactly two actions ensures
that the number of groups is the same for both actions.

20See the analysis of the line in the online appendix for a more detailed motivation regarding
this assumption.
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Figure 1: Example of an initial configuration: White nodes represent agents choosing action B
and black nodes agents choosing action A.

This restriction is imposed only on the initial configuration, nevertheless it en-
sures that this will be the case in all the periods, given that the size of a group in
each period either increases by two or decreases by two.

3. Results for an Impatient Planner

In this section, we study the optimal targeting strategy of a planner who cares
about maximizing the expected number of agents choosing action B after exactly one
period. Figure 2 shows the two possible configurations after one period. White dots
represent the agents who choose initially action B and black dots those agents who
choose initially action A. Observe that only those agents who are on the boundary
of a group can change their choice. In fact, for m denoting the total number of
groups, in case action B is more successful in the first period, then there will be 2m
additional adopters in the next period; whereas, in case action A is more successful,
the number of adopters will decrease by 2m. The probabilities of ending in each of
the two possible states is p and q = 1− p respectively.

Initial Configuration After Success After Failure

Figure 2: Initial configuration and the two possible configurations after one period.
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Hence, the objective function of the impatient planner is as follows:

ENB(1) = t+ 2mp− 2m(1− p) = t+ 2m(2p− 1)

It is easy to see that the optimal targeting strategy depends on p. Namely, for
p > 1/2 the objective function is strictly increasing in m.21 Therefore, it is optimal
to have as many groups as possible. On the other hand, if p < 1/2 the objective
function is strictly decreasing in m and therefore it is optimal to locate all targeted
agents in one group.22 This result is formally stated in the following proposition:

Proposition 1. Under (A1), then for an impatient planner and for a given number
of targeted agents, t

• If r > 1, the optimal targeting strategy is to spread the targeted agents to as
many groups as possible, i.e.

– If t < s, then m = t
2
, with t1 = · · · = tm = 2.

– If t > s, then m = s
2
, with s1 = · · · = sm = 2.

• If r < 1, the optimal targeting strategy is to concentrate all the targeted agents
in one group, i.e. m = 1, t1 = t and s1 = s.

Observe that, as long as the planner creates the maximum number of groups, the
allocation of the agents inside these groups is not important. This feature will
change slightly in the case of infinite patience.

Intuitively, this result suggests the following. If an action is likely to be successful,
then the planner should try to make it directly visible to as many non–adopters as
possible. Doing so, she will manage to attract the maximum number of additional
adopters in case of success. To the contrary, if an action is unlikely to be successful,
then the planner should prevent most of the targeted agents from observing the
opposite action. As a result, even upon an unsuccessful realization, most of them
will not change their choice in the second period. As we will see, this optimal
strategy changes sharply if the planner is infinitely patient.

4. Results for an Infinitely Patient Planner

In this section, we study the optimal behavior of an infinitely patient planner,
i.e. one who cares only about the diffusion of her preferred action in the long run.
A crucial feature of this setting is that such a planner disregards completely the
speed of the procedure. Before beginning our analysis, it is useful to state two prior
results.

21If q 6= 1− p, we would simply have to replace 2p− 1 with p− q.
22Throughout the paper, we disregard the case of p = 1

2 . This is because for p = 1
2 and given

Assumption 1 every targeting strategy of the planner yields exactly the same result.
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4.1. Preliminaries

4.1.1. Diffusion when Agents Imitate-the-Best Neighbor

The present behavioral rule constitutes a special case of imitate–the–best neigh-
bor, applied in a setting of individual decision–making under uncertainty without
strategic interactions between agents. Agents observe the choices of their neighbors
and the payoff they yield. Subsequently, they revise their choices repeatedly accord-
ing to these observations. In particular, they do so by imitating the action that
yielded the highest payoff within their neighborhood in the preceding period.

In such a setting, it turns out that the population converges with probability one
to a steady state where all the agents choose the same action (see Tsakas, 2013).
Moreover, if p ∈ (0, 1) then any of the actions can be the one to survive in the
long run. This is based on the fact that all actions are vulnerable to a sequence of
negative shocks, which can lead to their disappearance. Given that an action which
disappears from the population never reappears, it turns out that only one of them
survives at the end.

In our case, this result ensures that only one of the two actions will survive
in the long run and that both of them have a positive probability to be the ones
succeeding. Hence, the optimal strategy for an infinitely patient planner is the one
that maximizes the probability that action B gets diffused to the whole population
in the long run. We define this probability as follows:

Definition 1. PB(·) is the probability that action B will be diffused to the whole
population in the long run.

This probability will depend not only on the size of the population n, the number
of targeted agents t and the probability of success p, but also on the choice of
the planner about which agents to target. Notice as well that maximizing this
probability is equivalent to maximizing the expected number of agents choosing
action B in the long run; a remark that will clarify the analogy between our short
run and long run analysis.

4.1.2. Results on Random Walks with Absorbing Barriers

A technical result which turns out to be particularly useful comes from Kemeny
and Snell (1960). It refers to the properties of a finite one–dimensional random
walk with absorbing barriers, which in the current context is defined as a Markov
chain whose state space is given by the integers j ∈ {0, 1, . . . , n} and its initial state
is i. For some numbers p and q satisfying 0 < p, q < 1, the transition probabili-
ties are given by Pj,j+1 = p, Pj,j−1 = q and Pj,j = 1 − p − q for all j 6= 0, n and
P0,0 = Pn,n = 1. The endpoints of a random walk are called absorbing barriers be-
cause upon reaching one of them the process eventually stays there forever. Those
two states are the only absorbing ones. We denote the probability of absorption at
state n (respectively at state 0), when the process initiates at state i, by Pn(i) (re-
spectively P0(i)).Specifically, Kemeny and Snell (1960) compute the random walk’s
probabilities of absorption at each one of the two absorbing states as follows:
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Lemma 1 (Kemeny and Snell (1960)). Consider a random walk with state space
{0, 1, . . . , n}, where both barriers 0 and n are absorbing. If the probability of moving
to the right (from j to j + 1) is p, the probability of moving to the left (from j to
j − 1) is q, and r = p

q
, then the probability of absorption at state n, when starting

from state i is:

Pn(i) =

{
rn−rn−i

rn−1 if p 6= q (or equivalently r 6= 1)
i
n

if p = q (or equivalently r = 1)
(1)

Analogously, the probability of absorption at the state 0 is P0(i) = 1− Pn(i).

For the moment, p 6= q is equivalent to p 6= 1
2
. The results are completely

analogous in the general case.
To help us understand how this result can be used to express the current diffusion

process we consider a line (see Figure 3), with agents named {1, 2, . . . , n}, where
each agent has two neighbors, except of agents 1 and n who have one neighbor
each. At period τ = 1, agents 1 to i choose action B and the rest choose action A.
Hence, every period only two agents may revise their choice (for example in the first
period those are the agents i and i + 1). The border fluctuates until either agent
n chooses B, or agent 1 chooses A. The position of the right border of adopters
follows a random walk with absorbing barriers 0 and n. Notice that, in order for
agent 1 to choose A the left barrier must be located at the artificial node 0, which
is going to be omitted in most of the graphs for expositional simplicity. Hence, we
can use the result stated above to describe the probability of diffusion for each of
the two actions. We call a random walk successful (unsuccessful) if it ends up in the
absorbing state where all the nodes included in the walk choose action B(A).

This result is particularly helpful for our analysis, because any initial targeting
strategy induces a stochastic process that can be expressed as a sequence of con-
ditionally independent random walks with absorbing barriers, similar to the one
described above. Despite having multiple borders between groups, all of them fluc-
tuate synchronously, because the payoffs for each action are perfectly correlated
and therefore all agents on the boundaries make the same choice in each period.
To grasp a better understanding of this argument recall how the process evolves
at Figure 2, focusing the attention on the borders of each group. One can notice
that a group is either enlarged or reduced by two agents, one at each side. There-
fore, if one splits the group in the middle, then the group will evolve on the same
way to the left and to the right, until either it disappears, or connects the smaller
of its neighboring groups does so. The same holds for every other group of each
type. Hence, one can consider that the colors of the nodes in each border follow a
random and the fact that the payoffs are perfectly correlated, allows us to consider
the whole process following a unidimensional random walk. This initial walk is able
to describe the process until some group disappears, as for example it happens in
Figure 2 with the bottom left white group after a failure. Once again dure to the
payoff correlation we can be sure that the first group to disappear will be either
the smallest group of adopters, with size t1 or the smallest group of non–adopters,
with size s1 disappears. Therefore, the process until one of these two happens can
be represented by the random walk that is shown in Figure 6, where if the random
walk hits the right (left) corner then the group s1 (t1) has disappeared. When either

12



0 1 2 ...... i− 1 i i+ 1 i+ 2 ...... n− 2 n− 1 n

1− p p

Figure 3: Initial configuration of a random walk with absorbing barriers 0 and n.

0 1 2 ...... i− 1 i i+ 1 i+ 2 ...... n− 2 n− 1 n

1− p p

0 1 2 ...... i− 1 i i+ 1 i+ 2 ...... n− 2 n− 1 n

1− p p

Figure 4: The two possible configurations after one period.

0 1 2 ...... i− 1 i i+ 1 i+ 2 ...... n− 2 n− 1 n

1− p = 0

0 1 2 ...... i− 1 i i+ 1 i+ 2 ...... n− 2 n− 1 n

p = 0

Figure 5: The two possible configurations after absorption.

of this happens the group of each type is reduced by one, once and for all, thus
changing the possible fluctuations of the process. This can be considered, as the
described random walk having absorbing barriers. Upon reaching one of the two
barriers, the process starts fluctuating according to a new random walk, with the
steps to the next absorbing barriers being determined by the sizes of the new small-
est groups. Notice that the probabilities of absorption for this new random walk are
conditionally independent on what happened before. Overall, the process can be
described as a sequence of conditionally independent unidimensional random walks
with absorbing barrier, where in the final stage there is only one group of each type
and absorption is associated with total diffusion of one of the two actions.

. . .. . . i i+1 . . .. . .

1− p p

t1/2 s1/2

Figure 6: The first random walk
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4.2. Main Results

Not surprisingly, the ratio r = p
q

= p
1−p , which describes the likelihood of action

B being more successful than action A, is a crucial parameter. However, surprisingly
enough, this is the only parameter that affects the optimal targeting strategy and
more specifically whether r is higher or lower than 1.23 It is also interesting though
that the optimal strategy of the infinitely patient planner is in complete contrast
to that of the impatient planner. In particular, we observe that, for r > 1 the
optimal targeting strategy of the planner is to concentrate all the targeted agents in
a single group, whereas for r < 1, the optimal strategy is to spread them as much
as possible across the population, splitting them into as many groups as possible
and as symmetrically as possible. Observe that, the results are not just different,
but are exactly opposite to those found for the impatient planner. In fact, the
optimal strategy for an infinitely patient planner is the worst possible strategy for
an impatient planner and vice versa.

For a better exposition of the general results, we split the problem into three sub-
problems. First, we consider the symmetric case where the groups are restricted to
be have equal sizes. Then, we consider the asymmetric case where the planner can
target up to two groups with potentially unequal sizes and finally we consider the
general asymmetric case.

4.2.1. Symmetric cases

First, we consider the symmetric case, where the groups of agents choosing the
same action are restricted to have equal sizes, namely s1 = · · · = sm = s

m
and

t1 = · · · = tm = t
m

. Assuming no problems of divisibility we find the optimal
number of groups, m. As we have mentioned already, the optimal targeting strategy
depends only on the ratio r. In particular, when r > 1 it is optimal to concentrate
all targeted agents in one group, whereas when r < 1, it is optimal to split them in
as many groups as possible, i.e. m = min{s/2, t/2}. Formally:

Proposition 2. Under (A1) and given s1 = · · · = sm = s
m

and t1 = · · · = tm = t
m

,
then for an infinitely patient planner:

• If r > 1, the optimal targeting strategy is to concentrate all the targeted agents
in one group.

• If r < 1, the optimal targeting strategy is to spread the targeted agents to as
many groups as possible.

All proofs can be found in the Appendix.
Intuitively, this proposition suggests that when the probability of success is high,

it is beneficial to concentrate all targeted agents together. This prevents the dis-
appearance of the preferred action upon the realization of a sequence of negative
shocks during the first periods. The opposite strategy is optimal when the proba-
bility of success is low. Then the planner wants to take advantage of some potential
good shocks during the first periods, which will spread the action to as many agents
as possible.

23Even though, at the moment r > 1 is identical to p > 1/2, we keep this notation because it
facilitates the extension to cases where q 6= 1− p.
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4.2.2. Asymmetric Cases

We now turn attention towards the more general asymmetric cases. At first,
consider the case where the planner is restricted to target at most two groups of
each type, with sizes s1, s2 and t1, t2 respectively. Then the configuration is as shown
in Figure 7. Recall that s1 ≤ s2 and t1 ≤ t2.

It turns out that the optimal decision depends completely on the value of r.
More specifically, if r > 1 it is optimal to concentrate all the agents in one group,
while if r < 1 the optimal strategy is to have two groups of equal sizes for each
action.

t2
s1

t1

s2

Figure 7: Example of an initial configuration with two groups of each type

Proposition 3. Under (A1) and given m ≤ 2, then for an infinitely patient planner:

• If r > 1, the optimal targeting strategy is to concentrate all targeted agents in
one group.

• If r < 1, then the optimal targeting strategy is to split the targeted agents
into two as equal as possible groups, and locate them in the population as
symmetrically as possible, i.e. s2 − s1 ≤ 2 and t2 − t1 ≤ 2

The intuition is similar to that of the symmetric case. However, an interesting
finding is that this result does not hold for all restrictions on m. For example, if we
restrict the number of groups to be not greater than three, then it is not optimal to
split the agents into three equal groups of each type. Hence, it is not the case that
we always prefer symmetric configurations compared to asymmetric ones. Notice
that, this would be a sufficient condition for the proof of our main result, but it
does not always hold. Nevertheless, this does not affect our general result which is
stated below.

The two propositions help us construct the main theorem of the paper which
describes the optimal targeting strategy in the general case of m initial groups of
each type, allowing them to be of different sizes. The result is in line with the
previous findings and suggests that the optimal choice is to concentrate all the
targeted agents in one group when r > 1; and to spread them uniformly across the
population in as many and as equal groups as possible when r < 1. Namely:
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Theorem 1. Under (A1), for an infinitely patient planner

• If r > 1, the optimal targeting strategy is to concentrate all the targeted agents
in one group, i.e. tm = t and t1 = · · · = tm−1 = 0 for any m.

• If r < 1, the optimal targeting strategy is to spread the targeted agents in as
many groups as possible and locate these groups as symmetrically as possible,
i.e.

– If t < s, then m = t
2
, with t1 = · · · = tm = 2 and sm − s1 ≤ 2,

– If t > s, then m = s
2
, with s1 = · · · = sm = 2 and tm − t1 ≤ 2

As it has been mentioned already, the importance of this result lies in the com-
plete contrast between the optimal strategy of an infinitely patient planner in com-
parison to an impatient one. An infinitely patient planner prefers to protect an ac-
tion which is more likely to be successful from some initial negative shocks, whereas
she prefers to spread as much as possible an action which is more likely to be unsuc-
cessful, trying to take advantage of a few positive shocks in the first periods. When
the probability of success is low, she knows that by concentrating all the targeted
agents together, a lot of positive shocks will be needed in order to capture the whole
population, which is rather improbable for an action that is expected to be often
unsuccessful.

5. Extensions

In this section, we briefly present the results of several extensions that address
specific questions related to the problem of interest.24

A natural question that arises from the contrast between the optimal behavior of
an impatient and an infinitely patient planner is what happens for intermediate levels
of patience. First of all, we observe that the expected diffusion is very sensitive to
small changes in the initial configuration and therefore it becomes particularly hard
to construct a general strategy for all intermediate levels of patience. Nevertheless,
we discuss the optimal targeting strategy of a planner who cares about the diffusion
of action B after three periods and we obtain an enlightening result. Namely, if
r > 1, then in some cases the planner prefers to spread the targeted agents in
groups consisting of four, instead of two, agents. Whereas, if r < 1, she always
needs to compare between the two extreme cases, i.e. concentrating all of them in
one group or spread them to as many groups as possible. This result provides a
useful starting point to understand how the optimal targeting strategy changes as
the planner becomes more patient.

Furthermore, we discuss what happens if t becomes endogenous. To do this it is
necessary to define explicitly the profit function of the planner. We focus on linear
cost of targeting and we find that for sufficiently low (high) unit cost the planner
prefers to target all the (none of the) agents. For intermediate unit costs (with
the bounds depending on the different parameters, but mostly on p) the planner
prefers to target an intermediate number of agents, 0 < t∗ < n. This result is quite

24A thorough discussion of these extensions can be found in the Online Appendix.
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intuitive if one thinks that targeting additional agents increases the probability of
total diffusion of action B, but never ensures it. Therefore, if a planner has targeted
sufficiently many agents, then the additional expected benefit from targeting one
more might not compensate the cost of targeting this agent.

Another crucial aspect is the practical meaning of infinite patience. In reality, no
planner can wait literally infinitely many periods. We try to identify the expected
time before total diffusion of one action occurs and how the planner’s strategies affect
this expected time. Not surprisingly, we find that a larger number of groups leads to
faster total diffusion and therefore the optimal strategy for r > 1 has the drawback
of maximizing also the expected time before total diffusion occurs. On the other
hand, for r < 1 the optimal strategy is also the one that leads to the fastest expected
time of total diffusion. An interesting feature, which is in line with standard results
in the analysis of random walks, is that the expected time of total diffusion explodes
as r gets very close to 1. In general we find that for different configurations the
expected time to total diffusion may vary substantially and therefore one must be
very careful when acting as an infinitely patient planner.

In addition to this, one might argue that fast total diffusion might not be always
optimal for the planner, because this might lead to a fast disappearance of her
desired action from the population. For this reason, we perform a simple exercise
where the planner obtains a positive gain from total diffusion of her preferred action
and a negative one from total diffusion of the alternative action. We find that for
extreme values (either high or low) of p the optimal strategies of the planner might
be determined by the speed at which diffusion occurs, rather than by the probability
of successful diffusion. In fact, irrespectively of the level of patience, if p is very low
the planner prefers to locate all the agents together, whereas if it is very high prefers
to spread them as much as possible. The intuition is similar to that described for the
impatient planner. This can be also seen as an additional attempt to characterize
optimal strategies for intermediate levels of patience, but should be approached with
caution since it is only a partial result.

Moreover, we discuss cases where inertia is possible. This generalization allows
us to capture some realistic scenarios, such as the possibility of both actions having
equally good realizations, existence of switching costs and some forms of conformity.
Such settings can be captured by allowing q 6= 1 − p, where q is the probability of
action A being more successful than action B. As we have already mentioned, our
results are not affected by this feature.

A similar question to this would be how the results would be affected either if the
payoffs were not perfectly correlated in each period, or if updating was not occurring
simultaneously.Extending the analysis to independent shocks would require further
structure on the realized payoffs, which would made necessary the use of additional
parameters. This would not be a problem per se, but in addition to this we could
not simplify the problem reducing it to one–dimensional random walks. Trying to
work with these multidimensional walks would lead to horrendous expressions even
for very simple cases.25 Intuitively, either of these two scenarios would induce more

25An expression for the probabilities of diffusion for both actions regarding a very similar process
and only for one group of initial adopters can be found in Donnelly and Welsh (1983), where the
complexity of the problem already becomes more apparent.
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realizations of random shocks, which in turn should favor quantitatively the action
that is more likely to be successful. However, given that all the targeting strategies
would be affected on the same way, the results should not be affected qualitatively.
Nevertheless, one should be cautious when making such claims and a concrete answer
would be possible only after a systematic analysis of these scenarios.

Additionally, we discuss the optimal targeting strategy of a planner for some
slightly modified social structures, so as to get an idea of how the results would be
affected by the presence of central agents. First, we study the line assuming that the
planner can target a single group of agents. Once again, we find a sharp contrast
between the optimal targeting strategies of an impatient and an infinitely patient
planner. In particular, for an infinitely patient planner, if r > 1 it is optimal to
target one of the two corners, whereas if r < 1 it is optimal to target the agents who
are located around the center. To the contrary, for an impatient planner, if r > 1 it
is optimal to target any segment of the line that does not include any of the corner
agents, whereas if r < 1 it is optimal to target one of the two corners. In this part
of our analysis, we also drop the assumption of groups having an even number of
agents and we show why dropping this assumption complicates our analysis without
providing additional insights. We also discuss briefly the star, in which the vast
importance of very central agents becomes apparent.

Finally, we run a set of simulations to test the robustness of our results to the
addition of a few links in the circle and we find that our conclusions remain valid. In
particular, if r > 1 it is always optimal to target only one group of connected agents,
with the optimal location of the group depending on the position of the additional
links. Conversely, if r < 1 it is almost always optimal to target the subset of
agents that minimizes the number of successful draws needed to capture the whole
population. This is in line with our previous findings and provides intuitions which
can be useful for the study of more general network structures.

6. Conclusion

We have analyzed the optimal intervention of a planner who seeks to maximize
the diffusion of an action in a society where agents imitate successful past behavior
of their neighbors. It turns out that there is room for strategic targeting even in
environments where all agents are completely identical. We find that the optimal
decision depends almost completely on two parameters. On the likelihood r of the
preferred action being more successful and on how patient the planner is. Changes
in these two parameters lead to completely opposite optimal behavior.

Assuming that the planner knows the exact social structure, as well as the lo-
cation of each agent, might seem quite strong and tough to be satisfied in large
populations. Nevertheless, it is exactly this assumption that allows us to focus on
the importance of the targeted agents’ relative positions, which in turn brings into
consideration several new insights on the planner’s problem. One can see this paper
as a first step on understanding the effect of agents’ exact positions in a society
for certain diffusion processes and use it as a benchmark for problems where this
assumption can be partially relaxed. A similar argument applies to the assumption
regarding the particular behavioral rule, which turns attention from Bayesian (see
Gale and Kariv, 2003) and DeGroot (see DeGroot, 1974, Golub and Jackson, 2010)
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learning rules towards more naive ones. A natural step one would consider is to
construct targeting mechanisms that are robust to uncertainty over the social struc-
ture and behavioral rule. In particular, an interesting avenue for future research
would be to identify targeting strategies that are able to perform well (are close to
optimal) for a broad family of different structures and under uncertainty over the
rules that govern the behavior of the agents.

Moreover, throughout the paper we have disregarded completely the risk aversion
of the planner. We have assumed the planner to be risk neutral, caring only about
the expected number of adopters. For a risk averse planner, we would expect the
optimal behavior to contain more dispersed targets than for the risk neutral one,
but this remains an open question for future research.

The current paper constitutes a first attempt to explore targeting possibilities
in settings where agents imitate successful behavior. A natural extension would
be to explore which of the current features are still present and which of these
are changing when passing to more general social structures. It is apparent that
centrality features arising in more complex structures will play an important role.
However the exact characteristics remain to be studied.
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Appendix - Proofs

Proof of Proposition 2. Under (A1), s
m

and t
m

are even numbers. Then, the
process is equivalent to having a line of n

2m
agents, consisting of one group of t

2m

adjacent agents choosing B and another group of s
2m

adjacent agents choosing A.

. . .. . . . . .. . .

1− p p

t
2m

s
2m

Figure 8: The random walk that describes the process in the symmetric case.

By Lemma 1, the probability of successful diffusion becomes:

PB(m|s, t, n, r) =
r

n
2m − r s

2m

r
n
2m − 1

Despite the fact, that we are interested only in the integer values of m, t and n, the
function PB(·) is well-defined and smooth for all r 6= 1 and m ≥ 1. Hence, we can
check its monotonicity by differentiating with respect to m.
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=
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If we call s

2m
= s′ and n

2m
= n′, then the following lemma helps us conclude the

argument.

Lemma 2. f(x) = 2mxrx

rx−1 is strictly increasing for x ≥ 1, for all r 6= 1 and m ≥ 1

Proof. Let r 6= 1 and m ≥ 1, then

df

dx
=

2m

(rx − 1)2
[(rx + xrx ln r)(rx − 1)− xrx(rx) ln r]

=
2m

(rx − 1)2
(r2x − rx − xrx ln r) =

2mrx

(rx − 1)2
(rx − 1− x ln r) > 0 for all x ≥ 1
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To show this, we define g(x) = rx − 1− x ln r, which is strictly increasing for x ≥ 1
because dg

dx
= rx ln r − ln r = ln r(rx − 1) > 0. So it attains minimum for x = 1,

which is g(1) = r − 1− ln r. Moreover, g(1) > 0 for all r 6= 1 because it holds that
h(r) = r − 1 − ln r > 0 for all r 6= 1. This holds because dh

dr
= 1 − 1

r
is strictly

positive when r > 1 and strictly negative when r < 1. So, h attains global minimum
for r = 1, with value h(1) = 0. Hence, g(x) > 0 for all x ≥ 1, which means that also
df
dx
> 0 for all x ≥ 1 and this concludes the argument.

By Lemma 2, given that n > s, we get that ( sr
s

2m

r
s

2m−1
− nr

n
2m

r
n
2m−1

) < 0 always, so we

can conclude that dPB

dm
< 0 if r > 1 and dPB

dm
> 0 if r < 1. Hence, for r > 1 the

PB(m|s, t, n, r) is decreasing in m, so arg maxm PB(m|s, t, n, r) = 1, i.e. the optimal
choice is to target a single group of targeted agents. On the other hand, for r < 1,
P is increasing in m, so we would like to split the targeted agents in as many groups
as possible, i.e. arg maxm PB(m|s, t, n, r) = min{s/2, t/2}.

Proof of Proposition 3. First, we have to construct the probability of successful
diffusion. For r 6= 1, the process again can be described as a sequence of ran-
dom walks with absorbing barriers. At the beginning, we have a random walk of
(s1 + t1)/2 nodes, starting from node t1/2, until it disappears either t1 or s1. By

Lemma 1, the probability of successful absorption of this walk is r
s1+t1

2 −r
s1
2

r
s1+t1

2 −1
. In case

of successful absorption we get a random walk of n/2 nodes starting from the node
(t+ 2s1)/2. Otherwise, in case of unsuccessful absorption we get a random walk of
n/2 nodes as well, but starting from node (t−2t1)/2. Again by Lemma 1, the proba-

bilities of successful absorption in these two scenarios are r
n
2 −r

n−t−2s1
2

r
n
2 −1

and r
n
2 −r

s+2t1
2

r
n
2 −1

respectively. If the second walk, in either of the two scenarios, is unsuccessful then
action B disappears. Figure 9 depicts the process we just described. Notice that
(A1) solves all the problems of divisibility.

The histories that lead to full diffusion of action B are (i) success in both the
first and the second walk and (ii) failure in the first and success in the second walk.
Therefore the probability of successful diffusion for r 6= 1 can be written as follows:

PB(s1, t1|s, t, n, r) =
r

s1+t1
2 − r

s1
2

r
s1+t1

2 − 1

r
n
2 − r
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2

r
n
2 − 1

+
r

s1
2 − 1

r
s1+t1

2 − 1

r
n
2 − r

s+2t1
2

r
n
2 − 1

Now, we compute the derivatives with respect to t1 and s1. As usually, we are
only interested in integer points, but the function PB is a well-behaved smooth
function for r 6= 1, so we can study its monotonicity.
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Initial Walk
. . .. . . . . .. . .

1− p p

t1
2

s1
2

After Success
. . .. . . . . .. . .

1− p p

t+2s1
2

n−t−2s1
2

After Failure
. . .. . . . . .. . .

1− p p

t−2t1
2

n−t−2t1
2

Figure 9: The random walks that describe the process in the asymmetric case with two groups.

∂PB
∂s1

=

r n
2

(
r

t1
2 − 1

)
r

n
2 − 1



(

ln r
2
r

s1
2 + ln r

2
r

−s1−t
2

)(
r

s1+t1
2 − 1

)
−
(
r

s1
2 − r

−s1−t
2

)
ln r
2
r

s1+t1
2(

r
s1+t1

2 − 1
)2

+

+

(
r

n
2 − r

s+2t1
2

r
n
2 − 1

) ln r
2
r

s1
2

(
r

s1+t1
2 − 1

)
−
(
r

s1
2 − 1

)
ln r
2
r

s1+t1
2(

r
s1+t1

2 − 1
)2

 =

=
r

n
2

(
r

t1
2 − 1

)
ln r

2
(
r

n
2 − 1

) (
r

s1+t1
2 − 1

)2 (r 2s1+t1
2 + r

−t+t1
2 − r

s1
2 − r

−t−s1
2 − r

2s1+t1
2 + r

−t+t1
2

)
+

+

(
r

n
2 − r

s+2t1
2

)
ln r

2
(
r

n
2 − 1

) (
r

s1+t1
2 − 1

)2 (r 2s1+t1
2 − r

s1
2 − r

2s1+t1
2 + r

s1+t1
2

)
=

=
ln rr

n
2

(
r

t1
2 − 1

) [
2r

−t+t1
2 − r

s1
2 − r

−t−s1
2 + r

s1
2 − r

−t+2t1+s1
2

]
2
(
r

n
2 − 1

) (
r

s1+t1
2 − 1

)2 =

=
ln r

(
r

t1
2 − 1

)(
2r

n−t+t1
2 − r

n−t−s1
2 − r

s+s1+2t1
2

)
2
(
r

n
2 − 1

) (
r

s1+t1
2 − 1

)2 =
ln r

(
r

t1
2 − 1

)
r

s−s1
2

(
2r

s1+t1
2 − 1− rs1+t1

)
2
(
r

n
2 − 1

) (
r

s1+t1
2 − 1

)2 =

=

ln r
(
r

t1
2 − 1

)
r

s−s1
2

[
−
(
r

s1+t1
2 − 1

)2]
2
(
r

n
2 − 1

) (
r

s1+t1
2 − 1

)2 = −
ln r

(
r

t1
2 − 1

)
r

s−s1
2

2
(
r

n
2 − 1

) {
< 0 if r > 1
> 0 if r < 1
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Analogously for t1 we have:
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Hence, given that 0 ≤ s1 ≤ s2 and 0 ≤ t1 ≤ t2 we conclude that for r > 1 the
optimal targeting strategy is (s1, t1) = (0, 0), whereas for r < 1 it is s2− s1 ≤ 2 and
t2 − t1 ≤ 2.

Proof of Theorem 1. For the case of r > 1 we proceed by induction. First, we
recall the result by Proposition 2, which states that if we can target up to two
groups, then the optimal choice is to concentrate all the targeted agents in one
group. Remember also that s1 ≤ s2 ≤ s3 and t1 ≤ t2 ≤ t3. Now suppose that we
can target up to three groups (m ≤ 3). Then again at first we are interested in the
two smallest groups of each type and we have the following random walk:

. . .. . . . . .. . .

1− p p

t1
2

s1
2

The system fluctuates in this direction until either s1 or t1 disappears. De-
pending on the successful or unsuccessful absorption of this walk we get one of the
configurations depicted in Figure 10, with only two groups of each type left.
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By Proposition 2, in both of these cases we know that the optimal choice would
be to eliminate one of the two groups of adopters. Hence, we would like to choose
s2 and t2 (as functions of s1 and t1 respectively), in such a way that the probability
of diffusion is maximized in both of these cases. Recalling that s1 ≤ s2 ≤ s3 and
t1 ≤ t2 ≤ t3, we see that this can be achieved if s2 = s1 and t2 = t1, where
the optimal s1 and t1 remained to be determined. Notice that, by construction,
s3 = s− s1 − s2 and t3 = t− t1 − t2.
So now, we can rewrite the probability of diffusion as a function of s1 and t1 only.
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n−t−3s1
2

r
n
2 − 1

+
r

s1
2 − 1

r
t1+s1

2 − 1

r
n
2 − r

s+3t1
2

r
n
2 − 1

Like before we study the monotonicity of the function with respect to s1 and t1
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< 0 for r > 1

Hence the optimal choice is s1 = s2 = 0 and s3 = s.
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before

t2

s1

t1

s3

t3

s2

after success

t1 + t2 + 2s1

s3 − s1

t3 + s1

s2 − s1

after failure

t2 − t1
s1 + s3 + 2t1

t3 − t1

s2 + t1

Figure 10: Configurations with 3 groups of targeted agents.

Analogously for t1 we get the following:
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The last step comes from the observation that −2x3+3x2−1 = −(x−1)2(2x+1),

where in this case x = r
s1+t1

2 . Hence, PB is always decreasing in t1, and given that
t1 = t2 the optimal choice is t1 = t2 = 0 and t3 = t. This concludes the argument
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for the case where m = 3. We will generalize this argument by induction.

Formally, given that the argument holds for m = 3, it suffices to show that if it
holds for m = k − 1 ≥ 3 then it holds as well for m = k.

At the beginning of the process we care only about the two smallest groups of
each type s1 and t1 and the system fluctuates, as in the previous cases, until one of
the two disappears. Figure 11 shows the possible configurations after the disappear-
ance of either s1 or t1. The location of the groups around the circle comes without
loss of generality.

after success

t3 + s1

s2 − s1

t1 + t2 + 2s1

sm − s1

tm + s1

s4 − s1
t4 + s1

s3 − s1

after failure
t3 − t1

s1 + s2 + 2t1

t2 − t1
sm + s1

tm − t1

s4 + t1 t4 − t1

s3 + s1

Figure 11: Configurations after the disappearance of s1 or t1 with m groups.

Given that the argument holds for k−1 groups then we know that s1 = · · · = sk−1
and t1 = · · · = tk−1. Therefore, we only need to find the optimal size for s1 and t1.
The probability of diffusion becomes:

PB(s1, t1|s, t, n, r,m = k) =
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r
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r
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s+kt1
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r
n
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By calculations which are omitted because they are identical to the case where
m = 3, we get:
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]
≤ 0 for r > 1

and equality holds only if s1 = t1 = 0. For the argument to hold we need

kr
s1+t1

2 − rk
s1+t1

2 − (k − 1) to be negative. So, let x = r
s1+t1

2 and take the function
f(x) = kx − xk − (k − 1) for some k ≥ 3 and x ≥ 0. Now, df

dx
= k − kxk−1 is

positive if x < 1 and negative if x > 1, hence f attains global max at x = 1 equal to
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f(1) = k−1k− (k−1) = 0, hence f(x) < 0 for all x 6= 1. Now given that x = r
s1+t1

2 ,
with r > 1 and s1, t1 ≥ 0 the function is always strictly negative and becomes equal
to zero only when s1 = t1 = 0. So, the optimal choice is s1 = · · · = sk−1 = 0 and
sk = s.

Analogously for t1 we get that:
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again equality holds only when s1 = t1 = 0 and to ensure the result we need that

kr(k−1)
s1+t1

2 − (k − 1)rk
s1+t1

2 − 1 ≤ 0 for all s1 and t1 with equality holding only in

case they are both equal to zero. As before, let x = r
s1+t1

2 and define the function
g(x) = kxk−1−(k−1)xk−1. Then df

dx
= k(k−1)xk−2−k(k−1)xk−1 which is strictly

negative for x > 1 and strictly positive for x < 1, then g attains unique maximum at

x = 1 equal to g(1) = 0. So g(x) < 0 for all x 6= 1. Given again that x = r
s1+t1

2 then
x = 1 only if s1 = t1 = 0. So again the optimal choices are t1 = · · · = tk−1 = 0 and
tk = t, which completes the inductive argument. Hence, when r > 1, for any possi-
ble number of groups m, the optimal choice is to concentrate all the targeted agents
in one group, i.e. s1 = · · · = sm−1 = 0 and sm = s, as well as t1 = · · · = tm−1 = 0
and tm = t.

Now, we turn our attention towards the case where r < 1. We tackle this case
in a different way. Namely, we construct an upper bound for the probability of
successful diffusion and we show that the actual probability is equal to this upper
bound for the same configurations that this upper bound is maximized. Hence this
has to be the maximum value of the probability as well.

In order to proceed, we need to construct the upper bound for the value of the
probability of successful diffusion of action B. We solve it first for t < s and then
for s < t.

Let t < s, then allowing for the existence of m = t
2

groups, the circle will have the
form of Figure 12. Notice that, the fact that si can have size equal to zero, allows
us to construct any possible configuration. For example, if s1 = 0 then the two
groups next to s1 merge to one group with four agents. According to this structure,
the process will initially follow a random walk with s1

2
black steps and one white.

By Lemma 1, the probability of success in this first walk is equal to r
s1
2 +1−r

s1
2

r
s1
2 +1−1

. In

Figure 12 we also see how the society will look like if the first walk is successful.
Unsuccessful absorption in the first walk leads to the disappearance of action B from
the population, because all t’s have the same size. After success, the process will
move according to the random walk of Figure 13, with the probability of success in

this walk is equal to r
s2
2 +1−r

s2−s1
2

r
s2
2 +1−1

.

We depict as well the two possible configurations that arise after success or failure
in the second walk (see Figure 14). It is important to notice that the probability
of successful diffusion after two successes is obviously weakly lower than 1 and it is
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Initial Configuration

tk = 2

s1
t1 = 2

tm = 2 sm

s2

After Success
2 + s1

4 + 2s1

sm − s1

s2 − s1

Figure 12: General Initial Configuration and Result After Success, for t < s.

. . .. . . . . .. . .

1− p p

s1
2 + 1 s2−s1

2

Figure 13: Random Walk After Success.

strictly lower as long as sm − s1 > 2, where sm is the size of the largest group and
s1 is the size of the smallest one.

Hence, we can construct the probability of successful diffusion, which is equal to:

PB(·) =
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where PB(·|s, s) stands for the probability of diffusion of B after two successes
in the first two random walks. Given that PB(·|s, s) ≤ 1 we get the following upper

bound of PB, denoted by P̃B(·), which is equal to:
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r

s1
2
+1 − r

s1
2

r
s1
2
+1 − 1

[
r

s2
2
+1 − r

s2−s1
2

r
s2
2
+1 − 1

+
r

s2−s1
2 − 1

r
s2
2
+1 − 1

r
n
2 − r

n−s1
2
−1

r
n
2 − 1

]
Before performing any calculations it is important to simplify the expression of

P̃B(·). Specifically,

28



Failure After Success

2 + s1

Success After Success

s3 − s1

sm − s2

Figure 14: Resulting Configurations given Failure or Success in the second random walk, given
successful first walk, for t < s
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]
Notice that s2 = s − s1 − s3 − · · · − sm, hence ∂s2

∂s1
= −1. And now we can

differentiate P̃B(·) with respect to s1.
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> 0, for r < 1.

The fact that the term 2r
n−s1

2
−1 − r

n+s2−s1
2 − 1 is always negative is not obvious

and is proven here. Substituting s2, we can rewrite it as:
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r−s1−1
[
2r

n+s1
2 − r

n+s−s3−···−sm
2

+1 − r2
s1
2
+1
]

If we denote x = r
s1
2 then we get a polynomial of degree two with respect to x.

The discriminant of this polynomial is equal to:

∆ = 4r2
n
2−4r

n
2
+

s−s3−···−sm
2

+2 = 4r
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(
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(
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Because r < 1 and n
2
> s1+s2

2
+ 2 for m ≥ 3. For m = 2 this holds with equality,

but we have already analyzed this case. So, this polynomial has no roots and given
that the factor of the quadratic term is negative (−r), we can conclude that for r < 1

the polynomial is always negative. Therefore, P̃B(·) takes its maximum value when
s1 is maximized. For this value of s1, the real probability of successful diffusion is
equal to this upper bound as long as sm − s1 ≤ 2. Therefore, remembering that

P̃B(·) ≥ PB(·) always, it has to be that PB(·) is also maximized for when both s1 is
maximized and sm − s1 ≤ 2.

In case m divides s exactly, then the maximum of s1 is equal to s
m

and the op-
timal choice is s1 = · · · = sm = s

m
. If m does not divide s exactly, then we have

s = mq + d, where q is the quotient of the division and d is the remainder. In this
case, PB is maximized if we have m − d

2
groups of size q = s−d

m
and d

2
groups with

size q + 2 = s−d
m

+ 2, so again the difference in the size of any two groups is no
larger than four. We still remain to describe what is the optimal position of the
groups that have the two additional agents. The result will become apparent after
we analyze the case for t > s.

Now, we prove the result for t > s in a completely analogous way. In this case,
the initial configuration is as in the left part of Figure 15. A success in the first
random walk leads to the total diffusion of action B, while a failure leads to a
configuration as in the right part of the same figure. The probability of success in

the first walk is r
t1
2 +1−r

r
t1
2 +1−1

. Figure 16 shows the possible configurations after success

or failure in the second random walk, given a failure in the first one. The probability

of success in the second walk is r
t2
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r
t2
2 +1−1

. Therefore, we can construct again an

upper bound for the probability of successful diffusion, equal to:
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r

t1
2 − 1

r
t2
2
+1 − 1

]

This expression can be transformed in a similar manner as before:
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Initial Configuration

sk = 2
t1

s1 = 2

sm = 2 tm

t2

After Failure
2 + t1

4 + t1

tm − t1

t2 − t1

Figure 15: General Initial Configuration and Result After Success, for t > s.

Success After Failure

2 + t1

Failure After Failure

t3 − t1

tm − t2

Figure 16: Resulting configurations after success or failure in the second random walk, given failure
in the first random walk, for t > s

P̃B(·) =
r

t1
2
+1 − r

r
t1
2
+1 − 1

+
r − 1

r
t1
2
+1 − 1

[
r

t2
2
+1 − r

t1
2

r
t2
2
+1 − 1

r
n
2 − r

t1
2
−1

r
n
2 − 1

+
r

t1
2 − 1

r
t2
2
+1 − 1

]
=

=
1

rn/2 − 1

[
(r

t2
2
+1 − 1)(rn/2 − 1)− (r

t2
2
+1 − r

t1
2
+1)(r − 1)

r
t2
2
+1 − 1

]
=

=
1

rn/2 − 1

[
rn/2 − r + (r − 1)

r
t1
2
+1 − 1

r
t2
2
+1 − 1

]

Notice again, that the upper bound becomes equal to the actual probability if
tm − t1 ≤ 2, where tm is the size of the largest group of type B and t1 the smallest
one.

Now, we can differentiate the expression with respect to t1, remembering that
t2 = t− t1 − t3 − · · · − tm:

∂P̃B(·)
∂t1

=
(r − 1) ln r

2(rn/2 − 1)

[
r

t1
2
+1(r

t2
2
+1 − 1) + (r

t1
2
+1 − 1)r

t2
2
+1

(r
t2
2
+1 − 1)2

]
> 0, for all r < 1.
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The upper bound is increasing in t1. For this value of t1, the real probability of
successful diffusion is equal to this upper bound as long as tm − t1 ≤ 2. Therefore,

remembering that P̃B(·) ≥ PB(·) always, it has to be that PB(·) is also maximized
for when both t1 is maximized and tm − t1 ≤ 2.

In case m divides s exactly, then the maximum of t1 is equal to t
m

and the
optimal choice is t1 = · · · = tm = t

m
. If m does not divide t exactly, then we have

t = mq + d, where q is the quotient of the division and d is the remainder. In this
case, PB is maximized if we have m − d

2
groups of size q = t−d

m
and d

2
groups with

size q+ 2 = t−d
m

+ 2, so again the difference in the size of any two groups is no larger
than four.

To complete the proof we need to explain the optimal location of the groups
which have the two additional agents. For the case where t < s we need to notice
that after successful absorption in the first random walk, now the population consists
of d

2
groups of each type, where all the groups of type A have exactly two agents.

Hence, we fall into the analysis of the case where t > s, where we would like the
groups of type B to be as equal as possible. In order to succeed this we should have
located the groups of type A with more agents as symmetrically as possible around
the circle.

An example can be illustrated in Figure 17. We have targeted 14 out of 48
agents, having seven groups of two agents of type B, three groups of six agents and
four groups of four agents of type A. After successful absorption in the first walk,
there will be left only three groups of two agents of type A, which we want to be
located as symmetrically as possible. For this reason we do not put two groups of
six agents one next to the other in the initial configuration. However, notice that
we cannot make the configuration that arises after success totally symmetric, due to
the restriction on the sizes of the groups. But again we want it to be as symmetric
as possible, by maximizing the smallest group and minimizing its difference with
the largest one. The argument for the case where t > s is completely analogous.

Initial Configuration
q

q + 2q

q + 2

q

q + 2

q

After Success

4 + 2q

4 + 2q

6 + 4q

Figure 17: Optimal Initial Configuration with s = mq + d, for s > t.
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