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Abstract

We study the effect of noise due to exogenous information distortions in the context of Bayesian

persuasion. In particular, we ask whether more noise is always harmful for the information

designer (viz., the sender). We show that in general this is not the case. That is, more noise is

often beneficial for the sender. However, when we compare noisy channels with “similar basic

structures”, more noise cannot be beneficial for the sender. We apply our theory to applications

from the literatures on voting and cognitive biases.
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1. Introduction

Information distortions is one of the most common and widely-studied phenomena in many areas

within economics. The interest in the subject stems primarily from the fact that the noise induced

by such distortions often leads to inefficiencies. In this paper we study the effect of information

distortions in the context of the recently surging literature on Bayesian persuasion.

Persuasion games are sender-receiver games with commitment (Rayo and Segal, 2010; Kamenica

and Gentzkow, 2011). In particular, an information designer (viz., the female sender) chooses an
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experiment (viz., a signal) which is commonly known; the decision-maker (viz., the male receiver)

observes an outcome of the experiment (viz., a message) and subsequently takes an action that

affects both agents. Now, the caveat introduced in this paper is that the data that is observed by the

receiver is often different from the actual realization of the experiment. Such distortions are typically

attributed to errors in gathering, processing and transmitting information.

For instance, consider the problem of voters’ persuasion by a politician who designs a political

experiment in order to convince them to approve a proposal in an election (Alonso and Câmara, 2017).

In this case, distortions occur when voters misinterpret the politician’s messages, either due to their

own attention limitations, or due to mistakes by the politician’s campaign in the implementation

of the experiment, or due to (intentional or unintentional) misreporting by the media. Then, we

naturally ask: Which is the effect of noise on the politician’s (optimal) choice of an experiment, and

consequently on her expected utility in equilibrium?

The obvious restriction that noise poses to the sender is that it restricts the set of signals from

which she can effectively choose. For instance, assume that the receiver observes the actual message

only with probability 1 − ε and every other message with small positive probability. Then, clearly

there are signals that the sender cannot choose, e.g., the perfectly informative signal that reveals

the true state with certainty is not feasible anymore. Hence, the sender maximizes her expected

utility over a restricted set, and therefore her expected utility in equilibrium will decrease, implying

that noise is (weakly) harmful.1 However, the previous argument applies only when we compare

the noiseless case with a noisy one. Then, we ask whether the argument extends to cases where

we compare any two types data distortions, with one being noisier than the other. Formally, is the

sender’s expected utility in equilibrium increasing with respect to the (Blackwell) informativeness of

the noisy channel that describes the respective distortions?

Surprisingly, the answer is in general negative. Indeed, there are pairs of noisy channels, one

being a garbling of the other (Blackwell, 1951, 1953), such that the the sender’s expected utility

under the garbled channel (viz., the more noisy one) is strictly larger than the expected utility under

the original channel (viz., the less noisy of the two). Thus, more noise can be beneficial for the

sender.

The underlying idea is that the set of signals that can be effectively chosen by the sender does not

always shrink monotonically with respect to the Blackwell informativeness ordering. This is because

garbling does not just increase the “amount of noise”, but also often changes the “noise structure”.

In our previous example, assume that there are two possible sources of distortions, e.g., the media

1This observation provides an interesting comparison with Blume et al. (2007), who show that noise can be beneficial

in standard cheap talk games.
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misreport the outcome of the political experiment with some probability, and at the same time the

firm that is hired by the campaign to run the experiment is incompetent, thus making mistakes in

the implementation of the political experiment. The politician cannot control the media, but can

nevertheless replace the firm with one that does not make such errors. The question then becomes,

whether it would be at her best interest to remove one of the two sources of distortions by indeed

replacing the firm. Our results suggest that this is not necessarily the case, i.e., she may prefer to

maintain the firm that confuses the voters, as such confusion (combined with media misreporting)

gives her access to experiments that are not feasible when mistakes are exclusively due to media

misreporting. In other words, more noise can be beneficial for the sender when we combine different

sources of data distortions.

Our previous analysis indicates that in order to understand the effect of noise on the sender’s

expected utility, we must first disentangle the effects of garbling on the “amount of noise” from the

effects on the “structure of noise”. In particular, we ask whether noise is always harmful when we

compare channels of similar structure. To do so, we first identify two basic classes of noisy channels,

henceforth referred as canonical and partitional channels, respectively. A channel is canonical if

the error probability is relatively small, and moreover the probability of confusing message s with

message t is equal to the probability of confusing t with s, e.g., this is the case when the message space

is endowed with a distance function describing the closeness between any two messages. Canonical

channels are interesting because they often appear in applications where data distortions are present,

especially when such distortions are due to mistakes in data gathering (viz., measurement errors),

data processing (viz., errors in storage/retrieval of data) and data transmission (viz., communication

errors). On the other hand, a channel is partitional when messages are partitioned in equivalence

classes, such that two messages within the same class are completely indistinguishable from one

another. The reason why partitional channels are appealing is twofold: on the one hand, they are

also often used in applications, especially in cases where noise is due to mistakes in data processing

(viz., errors due to the coarseness of the language); on the other hand, as we show, partitional

channels constitute the basic building block for nearly every noisy channel.

Our main result (Theorem 2) shows that, within each of our two basic classes, monotonicity of the

sender’s expected utility with respect to the channel’s informativeness is restored. In other words,

if two canonical (resp., partitional) channels are comparable in Blackwell’s sense, then the sender’s

expected utility in equilibrium is larger under the more informative channel, i.e., more noise is always

harmful. With the previous machinery and results at hand, we study applications of persuasion games

with noise.

First, we focus on the problem of persuading voters that we have already introduced above
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(Section 7.1). If the politician cares only about winning the election, it is well-known that absent

of any distortions, she will always target approval by simple majority. However, in the presence of

distortions, this is not always the case, i.e., she may adopt a more aggressive political experiment,

targeting approval by unanimity. Surprisingly, her optimal experiment under noise depends, not only

on the underlying noisy channel, but also on the source of said distortions. That is, if noise is due to

mistakes in the campaign (in which case, the same effective message is drawn for all voters) she still

targets majority, whereas if noise is due to mistakes in the voters’ understanding (in which case, an

independent message is drawn for each voter) she will target approval by unanimity (Propositions 3

and 4). The same intuition applies to all noisy persuasion games with multiple receivers.

Second, we focus on cognitive biases, with particular attention to conservatism bias (Section 7.2).

Accordingly, people appear to anchor their beliefs to their priors and update information only par-

tially; a phenomenon which is typically attributed to heuristic treatments. Nevertheless, following

recent literature in psychology (Costello and Watts, 2014; Hilbert, 2012), we show that conservatism

bias naturally emerges in a simple persuasion game with noise. In particular, combining two parti-

tional structures leads to two types of messages: perfectly informative and perfectly uninformative

ones. Hence, although in equilibrium the sender chooses the same optimal signal as in the noiseless

case, the receiver will only update his belief if he observes one of the informative messages, and will

stick to his prior otherwise. We confidently conjecture that other well-known cognitive biases can be

explained within our framework of noisy Bayesian persuasion.

Our work lies on the intersection of two streams of literature: Bayesian persuasion and information

distortions.

While there are several earlier (e.g., Glazer and Rubinstein, 2004; Milgrom and Roberts, 1986)

as well as contemporary (e.g., Rayo and Segal, 2010) influential papers on persuasion, we view

Kamenica and Gentzkow (2011) as the natural predecessor of our work. This choice is primarily

based on the fact that their model has been the benchmark setting for most recent papers in this

literature. Since Kamenica and Gentzkow’s (2011) paper appeared, the persuasion literature has

developed in several different directions. Alonso and Câmara (2016) have extended the benchmark

model to one with heterogeneous priors. Alonso and Câmara (2017), Arieli and Babichenko (2016),

Bergemann and Morris (2016a,b), Taneva (2014) and Wang (2013) have studied Bayesian persuasion

with multiple receivers, while Laclau and Renou (2017) have simultaneously considered multiple

receivers and heterogeneous priors. Bizzotto et al. (2017), Brocas and Carillo (2007) and Piermont

(2016) study dynamic versions of the persuasion game. Perez-Richet (2014) and Hedlund (2017)

consider a persuasion game with a privately informed sender, whereas Kolotilin et al. (2018) study

persuasion with a privately informed receiver. None of the aforementioned papers considers data
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distortions.

The literature on information distortions has mostly focused on cheap talk games. The closest

predecessor to our paper within this literature is by Blume et al. (2007), who introduce noisy com-

munication to a standard cheap talk game á la Crawford and Sobel (1982) in an analogous way to

our variant of Kamenica and Gentzkow’s (2011) persuasion game. They are primarily interested in

aggregate welfare, whereas our analysis focuses on the sender’s expected utility and discusses sep-

arately the effect of noise on the receiver’s expected utility. Noisy communication devices in cheap

talk games have also been studied by Blume (2012), Blume and Board (2014), Goltsman et al. (2009)

and Guembel and Rossetto (2009). Other related papers include Hernández and von Stengel (2014)

on Nash codes, Koessler (2001) on consensus via communication and Landeras and Pérez de Vil-

lareal (2005) on screening. Sobel (2013) provides an overview of related experimental designs. We

should mention the seminal example of Myerson (1991) that provided inspiration for many of the

aforementioned contributions.

Overall, the only other paper in the literature that studies Bayesian persuasion in the presence

of noise is Le Treust and Tomala (2018). In their work, they also consider information distortions

similarly to our work, but they allow for multiple experiments that are conducted sequentially. Then,

they study the effect of noise on the sender’s expected utility as the number of experiments increases.

The paper is structured as follows: Section 2 provides a leading example that will be used

throughout the paper. Section 3 introduces our model and some preliminary results. In Section

4 we study the sender’s optimal signal, emphasizing that the standard (concavification) technique

that is widely used in the literature is only partially applicable to our case. In Section 5 we present

our main monotonicity results. Section 6 revisits our motivating example. In Section 7 we present

various applications of our general model. Section 8 contains a concluding discussion. All proofs are

relegated to the Appendices.

2. Motivating example

The following example is an adaptation of the one used by Kamenica and Gentzkow (2011). Consider

a (female) prosecutor who conducts an investigation whose outcome should be fully reported to a

(male) judge, who in turn has to decide whether to convict or acquit a defendant. There are two

states of nature, namely the defendant can be either innocent (I) or guilty (G). The prosecutor

always prefers the conviction of the defendant, whereas the judge prefers to convict the defendant if

he is guilty and acquit otherwise. Both agents are Bayesian expected utility maximizers and share a

common prior that attaches probability µ0 ∈ (0, 1) to G.

5



Nature

I

G

i

g

i

g
µ0

1− µ0

π(g|G)

π(i|I)

1− ε

1− ε

Noise

Figure 1: A noisy version of Kamenica and Gentzkow’s (2011) prosecutor-judge example.

The prosecutor commits to an investigation (signal), which is represented by a pair of distributions

π(·|G) and π(·|I). The judge is assumed to know the investigation that the prosecutor runs. The

realized outcome of the investigation (message) is observed by the prosecutor, who is legally obliged

to truthfully report it to the judge. However communication is noisy, implying that the judge may

misunderstand (with probability ε) the prosecutor’s message, e.g., due to non-appropriate use of

words by the prosecutor, or due to misinterpretation of the arguments by the judge etc.

Due to the fact that communication is noisy, the judge observes the outcome of some effective

investigation σπ, which is a noisy version of π. For instance, when the prosecutor has chosen the

investigation π, the probability of the judge hearing g given that the defendant is actually guilty is

equal to σπ(g|G) = (1 − ε)π(g|G) + επ(i|G) rather than π(g|G). Then, using Bayes rule, the judge

will form posterior belief µg ∈ (0, 1) with probability τπ(µg) = µ0σπ(g|G) + (1 − µ0)σπ(g|I) and

posterior belief µi ∈ (0, 1) with the remaining probability τπ(µi) = 1− τπ(µg). Thus, the prosecutor

anticipates the judge’s action for each of the two posteriors and calculates her expected utility v̂(π)

as a function of the signal π. Hence, the prosecutor’s problem boils down to choosing an investigation

that maximizes v̂(π). Obviously, the presence of noise will typically alter the optimal choice of the

prosecutor, and a fortiori her expected utility. This is because the distributions of posteriors that the

judge can form depends on the structure of the noisy channel. The general question is then: which

are the effects of noise on the prosecutor’s optimal signal and on her expected utility?

3. Persuasion game with noise

3.1. Our model

Let Ω = {ω1, . . . , ωN} be a (finite) set of states and A be a compact action space. There are two

agents, a (female) sender and a (male) receiver, with a common full-support prior µ0 ∈ ∆(Ω) and

continuous utility functions, v : A× Ω→ R and u : A× Ω→ R respectively.

Let S = {s1, . . . , sK} be a finite set of messages that can be encoded with the available technology.
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We assume that K is large. In particular, we assume that K ≥ N (see Section 8.1). Noise is modelled

with a channel p : S → ∆(S).2 A p-signalling structure (or simply a signalling structure) consists of

a pair of signals, π : Ω→ ∆(S) and σπ : Ω→ ∆(S) such that

σπ(s|ω) =
∑
t∈S

p(s|t)π(t|ω) (1)

for every ω ∈ Ω and every s ∈ S, i.e., σ is a garbling of π via the noisy channel p. For a signalling

structure, (π, σπ), we call π the actual signal and σπ the effective signal. Obviously, given a channel

p, each signalling structure is identified by the actual signal. Under certain conditions the converse

is also true, i.e., the signalling structure can be also identified by the effective signal. The set

of actual signals is denoted by Π := (∆(S))Ω, whereas the set of effective signals is denoted by

Σp := {σπ|π ∈ Π} ⊆ Π. Whenever it is clear which is the channel, we omit the subscript, thus simply

writing Σ.

A signalling structure can be interpreted in a number of ways. All interpretations have the

common features that (i) the sender commits to an experimental design (viz., the actual signal)

which is known to the receiver, and (ii) the receiver observes some – possibly distorted – data (viz., a

realization of the effective signal) before choosing an action. Interpretations differ in how the data is

gathered, processed and transmitted. Thus, we can model various different forms of data distortions

(viz., noisy channels), usually appearing in some of the following stages:

• Data gathering: The experiment is run by an agent, henceforth called the data collector,

who could in principle be the sender or the receiver or even a third party. The data collector

observes a noisy version of the actual data, due to measurement errors in the underlying the

experiment.

• Data processing: The raw data is gathered by the data collector and is processed before

being used by the receiver. Processing can take the form of storage (either in the collector’s

memory or in some external device) and retrieval at a later time, in which case noise is attributed

to memory constraints. Alternatively, processing errors can be due to the collector’s lack of

expertise which precludes him/her from correctly encoding or interpreting the actual message.

• Data transmission: The data collector is some agent other than the receiver who (truth-

fully) communicates the observed data to the receiver. The receiver observes a noisy version

of the transmitted message, due to communication errors or language barriers that lead to

misunderstanding of the communicated data.

2As we later discuss (Section 3.3.2) and formally prove (Proposition E1), our theory extends to nearly all cases

where the channel’s input and output message space differ from each other.
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The noisy channel p often combines multiple types of data distortions (see Section 7 for applications).

It is important to stress that messages do not have a particular meaning within our model. Instead,

meaning is acquired via the signalling structure. Nevertheless, we often consider noisy channels that

do not treat all messages in the same way. At first glance, this may seem as if we implicitly attach

semantics to our messages. However, this is not the case. Such differences are only meant to capture

the idea that some messages are more difficult to gather/process/transmit, thus leading to possibly

“more mistakes”, irrespective of the meaning that they carry. We further elaborate on this issue in

Section 8.1.

3.2. Equilibrium existence

After the sender having chosen some signal π ∈ Π and the receiver having heard some s ∈ supp
(
σπ(·|ω)

)
,

the receiver forms a posterior belief µs ∈ ∆(Ω) via Bayes rule, viz., for each ω ∈ Ω,

µs(ω) =
µ0(ω)σπ(s|ω)

E0[σπ(s|·)]
, (2)

where E0[x] := 〈µ0, x〉 for each x ∈ RΩ. For each s ∈ S we define Ms ⊆ ∆(Ω) as the set of posteriors

µs induced by some σ ∈ Σ with σ(s|ω) > 0 for some ω ∈ Ω. Let M :=
⋃
s∈SMs denote the set of

all posteriors that the receiver could possibly form. Then, once the receiver has formed his posterior

µ ∈ M , he chooses an action that maximizes his expected utility, uµ(a) = 〈µ, u(a, ·)〉. Since uµ is

continuous over the compact set A, a maximum always exists. If there are multiple maxima, the

receiver chooses the one that maximizes the sender’s expected utility (given µ). If there are multiple

sender-preferred maxima, the receiver picks an arbitrary one. We denote the receiver’s optimal

action, given the posterior µ ∈M , by â(µ).

Now, given the signal π ∈ Π, the sender forms a distribution (viz., second order belief) τπ ∈ ∆(M)

over the receiver’s posteriors, i.e., for each µ ∈M ,

τπ(µ) =
∑
s∈S

p({t ∈ S : µt = µ}|s)E0[π(s|·)]. (3)

The sender’s expected utility from π ∈ Π (given that the receiver chooses optimally) is equal to

v̂(π) := Eτπ [v̂0], (4)

where v̂0(µ) := E0[v(â(µ), ·)] for each µ ∈ M . An optimal signal for the sender is one from

arg maxπ∈Π v̂(π). We denote the (sender’s) value of her optimal signal by

v̂∗p := max
π∈Π

v̂(π). (5)

Then we prove that a (sender-preferred) subgame perfect equilibrium exists.
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Proposition 1. An optimal signal for the sender exists.

The proof does not rely on a concavification argument (Kamenica and Gentzkow, 2011), which

is typically used to characterize the optimal signal and a fortiori to prove existence in persuasion

games. In Section 4 we review the concavification argument and illustrate why it cannot be used to

prove our existence theorem. Instead, our proof proceeds by showing that the set of distributions over

posterior beliefs that can be achieved by some signal is compact. Of course our proof can also be used

in the standard noiseless Bayesian persuasion game, thus providing an alternative non-constructive

existence proof, more general than the one in Kamenica and Gentzkow (2011).3 Our complete proof

is relegated to Appendix A.

3.3. Channel structure

According to the standard representation, a channel p is identified by a K × K stochastic matrix

P with typical entry Pk,` := p(s`|sk). Throughout the paper we arbitrarily interchange p and P .

Our framework does not restrict the possible structures of noise. Nevertheless, some families of

channels are adequate for modelling basic specific sources of noise, and for this reason we analyze

them separately.

We first restrict attention to noisy channels that satisfy the following property:

(A1) Properly noisy: There are at most N−1 messages in S that can be fully distinguished from

each other, i.e., if there is a partition T of S such that p(T |s) = 1 for every s ∈ T and every

T ∈ T , then |T | < N .

The previous condition guarantees that the sender cannot circumvent the restrictions imposed by

the noisy channel, and therefore the sender’s problem does not trivially degenerate to the standard

(noiseless) model of Bayesian persuasion, which has already been extensively studied in the literature.

Note that this condition is assumed to hold despite the fact that the set of messages is sufficiently

rich (K ≥ N), i.e., roughly speaking, although there are many actual messages, most of them can

be confused with each other.

Definition 1. Two channels p and q are said to be isometric whenever one can be obtained by

sequential permutations of rows and columns of the other. /

An isometry class is a family of channels that is closed with respect to row and column per-

mutations. The most obvious isometry class is the class of noiseless channels, which contains all

permutation matrices. It is not difficult to verify that all channels in a isometry class induce the

3The term “more general” refers to the fact that our proof works both in the noisy and the noiseless case.
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same set of distributions over posterior beliefs – as we merely relabel the messages – and therefore

for our purposes they are deemed equivalent. Thus, the following result follows directly.

Proposition 2. If p and q are isometric, then v̂∗p = v̂∗q .

In the remainder of this section we introduce two basic classes of noisy channels. Such channels

appear in various applications. Moreover, they often form the basis of more complex noise structures.

In fact, as we show later in the paper, all channels of interest can be obtained by combining such

basic channels. In this sense, studying these classes is of particular importance.

3.3.1. Canonical channels

Consider the following two properties of noisy channels:

(A2) Diagonally dominant: An arbitrary entry in the main diagonal of P is larger than the sum

of the remaining entries in the same row, i.e., p(s|s) > 1/2 for all s ∈ S.

(A3) Symmetric: The matrix P is symmetric, i.e., p(s|t) = p(t|s) for all s, t ∈ S.4

Condition (A2) says that errors occur with relatively low probability, viz., the probability of the

receiver hearing the actual message is larger than 1/2. Condition (A3) postulates that the probability

of confusing s with t is equal to the probability of confusing t with s. For instance, assume that there

is an underlying metric d in S and the error probabilities are monotonic in the distance between the

messages, i.e., the further away two messages are from each other, the less likely it is that they get

mixed up. Then, from the symmetry of the metric follows the symmetry of the transition matrix.

Definition 2. We say that P is canonical whenever it is isometric to some diagonally dominant

channel, and isometric to some (perhaps other) symmetric channel. /

Well-known examples of canonical channels contain different versions of noisy typewriters (Cover and

Thomas, 2006) and different versions of circulant matrices, which constitute a special case of Latin

squares (Marshall et al., 2011).5 For instance, consider the case where the receiver hears the true

message with probability 1 − ε and every other message with (small) equal probability ε/(K − 1).

Such matrices are called strongly symmetric. Whenever |S| = 2, all previous examples collapse to

4In information theory the term “symmetric channel” is reserved for some P such that every two rows and every

two columns are permutations of each other respectively (Cover and Thomas, 2006). Obviously the two notions of

symmetry differ from each other.
5Latin square is called an N × N square matrix with N different elements, each appearing exactly once in each

row and exactly once in each column.
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the well-known binary symmetric channel, such as the one described in the motivating example of

Section 2.

Canonical channels are often used to model basic forms of noisy data gathering (e.g., the data

collector observes false data with some small probability due to measurements errors related to the

experimental technology) or noisy data processing (e.g., the data are stored in some memory and

when retrieved mistakes occur with small probability) or noisy data transmission (e.g., the actual

message is accurately observed by the data collector and truthfully communicated to the receiver

who in turn hears a different message with some small probability).

3.3.2. Partitional channels

Consider the following property of noisy channels:

(A4) Idempotent doubly stochastic: There is a partition T of S, such that for each T ∈ T , if

s, t ∈ T then p(t|s) = 1/|T |.

The previous condition says that messages within the same T ∈ T are completely indistinguishable

to the data collector or the receiver (Aumann, 1976). Thus, whenever s ∈ T is sent, T ∈ T is

heard, suggesting that at most |T | messages can be effectively used, and consequently reducing the

dimension of the effective signal.

Definition 3. We say that P is partitional whenever it is isometric to some idempotent doubly

stochastic channel. /

It is easy to verify that every idempotent doubly stochastic channel is also symmetric, but not

necessarily diagonally dominant. In fact the only partitional channels that are also canonical are the

noiseless channels, implying that the two classes are essentially disjoint.

Partitional channels are often used to model basic forms of noisy data processing (e.g., the data

collector has limited perception, thus failing to understand the difference between data points that

the experiment may yield) or noisy data transmission (e.g., the receiver has a coarser language than

the data collector).

Interestingly, every noisy channel with rational transition probabilities (including those with

different input and output message spaces) can be obtained as a combination of two partitional

channels with the same message space (see Proposition E1).6 Notably the latter is true for canonical

channels (with ε ∈ Q) too, and in this sense we slightly abuse terminology by classifying canonical

channels as basic. In either case, the aforementioned result suggests that partitional channels are the

building blocks of any form of noise.

6The formal definition of the combination of two channels is introduced after we define garbling (see Section 5).
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4. Optimal signal

In their seminal paper, Kamenica and Gentzkow (2011) computed the exact value of the sender’s

optimal signal for the noiseless case, using a standard concavification technique which was originally

introduced in the literature of repeated games by Aumann and Maschler (1995).7 Then, we naturally

ask: can their characterization be extended to the noisy case?

Let us first briefly revisit their approach. Whenever p is noiseless we arbitrarily interchange

notation between ∆(Ω) and M . A distribution τ ∈ ∆(∆(Ω)) is said to be Bayes-plausible whenever∫
∆(Ω)

µdτ(µ) = µ0. Obviously, the sender’s (second-order) belief τπ is Bayes-plausible for every π ∈ Π.

They show that the sender’s problem reduces from maximizing over the set of signals to maximizing

over the set of Bayes-plausible distributions:

Lemma 1 (Kamenica and Gentzkow, 2011). Let p be a noiseless channel. Then, for every Bayes-

plausible τ ∈ ∆(M) there exists some π ∈ Π such that Eτ [v̂0] = v̂(π).

The result is proven in two steps. First, it follows from Caratheodory Theorem that, for every Bayes-

plausible τ ∈ ∆(∆(Ω)) there exists some Bayes-plausible τ ∗ ∈ ∆(∆(Ω)) (possibly different from τ)

such that | supp(τ ∗)| ≤ N + 1 and Eτ∗ [v̂0] = Eτ [v̂0]. Second, they prove that there exists a signal

π ∈ Π such that τπ = τ ∗. This transformation allows not only to prove that an optimal signal exists,

but more importantly to explicitly calculate its value. In particular, define the concave closure of v̂0

as follows:

VM(µ) := sup
{
z ∈ R : (µ, z) ∈ conv

(
{(λ, v̂0(λ)) | λ ∈M}

) }
(6)

for each µ ∈ M . Given this definition, the authors show that the value of the optimal signal

is given by v̂∗ = V∆(Ω)(µ0), implying that persuasion is beneficial for the sender if and only if

V∆(Ω)(µ0) > v̂0(µ0), i.e. they obtain a necessary and sufficient condition for persuasion. In fact,

if v̂0 is convex but not concave then persuasion is always beneficial, whereas if v̂0 is concave then

persuasion is never beneficial.

Now let us switch focus to the noisy case, asking whether a similar characterization result can

be established. Formally, we ask: for an arbitrary channel p, is it the case that v̂∗p = VM(µ0)? As it

turns out this is not the case in general.

Example 1. Let Ω = {ω1, ω2, ω3} and µ0 ∈ ∆(Ω) be uniformly distributed. Moreover let A := ∆(Ω)

and assume that the two agents have aligned preferences, with their expected utility being given by

the strictly convex function ‖µ− µ0‖2, which is maximized at the extreme points of ∆(Ω) with the

7A similar approach has been taken in subsequent papers on Bayesian persuasion (e.g., see Alonso and Câmara,

2016; Bizzotto et al., 2017; Hedlund, 2017; Kolotilin et al., 2018; Laclau and Renou, 2017; Wang, 2013).
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corresponding expected utility being equal to 2/3, i.e., the receiver reports his posterior belief and

they are both paid by a proper scoring rule with the highest expected utility being achieved when

the receiver learns the true state.8 Assume that noise is modelled by a partitional channel with

only two effective messages, i.e., S is partitioned into T = {T1, T2} so that p(t|s) = 1/|T | for each

s, t ∈ T and each T ∈ T . Notice that every posterior can be achieved, i.e., M = ∆(Ω), implying that

VM(µ0) = 2/3. Nevertheless the sender can only use signals that yield at most two messages with

positive probability, i.e., she can only choose Bayes-plausible τ ∈ ∆(M) such that τ({µ1, µ2}) = 1

for some µ1, µ2 ∈M which are collinear with µ0. Thus, if one of these posteriors is an extreme point,

the other one is not. Hence, v̂∗p < 2/3, implying that the value of the optimal signal is not given by

the concave closure of v̂0. /

The reason why concavification fails is that whenever p is noisy Lemma 1 does not necessarily hold.

In particular, although for every τ ∈ ∆(M) there exists some τ ∗ ∈ ∆(M) such that | supp(τ ∗)| ≤ N+1

and Eτ∗ [v̂0] = Eτ [v̂0], it is not necessarily the case that there exists some π ∈ Π such that τπ = τ ∗.

Indeed, in the previous example, there is no signal yielding a uniform distribution over the three

extreme points of ∆(Ω), although all three of them belong to M .

While this approach does not pin down the value of the optimal signal, it still provides an upper

bound. Furthermore, it provides a necessary condition for persuasion to be beneficial for the sender.

Theorem 1. For an arbitrary channel p, the following hold:

(i) The sender’s value is bounded, viz., v̂∗p ≤ VM(µ0).

(ii) Persuasion is not beneficial if v̂0(µ0) = VM(µ0).

The proof of the previous theorem follows almost immediately from Kamenica and Gentzkow’s (2011)

original result. As we have already mentioned, the reason why concavification does not provide a

sufficient condition for persuasion to be beneficial, is that not all Bayes-plausible distributions with

support in M can be induced by some signal. This is true even in cases where the channel has a

nice structure, e.g., canonical (Section 6) or partitional (Example 1). Nevertheless, in certain special

cases, we can provide sufficient conditions for persuasion, similar to the noiseless case, viz., when v̂0

is strictly convex, persuasion is beneficial, unless of course p is completely uninformative.

The previous result also directly implies that noise is always harmful for the sender, as M ⊆ ∆(Ω)

implies VM(µ0) ≤ V∆(Ω)(µ0), and therefore v̂∗p ≤ V∆(Ω)(µ0) = v̂∗. This implies that Blume et al.’s

(2007) result for signalling games does not extend to persuasion games. That is, commitment makes

noise always harmful for the sender.

8Recall that under a proper scoring rule it is strictly dominant for the receiver to report his true posterior belief.
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5. Monotonicity

Is more noise always harmful for the sender? In order to answer this question, we first recall

Blackwell’s (incomplete) informativeness relation over the set of communication channels (Blackwell,

1951, 1953). We say that q is a garbling of p (viz., q is more noisy than p) whenever there is a

channel r : S → ∆(S) such that

q(t|s) =
∑
u∈S

p(u|s)r(t|u) (7)

for each s, t ∈ S. In this case we write p � q. The channel r models the additional noise that we

combine with p to obtain the noisier channel q. Whenever r is not noiseless, we write p � q. Then,

we ask: does p � q imply v̂∗p ≥ v̂∗q?

First, in the most obvious special case where p is noiseless, as we have already shown, noise

is harmful for the sender. Second, consider the case where the sender and receiver have aligned

preferences (i.e., u = v). It is again quite clear that more noise is harmful for the sender (Proposition

E2). This follows directly from Blackwell’s well-known theorem (Blackwell, 1951, 1953). Third, when

two diagonally dominant channels are Blackwell equally-informative (i.e., p � q and q � p), they

always induce the same value (Proposition E3).

However, it turns out that the sender’s value is not always increasing in the channel’s informa-

tiveness, i.e., more noise may be beneficial for the sender, as illustrated by the following example.

Example 2. Let Ω = {ω1, ω2, ω3} and µ0 ∈ ∆(Ω) be uniformly distributed. Moreover, let S =

{s1, . . . , s20}, and consider the partitional channel p with Tp = {T1, T2} such that T1 = {s1, . . . , s10}
and T2 = {s11, . . . , s20}. Suppose that additional noise is introduced (on top of p) via another

partitional channel r with Tr = {T ′1, T ′2, T ′3} where T ′1 = {s1, s2} ∪ {s11, s12, s13}, T ′2 = {s3, s4, s5} ∪
{s14, . . . , s18} and T ′3 = {s6, . . . , s10}∪{s19, s20}. Thus, we obtain a new channel q, which is a garbling

of p (via r). Note that q is not partitional, even though both p and r are. Now, take a signal π such

that π(T1|ω1) = 1, π(T2|ω2) = 1 and π(T1|ω3) = π(T2|ω3) = 1/2. In this case, the distribution of

posteriors τ qπ puts positive probability to three beliefs in ∆(Ω), (viz., µq1 = ( 4
21
, 7

21
, 10

21
), µq2 = (2

8
, 3

8
, 3

8
)

and µq3 = (10
21
, 7

21
, 4

21
)), which are not collinear. Importantly this distribution cannot be obtained

under p which induces at most two posterior beliefs, collinear with the prior, as there are only two

effective messages (i.e., |Tp| = 2). Finally, assume that the set of actions is A := ∆(Ω), and the

receiver’s expected utility is given by ‖µ − µ0‖2 (i.e., similarly to Example 1 the sender is asked to

report his posterior belief and is paid according to a proper scoring rule). The sender’s utility is

equal to 1 if the receiver reports some µ ∈ {µq1, µ
q
2, µ

q
3} and 0 otherwise, i.e., intuitively, she has bet

on the event that the receiver will report a posterior belief in {µq1, µ
q
2, µ

q
3}. The latter directly implies

that the sender’s value is equal to v̂∗q = v̂(π) = 1 under the channel q. However, since the three
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posteriors are not collinear, the sender can achieve at most one of them under the channel p, thus

implying v̂∗p < 1. Hence, v̂∗p < v̂∗q even though p � q. A more detailed presentation of this example

can be found in Appendix E.2.1. /

Crucially the previous example relies on the fact that p and q have inherently different structures,

viz., p is partitional whereas q is not. In fact, q is essentially a channel with different input and

output effective message spaces, viz., Tp and Tr respectively. This explains the reversal in the

sender’s preferences for the two channels. This type of structural differences usually arise when

different sources of data distortion coexist. In the previous example for instance, assume that p

models noisy data processing (e.g., due lack of expertise of the data collector) and r models noisy

data transmission (e.g., due to language barriers in the communication between the data collector

and the receiver). Finally, let us stress once again that in our previous example monotonicity is

violated even though both p and r have a nice structure (i.e., they are both partitional), implying

that the structural differences between p and q are not an artefact of combining “exotic” channels.

In what follows we focus on the basic channels that we discussed earlier. We show that, if both

channels (p and q) are canonical or both are partitional, monotonicity is restored.

Theorem 2. If p � q then v̂∗p ≥ v̂∗q , when one of the following conditions holds:

(i) p and q are canonical channels.

(ii) p and q are partitional channels.

For both cases, the main idea behind the proof is to show that the more informative channel yields

a larger set of feasible distributions of posteriors, for every signal and every preference profile of the

two agents. Hence, it induces a higher value for the sender. To prove the first part, we show that

every row of Q (the stochastic matrix of q) can be written as a convex combination of the rows of P

(the stochastic matrix of p), thus implying that the extreme points of Σq all belong to Σp. Hence,

there are more feasible distributions of posteriors under p than under q. To prove the second part,

we show that for partitional channels, it is the case that p � q if and only if p has more effective

messages than q. The latter also implies that � is complete over the set of partitional channels,

implying that in this case the converse holds too, i.e., if v̂∗p ≥ v̂∗q then p � q. In other words, �
naturally induces a complete preference relation (for the sender) over the set of partitional channels.

This is not necessarily the case when the channels are canonical, as in that case � is incomplete (see

Section 8.2).

Within each of the previous two classes of channels, Blackwell’s informativeness relation is equiv-

alent to another well-known relation, viz., (matrix) majorization, which is used extensively as a
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measure of dispersion in the theory of income inequality (e.g., Lorentz curves or Dalton transfers).

Formally, we say that P majorizes Q and we write P D Q, whenever Q = PR for some doubly

stochastic matrix R (Marshall et al., 2011). Then, it can be shown that for every pair of canonical

or partitional matrices, p � q if and only if P D Q (Lemma C3).

An example of Blackwell-ordered canonical channels (p � q) is one where p and q are strongly

symmetric with q yielding a larger error probability. An example of Blackwell-ordered partitional

channels (p � q) occurs when q is obtained by combining p with another partitional channel r such

that Tp refines Tr. Note that the latter is violated in Example 2 where Tr is not a coarsening of Tp.
The general conclusion of this section – and to an extent of the entire paper – is that for basic

Blackwell-ordered channels of similar structure, more noise is harmful for the sender. Such similarities

are observed when the source of data distortions is the same in the two channels, and therefore in

a sense the two channels are directly comparable. However, when there are multiple sources of

data distortions (as it is commonly the case in applications), such similarities often disappear and

consequently more noise can benefit the sender.

6. Motivating example revisited

Recall the prosecution example with noise from Section 2, supposing that the prior probability of

guilt is µ0 = 0.3 (like in Kamenica and Gentzkow, 2011) and the probability of misinterpretation

under the strongly symmetric channel p is ε < 0.3. Which is the optimal signal?

The prosecutor would like to maximize the probability of conviction, viz., she would like to

maximize the probability that the judge’s posterior attaches probability at least 0.5 to the defendant

being guilty. Obviously, by µ0 < 0.5, every signal would induce at most one such posterior, i.e., it

cannot be the case that both µg ≥ 0.5 and µi ≥ 0.5. Thus, the prosecutor focuses on signals that

yield either µg ≥ 0.5 or µi ≥ 0.5 with positive probability. These are the only candidates for an

optimal signal and every other signal will induce the same expected utility as the prior, namely 0.

The signals that yield µg ≥ 0.5 are the ones in the lower shaded triangle of Figure 2.a, while the

signals that yield µi ≥ 0.5 are those in the upper shaded triangle. Let us focus on the signals that

induce µg ≥ 0.5, and by symmetry the analysis is identical for those inducing µi ≥ 0.5. For an

arbitrary σ in the lower triangle, the probability that the prosecutor’s distribution attaches to µg is

equal to τσ(µg) = 0.3σ(g|G)+0.7σ(g|I). The prosecutor then faces a constrained linear optimization

problem, viz., she wants to maximize τσ(µg) subject to σ belonging to the lower triangle. Obviously,

the optimal solution to this problem is σ∗1, where σ∗1(g|G) = 1− ε and σ∗1(g|I) = 3(1− ε)/7. Notice

that by symmetry, σ∗2, defined by σ∗2(g|·) = 1− σ∗1(g|·), is also an optimal signal. In fact, σ∗1 and σ∗2
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are the only optimal signals. Finally notice that

v̂∗p = 0.6(1− ε).

Observe that, consistently with Theorem 2, the sender’s value is decreasing in the error probability.

0 1

1

1− ε

1− ε

ε

ε

π∗13/7

4/7
π∗2

σ∗1

σ∗2

(a) Judge’s effective investigation.

0 1

1

µ0µ∗i µ∗gµ1 µ2

v̂∗

VM (µ0)

v̂∗p

(b) Prosecutor’s expected utility.

Figure 2: Optimal investigation in the prosecution example with noise.

Now, let us switch attention to Figure 2.b. It is not difficult to verify that the set of posteriors

µs that the judge could form conditional on each of the two messages s ∈ {i, g} is M = {µ ∈ [0, 1] :

µ1 ≤ µ ≤ µ2}, where µ1 = 3ε/(3ε + 7(1 − ε)) and µ2 = 3(1 − ε)/(3(1 − ε) + 7ε). Observe that the

two posteriors that occur with positive probability when σ∗1 is chosen are such that µ∗i = 3ε/(4 + 6ε)

and µ∗g = 0.5. Then, it is straightforward to verify that µ1 < µ∗i , implying that v̂∗p < VM(µ0). Notice

that consistently with Theorem 1, the concave closure of v̂0 merely provides an upper bound rather

than a characterization of the prosecutor’s value.

7. Applications

7.1. Persuading voters

Building on Alonso and Câmara (2017), consider a politician (the sender) who proposes a new agenda

a1 to replace the status quo policy a0. There are three voters (the receivers) I := {1, 2, 3} and two

states Ω = {ω1, ω2}. A (prior or posterior) belief in ∆(Ω) is identified by the probability it assigns

to ω1. All agents are assumed to share a common prior, which for simplicity and without loss of

generality is assumed to be µ0 = 0.5. For each i ∈ I the preferences are represented by the random

variable δi : Ω → R, where δi(ω) := ui(a1, ω) − ui(a0, ω) is i’s net utility from adopting the new

agenda at ω. We assume that δ∗i := δi(ω1) > 0 and δi(ω2) = −1 for all i ∈ I, implying that

all voters agree that the new agenda is good at ω1 and it is bad at ω2. Let µ∗i := 1/(1 + δ∗i ) be
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the threshold belief that leads i to vote in favor of a1, i.e., voter i prefers a1 to a0 under a belief

µ ∈ [0, 1] if and only if µ ≥ µ∗i . We assume that µ0 < µ∗1 < µ∗2 < µ∗3, i.e., no voter approves the

new policy under the prior belief. In general, the politician cares about how many votes she gets,

viz., v(κ) is the politician’s utility from getting κ votes. In particular, throughout this section, we

let 0 = v(0) = v(1) < v(2) ≤ v(3), i.e., in order for the new agenda to be approved a simple majority

is needed, but the politician may still prefer unanimous support over simple majority.

The politician can influence the voters by means of a binary political experiment π (the signal),

with possible outcomes S := {s1, s2}. There are distortions in the messages that the voters receive,

modelled by a strongly symmetric channel p with error probability ε ∈ [0, 1/2), i.e., p(s|s) = 1 − ε
and p(t|s) = ε for t 6= s. For instance, a voter could misinterpret the politician’s message due to

campaign mistakes, or due to the fact that political messages are communicated via the media which

may intentionally or unintentionally distort their meaning, or even due to his own limited ability to

understand the message. Depending on the source of the distortions we consider two cases:

• A common effective message is drawn for all voters, e.g., when noise is due to campaign errors

or media distortions.

• A different effective message is independently drawn for each voter, e.g., when noise is due to

voters’ own misunderstanding.

Note that in both cases, the actual message is the same for all voters, implying that differences in

the effective messages – and the subsequent belief heterogeneity – can only be attributed to data

distortions.

Each binary signal π is identified by the pair of posteriors in the support of the distribution τπ. A

pair of posteriors (µ−0 , µ
+
0 ) is feasible if and only if εµ+

0 /(2µ
+
0 − (1− ε)) ≤ µ−0 ≤ (1− ε)µ+

0 /(2µ
+
0 − ε)

(Le Treust and Tomala, 2018, Lem. 3.4). In this case we refer to µ−0 as the “bad posterior” and to

µ+
0 as the “good posterior”. The intuition is that no voter will be persuaded to approve the new

agenda under the bad posterior, and may or may not under the good posterior depending on how

large µ+
0 is. For a fixed good posterior µ+

0 ≥ µ∗2, the politician wants the bad posterior µ−0 to be as

small as possible (Alonso and Câmara, 2017, Prop. 1). It is not difficult to verify that the optimal

signal always belongs to {πε2, πε3}, where πεi ∈ {πε2, πε3} yields the good posterior µ∗i with probability

τ εi := (1 − ε)/2µ∗i and the bad posterior εµ∗i /(2µ
∗
i − (1 − ε)) with probability 1 − τ εi . The latter is

true irrespective of whether all voters receive common or independent effective messages.

If the politician chooses πε2 then she targets approval by majority, whereas if she chooses πε3 then

she targets approval by unanimity. Thus, we say that the politician prefers to target majority (resp.,

unanimity) when πε2 (resp., πε3) is the optimal signal. It is not difficult to verify that the optimal signal
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depends on various parameters, namely on the voter’s preferences, on the politician’s preferences and

on the error probability.

Proposition 3. Suppose that all voters receive a common effective message. Then, for every prefer-

ence profile, the politician prefers to target approval by majority (resp., by unanimity) without noise if

and only if she prefers to target approval by majority (resp., by unanimity) with noise, i.e., formally,

v̂(π0
2) ≥ v̂(π0

3) if and only if v̂(πε2) ≥ v̂(πε3) for every ε > 0.

The previous result follows from v̂(πε2) = (1 − ε)v(2)/2µ∗2 and v̂(πε3) = (1 − ε)v(3)/2µ∗3 for every

ε ≥ 0. A direct consequence of the previous result is that, in equilibrium the politician always

targets the same good posterior irrespective of the amount of noise. Nevertheless, the probability

of achieving this good posterior decreases in ε, i.e., τ εi is strictly decreasing in ε. This is because

the bad posterior moves closer to the prior as ε increases. Hence, when all voters receive the same

effective signal, the noisier the channel, the less informative the optimal signal.

Proposition 4. Suppose that each voter receives an independent effective message. Then, there

exist preference profiles and error probabilities such that, the politician prefers to target approval by

majority without noise and approval by unanimity with noise, i.e., formally,

v̂(π0
2) > v̂(π0

3) and v̂(πε2) < v̂(πε3) for some ε > 0.

The proof of the previous result is relegated to Appendix D, and is constructive. In particular,

the specifications that we use in our (existence) example are: µ∗1 = 0.5, µ∗2 = 0.6 and µ∗3 = 0.7,

together with v(2) = v(3) = 1 and ε = 0.1. Notably, in the presence of small noise, the politician

will target approval with unanimity although she is indifferent between winning the election with

simple majority and winning with unanimous approval. Furthremore, unlike the previous case (with

a common effective message), noise does not lead to a less noisy signal. In particular, the optimal

signal with noise (viz., πε3) is not less informative than the optimal signal without noise (viz., π0
2).

In fact the two are not comparable in Blackwell’s sense, as both posteriors induced by πε3 are larger

than the respective posteriors induced by π0
2.

The general conclusion from combining the previous two results is that, the politician’s optimal

strategy (over which voters to target) often depends on the source of the distortions. For instance

under the assumptions of Proposition 4, when ε > 0, the politician targets approval by majority

(viz., the signal πε2) if noise models the voters’ own misunderstanding, and she targets approval

by unanimity (viz., the signal πε3) if noise models campaign mistakes. In other words, the politician

adopts a more aggressive campaign when the voters misunderstand the political experiment. Notably,

this preference reversal holds although the channel that describes the noise is the same in the two

cases.
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7.2. Persuading biased receivers

It is well-documented that people often appear to be biased in their judgments (e.g., Tversky and

Kahneman, 1973, 1983). While this phenomenon has been traditionally attributed to the use of

heuristics (for a review, see Gigerenzer and Gaissmaier, 2011), within the psychology literature

there is an alternative explanation based on noise (e.g., Costello and Watts, 2014; Hilbert, 2012).

Accordingly, agents store information in their memory and they retrieve it when they want to use

it, e.g., when they are asked to report their probabilistic assessment or when they need to choose

an action. However, information storage is noisy, in the sense that the information may have been

deleted from their memory (with some small probability) by the time they try to retrieve it. In what

follows, we show that the same idea can be used in the context of noisy persuasion, thus explaining

cognitive biases by means of different forms of distortions, beyond memory loss. We illustrate our

argument for a standard type of bias (viz., conservatism bias), but we confidently conjecture that

similar explanations can be provided for other standard biases.

According to conservatism bias, people anchor their beliefs to their prior and update only partially

(using Bayes rule). Formally, given an experiment, an agent (viz., the receiver in our case) updates

his beliefs with probability 1− δ and sticks to the prior with probability δ ∈ (0, 1). In other words,

the agent completely disregards the experiment with probability δ. Let us illustrate how this can

occur in the context of our motivating example (Sections 2 and 6), while keeping in mind that we

can directly extend our analysis to a general setting of noisy Bayesian persuasion.

Consider the binary state space Ω = {G, I} with a common prior µ0 ∈ (0, 1), and a noisy channel

(p) with different input and output message spaces:

Nature

I
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i

g

i

o

g

µ0

1− µ0

π(g|G)

π(i|I)

1− δ

1− δ

δ

δ

Figure 3: Noisy channel yielding conservatism bias in the prosecutor-judge example.

As we have already discussed, such a channel can be obtained by combining two partitional channels

with a common input and output message space (Proposition E1). In Section E.2.2 we present one

example of two such partitional channels.9

9In a nutshell the underlying idea is that messages can be decomposed into a verbal and a non-verbal part. All the

relevant information is contained in the verbal part. However, the verbal part is only taken into account when coupled
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The channel p has a very interesting property: for every signal, the posterior µo coincides with

the prior µ0. The probability of receiving o, and a fortiori forming the posterior µo, is equal to δ

irrespective of the signal. This is the probability of the receiver disregarding the experiment, and

in this sense it can be seen as a measure of the conservatism bias. In this case we say that p is a

δ-conservative channel.

Proposition 5. For a δ-conservative channel p, the value of the optimal signal is equal to

v̂∗p = δv̂0(µ0) + (1− δ)v̂∗.

Interestingly, the optimal signal does not depend on δ, i.e., irrespective of how large δ is, the

sender will always choose the optimal signal of the benchmark noiseless game. Thus, despite being

more difficult to persuade a conservative receiver, the sender does not choose a more informative

signal. This is because, there is nothing she can do if o is drawn. Thus, she designs her experiment

by taking only the effective messages s and i into account. This is in contrast to models of persuasion

where the sender chooses a more informative signal in response to the receiver having strategically

made persuasion more difficult (Tsakas et al., 2017).

7.3. Other applications

In this section we briefly present a (non-exhaustive) list of additional applications of our noisy

persuasion game.

Example 3. A doctor (the sender) chooses which medical tests to run. The results are truthfully

communicated to the patient (the receiver) who decides which treatment to follow. Communication

is often noisy due to language barriers or lack of understanding of medical terms on the receiver’s side.

Such sources of noise have been empirically documented and discussed in highly-influential medical

journals (e.g., see Flores, 2006). Then it follows from our previous analysis that, if the preferences of

the two agents are not aligned (e.g., if the doctor prefers the patient to choose an expensive treatment

while the patient prefers the most effective treatment), combining more than one distortions could

be beneficial for the doctor as opposed to removing one of the two. For instance, if the patient does

not understand medical terms and at the same time is a non-native speaker, the doctor may prefer

not to hire an interpreter in order to remove the second source of noise. /

Example 4. In a variant of our motivating example, the prosecutor conducts the investigation and

communicates the outcomes to the judge via a mediator, e.g., her deputy is the one scheduled to

appear in front of the judge to testify. The use of mediator adds an additional source of noise in

with specific non-verbal parts, e.g., when the prosecutor appears trustworthy or when she is not very aggressive.
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the persuasion game. Notice that unlike the literature on cheap-talk games (e.g., see Ivanov, 2010;

Ambrus et al., 2013), in this case the mediator is non-strategic and is only relevant to the extent

that his presence introduces additional distortions. Once again following our monotonicity analysis,

if there are other sources of data distortions, the prosecutor may prefer to use intermediation over

direct communication. /

Example 5. A marketing campaign is designed by a firm in order to promote a new product.

Similarly to the application on voting, the firm attempts to persuade multiple consumers to become

regular customers. Persuasion is noisy due to various factors, e.g., the consumers disregard or do not

understand the message of the campaign with some probability. Similarly to Section 7.1, depending

on the source of noise, different consumers may receive a common effective signal or independent

ones. Then, similarly to our earlier analysis, such distinction may have implications for the optimal

signal, and in particular for the coalition of consumers that the firm will choose to target. /

8. Discussion

8.1. Modelling assumptions about the channel

Throughout the paper our basic underlying assumptions are that the sender chooses a single signal

over a given message space. Are these assumptions natural for a model of noisy persuasion?

The fact that we exogenously fix the message space is in contrast to most of the literature on

Bayesian persuasion. Indeed, with the exception of Le Treust and Tomala (2018), who also assume

a fixed message space, every other paper allows for any finite message space. Let us explain the

difference. Define the set Θ containing all possible experimental outcomes of all possible experiments

that can be run. The agents cannot necessarily distinguish between any two different experimental

outcomes, due to physical and technological restrictions. Such indistinguishable outcomes are then

bundled together into the same equivalence class. We assume that these equivalence classes form

a finite partition P of Θ. This is the difference to the rest of the literature, viz., they let P be

countable. Back to our case, the partition P is identified by our set of messages S, i.e., each P ∈ P
is given a name in the set S. This name does not have a meaning, viz., it is merely an enumeration

of P . It is important to stress that S (and respectively P) does not semantically represent a natural

syntactic language. Instead, each s ∈ S will only obtain meaning once some signal has been chosen.

Note that, although finite, S is typically large. In fact we assume it to be at least large enough

so that the most informative signal can be constructed, i.e., formally, recall that we have assumed

|S| ≥ |Ω|. Overall, we find our assumption (of P being finite) to have a natural interpretation
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in terms of technological restrictions (e.g., experimental measurements) and/or physical constraints

(e.g., bounded perception of the agents). In either case, this assumption does not have important

implications for the applications that we study.

Let us now elaborate on our assumption that a single message is chosen by the sender. Actually

our model is more permissive than it initially seems. The underlying idea is that we can in principle

allow the sender to conduct a sequence of experiments, but the number of these experiments is

bounded from above by some n ∈ N, e.g., due to time and/or capacity restrictions. Then, the

different signals can be bundled into a single experiment, with the finite message space now containing

sequences of messages (of length n). Since the space of such sequences is fixed (by the fact that both

S and n are exogenously given), we are back to our model.

8.2. Preferences over basic channels

We ask the following question: If the sender can choose the noisy channel from some set of basic

channels, can we predict her choice, without knowing the preference profile? The answer is sometimes.

First, as we have already discussed (Section 5), the Blackwell order is complete in the set of

partitional channels, i.e., for two partitional channels (p and q), it is the case that p � q if and only

if |Tp| ≥ |Tq|. Thus, the sender inherits a complete preference relation over the partitional channels,

and therefore we can predict that the sender will choose the most informative partitional channel

that is available, irrespective of the two agents’ preference profile.

As it turns out, the same is not true for canonical channels. For instance, consider two channels

p and q with transition matrices

P =
1

12


7 3 2

3 8 1

2 1 9

 and Q =
1

768


413 195 160

195 541 32

160 32 576


respectively. The two channels are canonical and it is straightforward to confirm that neither of

them is a garbling of the other. Thus, the preference relation over canonical channels that the sender

inherits from the Blackwell order, is not complete, i.e., there are canonical channels that are Blackwell

incomparable, and therefore one channel can be better under some preference profile, and the other

better under some other profile. Hence, we cannot predict which one will be chosen, unless we know

the agents’ preference profile.
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8.3. Persuasion with heterogeneous priors

A straightforward consequence of noise is that the sender and the receiver will often end up with

different posterior beliefs. This is for instance the case when the noisy channel models communication

errors from the sender (who is also assumed to be the data collector) and the receiver. Ours is not the

only paper on Bayesian persuasion with this feature. In fact, the same is true in persuasion games

with heterogeneous priors (e.g., see Alonso and Câmara, 2016; Laclau and Renou, 2017). However, in

this last case disagreement arises in different forms compared to our model with noise. Furthermore,

neither of the two models is a special case of the other, i.e., the set of feasible distributions of

posteriors in one case is not a subset of those that can be achieved in the other.

A. Proofs of Section 3

A.1. Intermediate results

Lemma A1. For an arbitrary channel p, there is a finite set B ⊆ ∆(S) such that Σp = (∆(B))Ω.

Proof. Define B := {b1, . . . , bK} such that bk(s) := p(s|sk) for every s ∈ S and every k ∈
{1, . . . , K}. Clearly, observe that bk ∈ ∆(S) for every k, while also noticing that different bk’s

may coincide. Take arbitrary ω ∈ Ω and π ∈ Π. Then, for every s ∈ S,

σπ(s|ω) =
K∑
k=1

p(s|sk)π(sk|ω) =
K∑
k=1

bk(s)π(sk|ω),

implying that σπ(·|ω) ∈ ∆(B), and therefore Σp ⊆ (∆(B))Ω. Now, take an arbitrary σ ∈ (∆(B))Ω,

implying that for each ω ∈ Ω there exists some (aω1 , . . . , a
ω
K) ∈ RK

+ with
∑K

k=1 a
ω
k = 1, such that∑K

k=1 a
ω
k bk = σ(·|ω). Then, define π ∈ Π by π(sk|ω) := αωk , and observe that by construction σ = σπ.

Hence, Σp ⊇ (∆(B))Ω, thus completing the proof.

Definition A1. For an arbitrary s ∈ S, define the convex set

Σ̂s =
{
σ ∈ Σ :

∑
ω∈Ω

σ(s|ω) > 0
}
. (A.1)

Then, we define the function µ̂s : Σ̂s →Ms by

µ̂s(σ)(ω) =
µ0(ω)σ(t|ω)

E0[σ(t|·)]
, (A.2)

for each ω ∈ Ω.
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Lemma A2. Ms is convex and compact.

Proof. Convexity. Notice that µ̂s is a fractional-linear function. Hence, since Σ̂s is convex, the

image µ̂s(Σ̂s) is also convex (Boyd and Vandenberghe, 2004, p.42). But then, observe that µ̂s is

surjective, viz., µ̂s(Σ̂s) = Ms, and therefore Ms is convex.

Compactness. Take an arbitrary sequence (µ̃ks)
∞
k=1 in Ms converging to some µs ∈ RΩ. Notice that

µs ∈ ∆(Ω) since µ̃ks is a sequence in the closed set ∆(Ω). We are going to prove that µs ∈Ms, which

will then imply that Ms is closed, and hence compact.

Step 1. Since µs is the limit of a sequence in Ms, it belongs to clos(Ms). Moreover, since Ms

is convex – by the previous part of our result – its closure will also be convex. Now, for every

β ∈ (0, 1] take βµ0 + (1 − β)µs, which belongs to Ms. Moreover, if we take any strictly decreasing

sequence (βk)
∞
k=1 in (0, 1] that converges to 0, we obtain a sequence (µks)

∞
k=1 in Ms, defined by

µks := βkµ0 + (1 − βk)µs, which also converges to µs. Hence, it suffices to prove that µks (instead of

µ̃ks) converges to a point in Ms.

Step 2. For each k ≥ 1, since µks ∈ Ms, there exists some σk ∈ Σ̂s such that µ̂s(σ
k) = µks . This

implies that the effective signal σk satisfies

βkµ0(ω) + (1− βk)µs(ω) =
µ0(ω)σk(s|ω)

E0[σk(s|·)]

for every ω ∈ Ω. In other words, σk(s|·) ∈ [0, 1]Ω is a non-trivial solution to the system of linear

equations (
βkµ0(ω) + (1− βk)µs(ω)

)∑
ω′∈Ω

µ0(ω′)xkω′ − µ0(ω)xkω = 0. (A.3)

This system is homogeneous. Hence, since it has one non-trivial solution, it will have infinitely many.

Step 3. It follows from the previous step that, for every k ≥ 1, there exists at least one ω ∈ Ω

such that xkω is a free variable. Hence, it follows from Ω being finite that there exists some ω ∈ Ω

such that xkω is a free variable for infinitely many k ∈ N. This obviously defines a subsequence of

µks . Now for each µks in this subsequence, we can pick a solution σ̂k(s|·) to the system (A.3) such

that σ̂k(s|ω) = Aω > 0, where Aω is a constant that does not depend on k. Hence, we obtain a

sequence (σ̂k)∞k=1 in Ms with σ̂k(s|ω) being constant. Now, since Σ is a polytope, it is bounded, and

therefore, by the Bolzano-Weierstrass theorem, there exists a subsequence of σ̂k that converges to

some σ ∈ Σ. However, notice that σ(s|ω) = limk→∞ σ̂
k(s|ω) = Aω > 0, implying that σ ∈ Σ̂s, and

therefore µ̂s(σ) ∈Ms. But then again, µ̂s is continuous in Σ̂s, implying that

µ̂s(σ) = lim
k→∞

µ̂s(σ̂
k) = lim

k→∞
µks = µs,

which completes the proof.
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A.2. Proof of Proposition 1: Equilibrium existence

It follows from Lemma A2 that ∆(M) is compact, endowed with the topology of weak convergence.

Define the mapping τ̂ : Σ→ ∆(M), by τ̂(σπ) := τπ.

Step 1. We are going to prove that τ̂ is continuous. Consider an arbitrary sequence (σk)∞k=1 in Σ

converging to some σ ∈ Σ. Then, it suffices to prove that τ̂(σk)
w∗→ τ̂(σ). Thus, by the Portmanteau

Theorem (see Aliprantis and Border, 1994, Thm. 15.3), it suffices to prove that for every continuous

f : M → R, it is the case that
∫
M
f(µ)dτk(µ) →

∫
M
f(µ)dτ(µ), where τk := τ̂(σk) and τ := τ̂(σ).

Since both σk and σ belong to Σ, both τk and τ have finite support. Hence, it suffices to prove that∑
ω∈Ω

µ0(ω)
∑
s∈S

(
σk(s|ω)f(µks)− σ(s|ω)f(µs)

)
−→ 0 (A.4)

for an arbitrary continuous f ∈ RM , where µks ∈ Σ̂s is the receiver’s posterior if s is observed given

some effective signal σk with σk(s|ω) > 0 for some ω ∈ Ω. If σk(s|ω) = 0 for all ω ∈ Ω, then µks is

chosen arbitrarily. Likewise we define µs ∈Ms. Now, let us consider two cases.

(a) σ ∈ Σ̂s : By continuity of µ̂s it follows that µks → µs, and by continuity of f it follows that

f(µks)→ f(µs), which directly implies (A.4).

(b) σ /∈ Σ̂s : By Lemma A2, the function f is continuous on a compact domain and therefore f(µs)

is bounded. Hence, σ(s|ω)f(µs) = 0. Moreover, by σk → σ, it follows that σk(s|ω)f(µks)→ 0,

which again implies (A.4).

Combining the previous two cases proves our claim that τ̂ is continuous.

Step 2. Since Σ is a polytope (and therefore compact), its continuous image M := τ̂(Σ) is

compact in ∆(M). Moreover, recall that E•[v̂0] :M→ R is upper semi-continuous (Kamenica and

Gentzkow, 2011). Hence, it achieves a maximum τ ∗ ∈ M. Finally, by construction, it follows that

π∗ ∈ arg maxπ∈Π v̂(π) if τπ∗ = τ ∗, implying that there exists an optimal signal.

A.3. Proof of Proposition 2: Value of isometric channels

Take an arbitrary permutation matrix R. Then it suffices to prove that both PR and RP yield the

same value as P . Since R is a permutation matrix, there exists some bijection ρ : {1, . . . , K} →
{1, . . . , K} that associates each row with the column where 1 appears, i.e., if ρ(k) = ` then Pk,` = 1.

Step 1. Let Q = PR, i.e., Q is obtained by permuting the columns of P . In particular, the k-th
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column of P is the ρ(k)-th column of Q. Then, for every π ∈ Π and every µ ∈ ∆(Ω),

τ pπ(µ) =
K∑
k=1

p({t ∈ S : µt = µ}|sk)E0[π(sk|·)]

=
K∑
k=1

q({t ∈ S : µt = µ}|sρ(k))E0[π(sρ(k)|·)]

= τ qπ(µ),

where τ pπ and τ qπ are the respective distributions of posteriors for the two channels, when π is chosen

by the sender. Hence, Eτpπ [v̂0] = Eτqπ [v̂0], thus implying v̂∗p = v̂∗q .

Step 2. Let Q = RP , i.e., Q is obtained by permuting the rows of P . In particular, the k-th row

of P is the ρ−1(k)-th row of Q. Now, for an arbitrary π ∈ Π define π̃ ∈ Π by π̃(sk|ω) := π(sρ−1(k)|ω),

and observe that for every π ∈ Π and every µ ∈ ∆(Ω),

τ pπ(µ) =
∑
s∈S

p({t ∈ S : µt = µ}|s)E0[π(s|·)]

=
∑
s∈S

q({t ∈ S : µt = µ}|s)E0[π̃(s|·)]

= τ qπ̃(µ).

Hence, Eτpπ [v̂0] = Eτ̃qπ [v̂0], thus implying v̂∗p = v̂∗q .

B. Proof of Theorem 1: Optimal signal

Proof of (i): Recall that M := {τπ | π ∈ Π}. Then, it is obviously the case that M ⊆ ∆(M).

Therefore, we obtain

v̂∗p = max
π∈Π

v̂(π) = max
τ∈M

Eτ [v̂0] ≤ max
τ∈∆(M)

Eτ [v̂0] = VM(µ0).

Proof of (ii): Obviously, v̂0(µ0) is equal to the sender’s expected utility if she chooses the com-

pletely uninformative signal [µ0] that puts probability 1 to µ0. Hence, by the previous step,

v̂([µ0]) = v̂0(µ0) = VM(µ0) ≥ v̂∗p ≥ v̂(π),

for every π ∈ Π, thus completing the proof.
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C. Proofs of Section 5: Monotonicity

C.1. Intermediate results

Lemma C3. Let P and Q be two doubly stochastic matrices such that P is nonsingular. Furthermore,

let R be some stochastic matrix such that Q = PR. Then, R is doubly stochastic.

Proof. Since P is nonsingular, there exists a square (inverse) matrix B such that PB = BP = I,

where I is the identity matrix. ByBP = I it follows that
∑K

k=1 Bn,kPk,n = 1 and also
∑K

k=1 Bn,kPk,m =

0 for all m 6= n. Thus, using the fact that P is doubly stochastic, we obtain

1 =
K∑
m=1

K∑
k=1

Bn,kPk,m =
K∑
k=1

Bn,k. (C.1)

Now, multiply both sides of Q = PR with B (from the left) to obtain R = BQ, thus implying

Rn,m =
K∑
k=1

Bn,kQk,m. (C.2)

Since R is by hypothesis (row) stochastic, it suffices to prove that the entries of each column sum up

to 1. Indeed,
K∑
n=1

Rn,m =
K∑
n=1

K∑
k=1

Bn,kQk,m =
K∑
k=1

Qk,m = 1, (C.3)

with (C.3) following from (C.1) and the fact that Q is doubly stochastic.

Lemma C4. Let P be isometric to a symmetric matrix P̃ . Then, there is a permutation matrix Ip

such that P̂ := PIp is symmetric, i.e., we can retrieve a symmetric matrix (perhaps other than P̃ )

by only permuting rows.

Proof. By hypothesis there are permutation matrices I1 and I2 such that P = I1P̃ I2. Then, define

the matrix P̂ := I ′2I
′
1P = I ′2P̃ I2, where the transposes I ′1 and I ′2 are also the inverses of I1 and I2

respectively, as these are permutation matrices. Importantly, P̂ is obtained by permuting (only)

columns of P . Finally, by P̃ being symmetric, so is I ′2P̃ I2, and therefore the same is true for P̂ , thus

completing the proof.

C.2. Proof of Theorem 2

Proof of (i): By symmetry both P and Q are doubly stochastic. Moreover, by diagonal dominance

P is nonsingular (Levy-Desplanques Theorem). Hence, by Lemma C3, it follows that R is doubly
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stochastic too. Furthermore, by Lemma C4, there exist permutation matrices Ip and Iq such that

P̂ := PIp and Q̂ := QIq are symmetric. Define R̂ := I ′pRIq, to obtain

Q̂ = QIq = (PIp)(I
′
pRIq) = P̂ R̂. (C.4)

Since R is doubly stochastic, so is R̂. Therefore, every column of Q̂ can be written as a convex

combination of columns of P̂ . Formally, there is some (α1, . . . , αK) ∈ RK
+ with

∑K
k=1 αk = 1, such

that for every ` ∈ {1, . . . , K},

Q̂`,k =
K∑
k=1

αkP̂`,k. (C.5)

Since P̂ and Q̂ are symmetric, every column vector is also a row vector in each of them. Hence, every

row of Q̂ can also be written as a convex combination of rows of P̂ . Formally,

Q̂k,` =
K∑
k=1

αkP̂k,`. (C.6)

Therefore, every extreme point of Σq̂ belongs to Σp̂, and thus obviously Σq̂ ⊆ Σp̂, implying v̂∗q̂ ≤ v̂∗p̂.

Finally, since P and Q are isometric with P̂ and Q̂ respectively, we obtain v̂∗q = v̂∗q̂ ≤ v̂∗p̂ = v̂∗p.

Proof of (ii): Let Tp and Tp be the partitions of S induced by p and q respectively.

We will first show that, p � q if and only if |Tp| ≥ |Tq|. Sufficiency is trivial. Indeed, if |Tp| ≥ |Tq|
then take a surjective mapping ρ : Tp → Tq. For an arbitrary s ∈ S, let T (s) := {t ∈ S : if s ∈ Tp ∈
Tp and t ∈ Tq ∈ Tq then ρ(Tp) = Tq}. Then, define r(t|s) := 1/|T (s)| for every t ∈ T (s) and every

s ∈ S. Obviously, r is a stochastic matrix thus proving that |Tp| ≥ |Tq| implies p � q. So let us turn

to necessity. By definition there is some channel r such Q = PR. Assume that there are T1, T2 ∈ Tq
such that r(T1|T0) > 0 and r(T2|T0) > 0 for some T0 ∈ Tp. Then, by q being partitional, there is

some T ∈ Tq such that T1 ∪ T2 ⊆ T . Hence, each T0 ∈ Tp can be associated (via r) with at most one

T ∈ Tq, implying that there is a surjection from Tp to Tq. Therefore, |Tp| ≥ |Tq|.

By the previous step, p allows for more effective messages than q, implying that Σq ⊆ Σp. Hence,

v̂∗q ≤ v̂∗p, which completes the proof.

D. Proofs of Section 7

D.1. Proof of Proposition 4

We prove the result constructively. First, take µ∗1 = 0.5, µ∗2 = 0.6 and µ∗3 = 0.7 and assume that

v(2) = v(3) = 1. Note that without noise, we are back to the previous case of every voter receiving
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the same message (viz., the realized actual message), and therefore the politician will target approval

by majority (viz., v̂(π0
2) > v̂(π0

3)), as v(2) = v(3). Now suppose that ε = 0.1. Then, for each

signal π ∈ {πε2, πε3}, a common actual message s ∈ S is drawn, and three (perhaps different) effective

messages are independently drawn from p(·|s), one for each voter. For notation simplicity and without

loss of generality, let s1 be the effective message that yields the good posterior and s2 be the effective

message yielding the bad posterior. When πε2 is chosen, the total probability of the proposal receiving

at least two votes (which is in fact equal the probability of receiving exactly two votes) becomes

P ε
2 = πε2(s1)(1− ε)2 + πε2(s2)ε2,

where πεi (s) = (πεi (s|ω1) + πεi (s|ω2))/2 for each s ∈ S and each i ∈ I. On the other hand, when πε3 is

chosen, the total probability of the proposal receiving at least two votes is equal to

P ε
3 = πε3(s1)

(
3(1− ε)2ε+ (1− ε)3

)
+ πε3(s2)

(
3(1− ε)ε2 + ε3

)
.

Intuitively, when the politician targets approval by majority, she must persuade 1 and 2. On the

other hand, when she targets approval by unanimity, any coalition of at least two voters would work.

Then simple algebra reveals that P ε
2 ≈ 0.66 and P ε

3 ≈ 0.67, implying v̂(πε2) < v̂(πε3), which completes

the proof.

D.2. Proof of Proposition 5

Let us first prove that for every signal π, the receiver does not update his prior upon observing the

message o. Indeed, for every ω ∈ Ω,

µo(ω) =
µ0(ω)

(
δπ(g|ω) + δπ(i|ω)

)∑
ω′∈Ω µ0(ω′)

(
δπ(g|ω′) + δπ(i|ω′)

) = µ0(ω).

Hence, upon observing o the judge will always acquit the defendant, regardless of the signal, and the

prosecutor will receive v̂0(µ0). This will happens with probability δ.

Then, we prove that for every signal π, the receiver’s posterior given the effective message s ∈
{g, i} is equal to the posterior that he would have formed under π in the noiseless game. Indeed, for

every ω ∈ Ω and every s ∈ {s, i},

µs(ω) =
µ0(ω)(1− δ)π(s|ω)∑

ω′∈Ω µ0(ω′)(1− δ)π(s|ω′)
= µs(ω).

Note that some s ∈ {g, i} will be observed by the receiver with probability 1 − δ, thus completing

the proof.
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E. Supplementary material

E.1. Additional results

Proposition E1. For each channel q : S1 → ∆(S2) with q(s2|s1) ∈ Q for all s1 ∈ S1 and s2 ∈ S2,

there exist two partitional channels p : S → ∆(S) and r : S → ∆(S), such that q is obtained by

combining p and r, i.e., fomally, q is a garbling of p via r.

Proof. Define the partition S2 of S2 by bundling together messages that yield the same posterior

belief for every signal under q, and let K1 :=
∏

U2∈S2 |U2|. Then, define K := |S1|K1, and take

S := {s1, . . . , sK}. Now, define the partition T1 by splitting S into |S1| subsets with K1 messages

in each one of them. Each T1 ∈ T1 corresponds to one s1 ∈ S1. Then, construct a second partition

T2, containing |S2| subsets of S. Each T2 ∈ T2 corresponds to one s2 ∈ S2. Specifically, the subset

T2 ∈ T2 that corresponds to s2 will contain q(s2|s1)K1 elements of the T1 ∈ T1 that corresponds to

s1 ∈ S1. Then, let p and r be the partitional channels characterized by T1 and T2 respectively, thus

completing the proof.

Proposition E2. p � q if and only if v̂∗p ≥ v̂∗q for every pair of aligned utility functions u = v.

Proof. The proof is a direct application of Blackwell’s Theorem (e.g., see Blackwell, 1951, 1953;

Perez-Richet, 2016). In particular, similarly to our setting, let Ω be a finite state space, µ0 ∈ ∆(Ω)

be a prior, S be a finite set of messages, A be a compact set of actions and u : A × Ω → R be a

continuous utility function. An experiment is a function σ : Ω→ ∆(S). The value of an experiment

is given by

V (σ, u) := max
{
φ ∈ R : there is c : S → A such that φ =

∑
s∈S

E0[σ(s|·)u(c(s), ·)]
}
.

Then, Blackwell’s Theorem states that for two experiments σ1, σ2 it is the case that, σ1 � σ2 if and

only if V (σ1, u) ≥ V (σ2, u) for every utility function u. Now turning back to our case notice that

whenever u = v, it is the case that

v̂∗p = max
π∈Π

V (π ◦ p, u)

Therefore, by Blackwell’s Theorem, p � q is equivalent to V (π ◦ p, u) ≥ V (π ◦ p, u) for all π ∈ Π,

which in turn is equivalent to v̂∗p ≥ v̂∗q .

Proposition E3. For diagonally dominant channels p and q, if p ∼ q then v̂∗p = v̂∗q .

Proof. By p � q and q � p, there are channels r1 and r2 such that PR1 = Q and QR2 = P . Right-

multiply both sides of the first equation by R2 and of the second one by R1, to obtain P (R1R2−I) = 0
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and Q(R2R1−I) = 0. Since P and Q are diagonally dominant, they are both invertible (by the Levy-

Desplanques Theorem), implying that R1R2 = R2R1 = I, and therefore R2 = R−1
1 . Since R1 and R2

are stochastic matrices, they are permutation matrices (Mailath and Samuelson, 2006). Therefore,

p and q are isometric. Hence, by Proposition 2, the respective values are equal, i.e., v̂∗p = v̂∗q .

E.2. Examples and applications revisited

E.2.1. Monotonicity: Example 2

Recall the two partitional channels p and r, respectively characterized by the partitions

Tp =
{
{s1, . . . , s10}︸ ︷︷ ︸

T1

, {s11, . . . , s20}︸ ︷︷ ︸
T2

}
,

Tr =
{
{s1, s2, s11, s12, s13}︸ ︷︷ ︸

T ′1

, {s3, s4, s5, s14, . . . , s18}︸ ︷︷ ︸
T ′2

, {s6, . . . , s10, s19, s20}︸ ︷︷ ︸
T ′3

}
.

The channel p is effectively equivalent to a noiseless channel with two messages, T1 and T2. Intuitively,

for each signal π : Ω → ∆(S) the distribution of posteriors τπ depends solely on the probability

π(T |ω), and not on how π(·|ω) is distributed across messages in T ∈ Tp, i.e., formally, if π(T |ω) =

π′(T |ω) for all T ∈ Tp and all ω ∈ Ω, then τπ = τπ′ . Hence, the sender can only achieve binary

distributions of posteriors, implying that without loss of generality we can simply write π : Ω →
∆(Tp). On the other hand, when we mix p with r, the induced channel q is not partitional. In

fact, q is essentially equivalent to a channel with different input and output message space, viz., Tp
and Tr respectively. Intuitively, it is still the case that the distributions of posteriors are identified

by π : Ω → ∆(Tp). However, when T ∈ Tp is realized, the receiver observes each T ′ ∈ Tr with

probability r(T ′|T ) = |T ∩ T ′|/|T |. Hence, the sender’s distribution of posteriors can put positive

probability to three posteriors, one for each T ′ ∈ Tr. Indeed, there is a signal π such that the receiver

forms a different posterior for each T ′ ∈ Tr under q (see Example 2). In particular, τπ puts positive

probability to µq1 = ( 4
21
, 7

21
, 10

21
), µq2 = (2

8
, 3

8
, 3

8
) and µq3 = (10

21
, 7

21
, 4

21
). Crucially, there is no λ ∈ R such

that µq2 = λµq1 + (1−λ)µq3, i.e., the three posteriors are not collinear, implying that µ0 belongs to the

interior of the convex hull of these posteriors. Therefore, under p, at most one of these posteriors

will occur with positive probability. Hence, by the fact that v(µ) = 1 for each µ ∈ {µq1, µ
q
2µ

q
3} and

v(µ) = 0 otherwise, it follows that her expected utility under any Bayes-plausible binary distribution

will be lower than the one she achieves when these three posteriors receive probability 1. Thus, q

yields a higher value than p.
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E.2.2. Persuading biased receivers: Conservatism bias

Recall our motivating prosecutor-judge example. Consider the message space S = S1 × S2, where

S1 := {g, i} is the verbal part of the message and S2 := {s1, . . . , sM} is the non-verbal part. The

verbal part encodes the experimental outcomes, whereas the non-verbal part encodes cues that are

unintentionally used by the prosecutor, e.g., how trustworthy the prosecutor appears to be in front

of the judge. We now consider two partitional channels q and r which are essentially combined into

p. The channel q bundles together all the messages with the same verbal part, i.e., the corresponding

partition is T1 = {Tg, Ti} with Tg = {g} × S2 and Ti = {i} × S2. The channel r is associated with

the partition T2 = {T0, T1, T2} where T0 := {g, i} × {s1, . . . , sm}, T1 := {g} × {sm+1, . . . , sM} and

T2 := {i} × {sm+1, . . . , sM}, i.e., when a non-verbal part in {s1, . . . , sm} ⊆ S2 is realized, the judge

fails to distinguish between g and i. This is for instance the case when {s1, . . . , sm} corresponds to

the non-verbal messages that make the prosecutor look non-trustworthy. In other words, we identify

the message space {o, g, i} of p with the partition T2. Then, δ = m/M .

Recall that by Proposition 5, the value of the optimal signal is decreasing in δ, implying that the

sender prefers the verbal parts to be taken into account. The interpretation is straightforward and

quite intuitive, viz., messages that appear unreliable are harmful for the sender. Indeed, it is harder

to persuade people when they do not trust you. The latter explains why lawyers and politicians

typically try to appear trustworthy in front of judges and their electorate respectively.

References

Aliprantis, C. & Border, K. (1994). Infinite dimensional analysis. Springer Verlag, Berlin.
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