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Abstract

We study the optimal targeting problem of a firm that seeks to maximize the diffusion of a

product in a society where agents learn from their neighbors. The firm can seed the product

to a subset of the population and our goal is to find which is the optimal subset to target. We

provide a condition that characterizes the optimal targeting strategy for any network structure.

The key parameter in this condition is the agents’ decay centrality, which takes into account

how close an agent is to others, in a way that distant agents are weighted less than closer ones.
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1. Introduction

The role of influential agents in the diffusion of products and ideas has been subject to extended

research in several different fields (see for example Domingos and Richardson, 2001; Kempe et al.,

2003, 2005; Galeotti and Goyal, 2009; Kirby and Marsden, 2006, and references therein). Recent

technological advances have made possible the collection of previously unobservable data related

to particular individual characteristics. Based on such observations, researchers, firms and other

interested parties are able to identify the structure and the kind of social interactions between the

members of a society.

Observing these interactions is particularly useful for firms that want to determine effective

targeting strategies at the individual level, attempting to maximize the spread of their products in a

market. Given that targeting agents is costly, the effective selection of targets becomes crucial. The

targeting problem becomes even tougher because the firms may not be know ex–ante the relative

quality of their product (compared to those of their competitors). This is a commonly observed issue,

since it is normal that a firm can determine the level of satisfaction of the consumers only after the

product has been circulated in the market. There are several other economic examples that motivate

the study of this problem. Some of them are for instance the diffusion of agricultural technologies in

rural areas, or the entry of a computer software or a mobile phone in a new market.

In this paper, we want to identify the optimal targeting strategy of a firm that is ex–ante uncertain

about the relative quality of its product, while the agents learn the quality of a product as soon as they

have observed someone consuming it. In an environment where agents choose repeatedly between

two alternative products, if the product is of higher quality than its alternative, then it will get

diffused to the whole population; hence the firm would like diffusion to occur as fast as possible. To

the contrary, if the product is of lower quality, then it will survive only for a finite number of periods,

and in particular until every agent has observed the alternative at least once. Therefore, the firm

would like to protect the early consumers of the product from observing the alternative. It turns out

that the most important parameter for identifying the optimal targets is agents’ decay centrality,

which is a measure of centrality that takes into account how close an agent is to others, but in a way

that very distant agents are weighted less than closer ones (see Jackson, 2008).

To the best our knowledge, this is the first paper that characterizes completely the targeting

strategy for a firm that is able to target multiple agents, allowing for any network structure and

relative patience of the firm.
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1.1. Setting and Results

We consider two interested parties, from now on called the firms A and B, who seek to maximize

the diffusion of two competing actions, from now on called products A and B respectively, in a social

network with finitely many agents. Both firms introduce their products to the market simultane-

ously using fixed advertising budgets. We focus on the case where only firm B allocates its budget

strategically.

In particular, firm A employs a uniform advertising strategy that makes every agent aware of

its product. One can think of this as advertising the product on television or social media etc. To

the contrary, firm B advertises its product to a strategically targeted subset of the population. The

aim of this paper is to characterise the optimal targeting strategy of firm B. Targeting intensity is

assumed to be such that every agent who gets targeted by firm B is convinced to choose its product

once, whereas the rest of the agents are convinced to choose product A once. In addition to this,

both products are considered to be sufficiently useful to the agents, so that each of them consumes

one unit of either of them in each period thereafter.

After the targeting phase, the agents choose repeatedly between products A and B and they

observe the qualities of the products chosen by themselves and by their immediate neighbors. The

agents choose the product that they have observed to be of higher quality –a comparison that is

possible only after having observed both products being chosen within their neighborhood–. The

quality of each product remains unchanged throughout the process; therefore the agents may revise

their choice only the period after they have observed both products for the first time. They do not

revise earlier because they are have not observed the quality of the alternative and they do not revise

later because they already know which product is of higher quality.

The analysis covers the case where firm B is ex–ante uncertain about whether its product is the

one of higher quality and has just some limited information that determines the probability that this

is the case. Therefore, the diffusion of its product is uncertain and the targeting strategy has to be

designed taking this factor of uncertainty into account. In practice, this information is related to the

relative performance of the product and the level of satisfaction of the consumers, which cannot be

known to the firm unless both product have already been circulated.

We provide a necessary and sufficient condition that characterizes the optimal targeting strategy

for any network structure. More specifically, in the particular case that the firm can target only

one agent, then it is optimal to target the agent with the maximum decay centrality. In the general

case where the firm can target a larger subset of the population the optimal strategy combines two

features: On the one hand, it should intend to maximize the decay centrality of the set of targeted
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agents, so as to capture the population quickly in case the product is of higher quality. On the other

hand, it should intend to minimize the decay centrality of the targeted set’s complement, so that the

product survives as long as possible if it is of lower quality. If the firm is extremely impatient, then

decay centrality coincides with degree centrality, whereas if the firm is extremely patient then decay

centrality coincides with closeness.

Given that decay centrality is a measure that depends crucially on the exact network structure,

we study separately the case of the circle as an attempt to provide a more intuitive picture of this

measure. In this case, we identify the shape of the targeted set, which should consist of one large

group of connected agents and several small ones spread uniformly around the network. The exact

number of groups depends on the particular characteristics of each environment and for this reason

we provide some partial results and numerical examples. In particular, if the firm is sufficiently

optimistic about the product, then it prefers to spread the targeted agents as uniformly as possible

around the society; whereas if the firm is sufficiently pessimistic, then it prefers to concentrate all

the targeted agents together. This result is true for any level of patience and thus it is in partial

contrast with settings where the agents cannot learn the true quality of the products (see Tsakas,

2014).

1.2. Related Literature

The problem of diffusion of innovations has been studied very extensively and from different perspec-

tives (see Jackson, 2008; Goyal, 2007; Vega-Redondo, 2007; Peyton Young, 2009). This interest has

led to an extended literature dealing with optimal influence in networks, which focuses on different

network structures and behavioral rules (see Galeotti and Goyal, 2009; Chatterjee and Dutta, 2011;

Goyal and Kearns, 2012; Tsakas, 2014; Campbell, 2013; Ortuño, 1993). The particular problem of

optimal targeting has also been explored in marketing1 and computer science research (see Kempe et

al., 2003, 2005). A general finding is that computing a set of nodes to optimize diffusion is generally

a hard problem, which is a potentially limiting hurdle in terms of implementing the methods outlined

here.

A common denominator among most of the results is that optimal seeds are characterized by some

form of centrality, defined in each context analogously. In what might be the most closely related

paper (in terms of the setup) Banerjee et.al (2013) define the measures of “communication” and

“diffusion” centrality, which are based on probabilistic transmission from one person to another. This

1There is a long literature starting from Bass (1969) focusing on diffusion in marketing and network targeting. For

instance see also Bell and Song (2007).
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implicitly defines a decay to the level of diffusion, given that the further a node is from the seed, the

less likely is to be affected. In the current setup instead, transmission is perfect, and so the “decay”

parameter actually arises from the discounting of profits rather than the probabilistic transmission.

This difference provides a new perspective that is interesting for two reasons. First, because decay

centrality, contrary to communication centrality (and other similar probabilistic measures) is based on

shortest paths, rather than on multiple probabilistic paths. Therefore, it provides a new foundation

for decay centrality relative to the previous discussion regarding its original definition (mainly an

alternative to closeness centrality). Second, it is based on the discounted time to reach various nodes,

rather than the expected reach of a diffusion process.

In broad terms, our paper studies a similar question to Galeotti and Goyal (2009) and Goyal and

Kearns (2012). Galeotti and Goyal (2009) study the maximization problem of a firm that seeks the

diffusion of its product in a society, under word–of–mouth communication and social conformism.

Apart from the different structure, the analysis focus exclusively on the short–run strategies and

on the degree distribution of the agents, assuming that agents meet randomly. To the contrary, we

provide a general analysis for any network and different levels of firm’s farsightedness. Similarly,

Goyal and Kearns (2012) study competition between two firms that distribute resources in order to

maximize the long–run diffusion of a product in a society. The authors focus more on the efficient

allocation of resources and on the effect of budget asymmetries on the equilibrium allocations.2

In a more closely related paper, Chatterjee and Dutta (2011) analyze a similar question to ours as

well, however in their framework the firm knows exactly the quality of the product and the agents are

either completely naive, in the sense that they adopt the product as soon as they observe it, or fully

rational bayesian maximizers. Nevertheless, in their paper one of the parameters that is crucial for

the identification of optimal targeting strategies is the decay centrality of the agents, which turns out

to be the case also in this paper. The most closely related paper is the one of Tsakas (2014), where it

is analyzed a similar problem of targeting agents. The main difference is that uncertainty regarding

the quality of the product persists forever, leading the agents to revise their choices repeatedly. This

absence of learning leads to significant changes in the optimal targeting strategies.

In a more general framework, our work builds upon the study of learning from neighbors,(see

Banerjee, 1992; Banerjee and Fudenberg, 2004; Bala and Goyal, 1998; Chatterjee and Xu, 2004;

Ellison and Fudenberg, 1993, 1995; Gale and Kariv, 2003) where most of the papers focus mainly

conditions under which efficient actions spread to the whole population and not on optimal influence

strategies. Large part of this literature, including the present paper, assumes that agents adopt

2There is a growing literature on competitive strategic influence focusing on a number of different environments,

see for instance Bimpikis et al. (2015); Chasparis and Shamma (2001); Grabisch et al. (2015); Fazeliy et al. (2015).
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simple behavioral rules; an assumption that is also supported by a recent but growing empirical

literature (see Apesteguia et al., 2007; Conley and Udry, 2010; Bigoni and Fort, 2013).

2. Model

2.1. The Network

There is a finite set of agents N , who are connected through a social network. The set has cardinality

n, typical elements i and j and is mentioned as population of the network or market. A social network

is represented by a family of sets N := {Ni ⊆ N | i = 1, . . . , n}, with Ni denoting the set of agents

who can observe and be observed by i. Throughout the paper Ni is called i’s neighborhood and

is assumed to contain i.3 Its cardinality, |Ni|, is called i’s degree and the agents who belong to

Ni are called i’s neighbors. In the present setting, the network structure describes the channels of

communication in the population and does not impose strategic interactions. More specifically, each

agent i ∈ N observes the choices and their associated outcomes of all j ∈ Ni. We focus on undirected

networks, where j ∈ Ni if and only if i ∈ Nj, nevertheless with appropriate modifications the results

for directed networks would look very similar.

A path between agents i and j is a sequence i1, ..., iK such that i1 = i, iK = j and ik+1 ∈ Nik

for k = 1, ..., K − 1. The geodesic distance, d(i, j), between two agents is the length of the shortest

path between them. More generally, the geodesic distance, d(T, j), between a set of agents T and

an agent outside of the set, j ∈ TC := N \ T , is defined as the minimum among all the distances

between some agent i ∈ T and agent j ∈ TC , i.e. d(T, j) := min
i∈T

d(i, j). 4

We say that two agents are connected if there exists a path between them. The network is

connected if every pair of agents is connected. We focus on connected networks, nevertheless for

disconnected networks the analysis would be identical for each of their connected components.5

2.2. The Problem

There are two firms that produce products A and B. With some abuse of notation we use the

same name to refer to the firms and to the products that they produce. The two firms introduce

3This assumption is not usual, however in this setting it is necessary since Ni describes the set of agents whose

choices can be observed by i. Therefore, since it is reasonable to assume that one can observe her own choices, she

should be contained in her own neighborhood.
4Throughout the paper, TC denotes complement of T .
5A connected component is a non-empty sub-network N ′ such that (i) N ′ ⊂ N , (ii) N ′ is connected and (iii) if

i, j ∈ N ′ and j ∈ Ni, then j ∈ N ′i .
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their products simultaneously to a new market using fixed advertising budgets that are determined

exogenously. We focus on the case where only firm B allocates this budget strategically. For this

reason, throughout the paper unless stated explicitly, whenever we mention “the firm” we refer to

firm B.

In particular, firm A allocates its budget uniformly to the whole population, thus making every

agent aware of its product. An example of such strategy could be a firm that advertises the product

on television or social media etc. To the contrary, firm B targets a subset of the population to

advertise the product to, i.e. T ⊂ N with cardinality t ≤ n which is determined exogenously. We

assume that targeting intensity is such that every agent who gets targeted by firm B is convinced

to choose its product once, whereas the rest of the agents are convinced to choose product A once.

Moreover, both products are of sufficiently high quality, so that each agent consumes one unit of

either of them in each period thereafter.

More specifically, targeting occurs at τ = −1, at τ = 0 each agent consumes product B if she has

been targeted and product A otherwise. After that, in each period τ = 1, . . . , each agent consumes

one unit of either product A or B, whichever of the two she has observed to be of higher quality.

The relative qualities of the two products are ex–ante unknown to the firms, therefore firm B has

to condition its targeting strategy on this factor of uncertainty. Uncertainty is summarized in one

parameter that determines the probability of product B being of higher quality than product A,

i.e. p := P[qB − qA ≡ ∆q > 0] ∈ [0, 1]. Our results cover also the limiting cases where there is no

uncertainty regarding the relative qualities.

The objective of firm B is to target the subset of the population that will maximize the discounted

expected total consumption, from now on called sales, of its product. We refer to this as optimal

targeting strategy of the firm. Formally, let T be the collection of subsets of N with cardinality t

and Sτ (T |∆q) be the firm’s sales function, in period τ , for a targeting strategy T ∈ T and given

the relative quality ∆q. Therefore, the firm seeks the targeting strategy T ∈ T that maximizes the

following payoff function:

Π(T ) := E∆q

[
+∞∑
τ=1

δτ−1Sτ (T )

]
= p

+∞∑
τ=1

δτ−1Sτ (T |∆q > 0) + (1− p)
+∞∑
τ=1

δτ−1Sτ (T |∆q < 0)

We intentionally refrain from introducing prices in the model, since the focus of the paper is on

studying optimal strategies related to the position of agents within a social network. Needless to say

that it would be a very interesting extension to see the extent to which pricing strategies could be

combined with targeting in the development of a complete advertising strategy.

We still need to define how agents choose which product to consume from period τ = 1 onwards.

First, it is important to note that despite the fact that the agents are initially aware of either
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only product A or both products A and B they do not know their qualities. This is a reasonable

assumption since advertising focuses on convincing a consumer to purchase a product, not necessarily

explaining in depth its actual features. This is where the role of the social network comes into play.

Each period, the agents observe the products chosen by their neighbors (and themselves of course),

as well as their qualities. Therefore, upon observing both products, they are able to compare them

and choose the one they have observed to be of higher quality.

Notice that, as long as no one in their neighbourhood has ever chosen the alternative product

they stick to their initial choice. The first time they observe both products they decide whether to

switch or not and they make the same choice from the next period onwards. Hence, in this setting,

despite the fact that they are allowed to switch as many times as they want, they end up switching

at most once.

One might argue how is it possible that the consumers are able to identify the relative qualities

immediately upon observing both products, while the firms could not do so before spreading them

to the market. There is a number of reasons why this might be the case. For example, it is a

common practice for firms to refrain from announcing all the features of their new products before

circulating them, exactly in order to hide crucial information from their competitors. Furthermore,

for particular products relative quality might be related with compatibility issues, which cannot be

easily determined before the circulation of both products. For instance, consider two competing

computer softwares that it turns out that one is able to run files created in both of them, while

the other one is not. Once again, in this case a firm might not be able to have this information

beforehand.

These arguments might raise incentives to the firms to wait for the entrance of their competitor

before entering the market. Nevertheless, such incentives would be similar for both firms, leading

them to take a strategic decision of optimal entry time. This is another interesting extension, that

lies outside the scope of the paper. In any case, our analysis is also able to capture the extreme

cases where the firms know exactly the relative qualities of their products and there is no uncertainty

during targeting.

As it becomes apparent, there are two opposite forces that will be driving the results. On the one

hand, if product B is of higher quality then it will be diffused with certainty to the whole population

after a finite number of periods. Hence, given the presence of discounting, the firm would like to

capture the whole population as quickly as possible. On the other hand, if its quality is lower, then

it will unavoidably disappear after finitely many periods. In this case, the firm would want to make

the product survive for as many periods as possible.
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3. Results: Targeting only one agent

First, we study the case where firm B can target only one agent. In this case, it is apparent that

if the product is of lower quality then the payoff of the firm is zero, irrespectively of the targeting

strategy. Therefore, the firm focuses on maximizing the discounted sum of sales in case the product

is of higher quality. The parameter that determines the optimal targeting strategy is the decay

centrality of the agents, which is defined as follows (Jackson, 2008):

Definition 1. Consider a decay parameter δ ∈ (0, 1). The decay centrality of an agent i ∈ N is

defined as
∑
j 6=i

δd(i,j).

In the current setting the decay parameter δ coincides with the discount factor of the firm and d(i, j)

is the geodesic distance between agents i and j. It is the same kind of centrality that determines the

optimal targeting strategy in Chatterjee and Dutta (2011), despite the fact that the settings differ

significantly. Intuitively, this is a measure of centrality that takes into account how close an agent

is to others, but in a way that very distant agents are weighted less than closer ones. In a sense, it

captures how quickly a product of high quality can become visible to the whole population. Agents

with high decay centrality are expected to be those who combine a higher number of neighbors

with a small geodesic distance from the most isolated agents in the network. The following theorem

characterizes the optimal strategy for a firm that targets only one agent (t = 1).

Theorem 1. For all (δ, p) ∈ (0, 1)2, the optimal strategy for the firm is to target the agent i ∈ N
with the maximum decay centrality.

All proofs can be found in the Appendix.

Notice that the exact optimal strategy depends on the structure of the network and it cannot be

easily identified for general networks. As it is also mentioned by Chatterjee and Dutta (2011), this

is easily identified in simple structures such as the star, where the center is the optimal target, and

the line where the median is the one maximizing decay centrality.

An obviously crucial parameter is the value of the discount factor δ. Intuitively, the lower the

value of δ the more important becomes the degree of the targeted agent. If δ gets very close to 0,

then the firm cares only about the payoff of the first period, which comes from the sales to agents

who have geodesic distance equal to one from the targeted agent. Hence, it is optimal to target

the agent with the maximum degree. This result is formally stated in the following corollary, whose

proof is omitted, since it follows directly from the proof of the theorem.

Corollary 1. If δ = 0, then the optimal strategy for the firm is to target the agent i ∈ N with the

maximum degree, |Ni|.

8



Notice that, this is also true for positive, but sufficiently small values of δ.

In the other extreme case where δ = 1 the result is not that obvious. First, observe that the

payoffs of the firm become infinitely large irrespectively of the targeting strategy. Nevertheless, we

can determine which will the optimal targeting strategy by considering the differences in payoffs

between alternative strategies, despite the fact that these differences will only be finitely large. In

order to obtain a formal result we should slightly modify the original objective function of the firm

in the following way: Consider that the firm cares equally about the expected sales of the next P

periods, i.e. Π(T ) = E∆q

[
P∑
τ=1

Sτ (T )

]
, P can be any finite number, as long as it is sufficiently large

to ensure total diffusion for some targeting strategy.6 As long as P is sufficiently large the difference

in payoffs generated by different targeting strategies remains unchanged and for P being finite this

difference is not negligible. It turns out that in this case the optimal strategy for the firm is to

target the agent with the maximum closeness (or equivalently the minimum farness), which are both

formally defined below.

Definition 2. The farness of an agent i ∈ N is defined as the sum of the geodesic distances from

each other agent in the network, i.e.
∑
j 6=i

d(i, j), and its closeness is defined as the inverse of the

farness.

Proposition 1. If δ = 1, then in the modified problem the optimal strategy for the firm is to target

the agent with the maximum closeness (or equivalently with the minimum farness).

In the following section, the introduced concepts are extended to cases where the firm can target

several agents, rather than a single one. As we will see below, the results are slightly modified, but

the intuition remains similar. An important feature is that the agents who belong to the optimal

targeted set might be different from those who would be optimal as individual targets.

4. Results: Targeting several agents

The problem becomes more complicated if the firm targets several agents. In this case, we can no

longer ignore the payoffs of the firm when the product is of lower quality. This happens because

when the firm can target many agents, it can distribute them in such a way that some of them do

not observe the quality of the alternative product immediately, because none of their neighbors uses

it initially. Before proceeding to the formal statement it is necessary to slightly modify the previous

6For this to happen it suffices that P is larger than the value of the largest geodesic distance between any two

agents in the network, which is usually called diameter of the network.
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definitions, so as to be adequate for groups of multiple agents. The generalized definitions are based

on Everett and Borgatti (1999). Recall that, the geodesic distance between a group of agents T

and an agent j /∈ T is defined as the minimum distance between some agent i ∈ T and agent j.

Namely, d(T, j) := min
i∈T

d(i, j). Also, T denotes the collection of subsets of N with cardinality t and

TC = N \ T is the complement of T .

Definition 3. The group degree of a set T ∈ T , denoted by |NT |, is defined as the number of agents

not belonging to T who have at least one neighbor in T , or equivalently the cardinality of the union

of neighborhoods of all agents in T , i.e. |NT | :=
∣∣∣∣ ⋃
i∈T

Ni

∣∣∣∣.
The importance of an agent’s degree lies in the fact that many others observe its actions. When

targeting multiple agents, what is important is the total number of agents that can observe at least

one of the targeted agents. Therefore, the parameter of interest is not the sum of neighbors of all

targeted agents per se, but the sum of different agents who are directly connected with some agent

in the targeted set.

Definition 4. The group farness of a set T ∈ T is defined as the sum of the distances between T

and each other agent outside T , i.e.
∑
j∈TC

d(T, j). Its group closeness is defined as the inverse of the

group farness.

The definition is totally analogous to the case of one agent, taking into account that the focus

now is on the necessary steps to reach an agent outside the set starting from any agent in the set.

Definition 5. Consider a decay parameter δ ∈ (0, 1). The group decay centrality of set T ∈ T is

defined as
∑
j∈TC

δd(T,j).

This definition is a generalization of decay centrality. Given that the focus is on sets of multiple

agents, the important parameters are the lengths of shortest paths that start from some agent inside

the set and end at any agent outside it. Intuitively, this means that the aim of a targeting strategy

is to affect the number of periods needed before every agent learns the quality of both products.

Ideally, this number should be minimized in case the product is of higher quality and be maximized

otherwise.

Theorem 2. For (δ, p) ∈ (0, 1)2, among all T ∈ T (subsets of N with t agents) the optimal strategy

is to target the set that maximizes the following expression:

p
∑
j∈TC

δd(T,j) − (1− p)
∑
i∈T

δd(TC ,i)
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The above expression is very intuitive and the idea is similar to the case with only one targeted

agent. In words, the firm seeks to target the set that maximizes a linear combination of two opposite

features: On the one hand, the firm wants to maximize the group decay centrality of the targeted

set, so as to capture the whole population as quickly as possible in case it is of higher quality. On

the other hand, it wants to minimize the group decay centrality of the targeted set’s complement, so

that the product will survive for as many periods as possible in case it is of lower quality. The level

of importance of each one of the two factors is determined by the probability p of the product being

of higher quality. If the product is very likely to be better, then the firm cares almost exclusively

about minimizing the number of periods needed for the product to be observed by everyone in the

network. Whereas, if the product is very likely to be bad, then the firm cares about protecting

the targeted agents from observing the alternative product for as many periods as possible. The

following corollaries summarize the results for the extreme values of p and δ. The proofs are omitted

since they follow directly from the objective function of the firm and the proof of Theorem 2. The

trade–off will become even clearer in the following subsection that we analyze the particular case of

the circle network.

Corollary 2. For p = 1, among all T ∈ T the optimal strategy for the firm is to target the set:

• with the maximum group degree, if δ = 0.

• with the maximum closeness, if δ = 1.

• with the maximum decay centrality, if δ ∈ (0, 1).

The above corollary would describe the optimal targeting strategy if we were assuming the agents

to learn the quality of product A in the targeting period; since in that case if product B was of lower

quality they would all switch to product A from period τ = 1 onwards. Once again, we observe that

this captures only a particular case of our setting.

Corollary 3. For p = 0, among all T ∈ T the optimal strategy for the firm is to target the set:

• whose complement, TC, has the minimum group degree, if δ = 0.

• whose complement, TC, has the minimum closeness, if δ = 1.

• whose complement, TC, has the minimum decay centrality, if δ ∈ (0, 1).

Corollary 4. For p ∈ (0, 1), among all T ∈ T the optimal strategy for the firm is to target the set:

• that maximizes p |NT | − (1− p) |NTC |, if δ = 0.

• that minimizes p
∑
j∈TC

d(T, j)− (1− p)
∑
i∈T

d(TC , i), if δ = 1.
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5. Example: The Circle

It has already been mentioned that decay centrality depends much on the exact topology of the

network. In this section, we intend to provide an intuitive image of the set that maximizes decay

centrality in a simple network structure; the circle.7 The fact that all the agents not only have the

same degree, but they are also identical in any measure of centrality provides additional interest to

the results regarding targeting of several agents.8

Before proceeding to the results we need to introduce some more notation. If firm B targets t

agents, then initially the population consists of s agents choosing product A and t agents choosing

product B, where s+ t = n. We call group a sequence of neighboring agents who all choose the same

product and are surrounded by agents choosing the alternative product. The population is formed of

g groups of neighboring agents who choose product A, with sizes {s1, s2, . . . , sg}, where
∑g

k=1 sk = s

and analogously g groups of neighboring agents who all choose product B, with sizes {t1, t2, . . . , tg},
where

∑g
k=1 tk = t.9 We mention these groups as being of type A and of type B respectively.

The numbering of the groups is based on their size in increasing order, s1 ≤ s2 ≤ · · · ≤ sg and

t1 ≤ t2 ≤ · · · ≤ tg. With some abuse of notation we also use s1, s2, . . . , sg and t1, t2, . . . , tg to name

the groups. Our goal is to find the optimal size of all sk and tk for k = 1, . . . , g, their optimal position

(if it matters), as well as the optimal number of groups, g.

In order to avoid unnecessary complications in the calculations (which arise without the gain of

any additional intuition) we assume that every group must have an even number of agents. Formally:

Assumption 1. [A1] si and ti are even numbers for all i ∈ {1, . . . , g}. /

First of all, one should notice that, for a given number of groups, the sizes of groups t1, . . . , tg

are important only when the product is of lower quality, whereas those of s1, . . . , sg only when the

product is of higher quality. This is a direct consequence of Theorem 2 and the fact that all the

agents are positionally identical.

Proposition 2. For a given number of targeted groups, denoted by g, the optimal configuration

satisfies the following conditions:

1. sg − s1 ≤ 2

7In the circle network, each agent has exactly two immediate neighbors; Namely Ni = {i − 1, i, i + 1} for i =

2, . . . , n− 1, whereas N1 = {n, 1, 2} and Nn = {n− 1, n, 1}.
8It is apparent that the decision is trivial when the firm can target only one agent.
9Notice that, the fact that the network is a circle and there exist exactly two products ensures that the number of

groups is the same for both products.
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2. t1 = · · · = tg−1 = 2 and tg = t− 2(g − 1)

Optimal Configuration

Figure 1: The optimal targeting strategy if the firm targets four groups.

The first condition captures the fact that the firm wants to maximize the decay centrality of the

targeted set if the product is of higher quality. This is equivalent saying that the firm wants to make

the product visible to everyone in the population as quickly as possible. Therefore, it locates the

targeted agents in a way such that all groups of type B have almost the same size.10

The second condition captures the fact that the firm wants to minimize the decay centrality of

the complement of the targeted set if the product is of lower quality. That is equivalent saying that it

wants to maximize the number of periods until all the targeted agents have observed the alternative

product. Figure 1 depicts a typical configuration when the number of targeted groups is fixed to

four.

However, the above result assumes the number of groups to be fixed, which need not be the

case. It is still necessary to compare configurations that satisfy the above conditions and consist of

different number of groups. The following two propositions, accompanied by Figures 2 and 3 intend

to clarify this comparison.

Proposition 3. Assume that the firm can only target either one or two groups and that s is a

multiple of 4.11 Then for any (p, δ) ∈ (0, 1)2 it is optimal for the firm to target two groups if and

only if p ≥
(1−δ)

(
1−δ

t
2−1

)
(1−δ)

(
1−δ

t
2−1

)
+(1−δ

s
4 )

2 .

Proposition 3 states that for any level of patience a sufficiently optimistic firm (with p high

enough) would prefer to spread the targeted agents, whereas a sufficiently pessimistic firm (with p

10Ideally, they should all be equally sized, but this may not be possible because of divisibility issues.
11The assumption regarding s is introduced only in order to solve divisibility issues that make the form of the bound

less intuitive. Nevertheless, the results would be very similar if one drops this assumption.
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low enough) would prefer to concentrate them altogether. This result is very intuitive, given that

an optimistic firm cares more about capturing the whole population faster in case the product is of

higher quality, rather than making the product survive for more periods in case it is of lower quality.

Lemma 1. The function f(δ, t) =
(1−δ)

(
1−δ

t
2−1

)
(1−δ)

(
1−δ

t
2−1

)
+(1−δ

s
4 )

2 :

• is increasing in t.

• if t ≤ n/3, is decreasing in δ.

• if t ≥ n/2, is initially decreasing and then increasing in δ.

Lemma 1 provides an intuition about how the incentives of the firm change with different pa-

rameters. First, the more agents the firm can target, the larger becomes the range of probabilities

for which it prefers to target one group. Targeting four additional agents in the same group makes

diffusion occur two periods faster in case the product is of higher quality; whereas doing so when the

agents belong to two different groups makes diffusion occur only one period faster. Therefore, the

marginal benefit from targeting two groups becomes smaller, as t becomes larger.

0.0 0.2 0.4 0.6 0.8 1.0
∆

0.2

0.4

0.6

0.8

1.0

p

t=104

t=84

t=64

t=44

t=24

t=4

Figure 2: Choice between either one or two groups for different values of t, with n = 112. Given t,

the firm prefers two groups over one for all p above the curve.

Before explaining the other two parts of the lemma, one should observe that for very high (low)

values of p having a product of higher (lower) quality is much more likely, hence it is always better

to target two groups (one group) irrespectively of the discount factor. For intermediate probability

values, if t is sufficiently small the product survives only for a few periods in case it is of lower quality
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(even if the firm targets a single group), hence as the firm becomes more patient the potential payoff in

case it is of higher quality becomes dominant for an increasing range of probabilities. The incentives

are not so clear when t becomes sufficiently large, since the additional period that the product can

survive if the firm targets only one group might become the dominant factor for characterizing the

optimal targeting strategy.

Proposition 4. Assume that the firm can target any number of groups g and that s is a multiple of

g!,12 then the optimal strategy for the firm is to target:

• One group if p ≤ min
g≥1

f(δ, t, g)

• The maximum number of groups if p ≥ max
g≥1

f(δ, t, g)

where is defined as f(δ, t, g) =
(1−δ)

(
1−δ

t
2−g

)
(1−δ)

(
1−δ

t
2−g

)
+

[
1−(g+1)δ

s
2(g+1) +gδ

s
2g

]

0.0 0.2 0.4 0.6 0.8 1.0
∆

0.2
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0.6

0.8

1.0

p

One Group

One or Four

Four Groups

Figure 3: Choice of number of groups, given t = 8 and n = 72: (i) One group in the dark grey area,

(ii) Max number of groups in the light grey area, (iii) compare the two in the intermediate area.

This result is in total analogy with the proposition stated for two groups. It says that for

sufficiently high values of p the firm always prefers to target the maximum number of groups, whereas

for low values of p it always prefers to target a single group. The explanation is rather simple; If the

product is very likely to be of higher quality, then the firm cares almost exclusively about capturing

the population quickly, hence it finds optimal to target the maximum number of groups. To the

contrary, if the product is more likely to be of lower quality, then the firm cares about protecting

12The factorial of a number g, is defined as g! = 1 · 2 · · · · · g.
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the product from disappearance for as many periods as possible, hence it finds optimal to target a

single group.

The above results show an interesting contrast with Tsakas (2014), where the patience of the firm

could affect the optimal targeting strategy, given the values of p. In the current setting, we observe

that p is the predominant parameter that determines the optimal number of groups to target. High

values of p are always associated with higher number of groups. Furthermore, for certain values of

t, higher patience is also associated with higher number groups for a larger range of probabilities,

which is again in contrast to the results of Tsakas (2014).

The main reason behind these differences is that in the current setting uncertainty is resolved after

the first period, which makes it easier for the firm to predict the possible histories and condition its

targeting strategy on whichever of them is more likely. To the contrary, in Tsakas (2014) uncertainty

is never resolved, which makes the set of possible histories much larger and the choice of the firm

much more complicated and uncertain. Yet, both environments are able to cover different aspects of

optimal influence under uncertainty, which combined can provide a better understanding that could

be used in particular cases.

6. Conclusion

In this paper, we have analyzed the optimal strategy of a firm who seeks to maximize the diffusion of

a product of uncertain quality in a society. We find that the crucial parameter in the current setup

is the agents’ decay centrality, which takes into account how close an agent is to other agents, but

in a way that very distant agents are weighted less than closer ones.

An important aspect regarding the measure of decay centrality is that it depends vastly on the

exact topology of the network. Until now, the question of identifying agents who maximize decay

centrality in a network has been answered only in very simple network structures. The problem

becomes even harder if we pass from individual decay centrality to group decay centrality. The

systematic study of this problem can shed light to a number of environments where decay centrality

seems to be crucial. Moreover, in the current paper we have focused on the case where only one of

the competing firms targets agents strategically. The analysis of competition in influence strategies

would be a natural extension of this paper.
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A. Mathematical Appendix

Proof of Theorem 1. It is obvious that if the product is of lower quality the sales will be zero

irrespectively of the firm’s targeting strategy. Therefore, we focus on the case that the product is of

higher quality. Observing this, the firm aims to identify T ∈ T that maximizes
+∞∑
τ=1

δτ−1Sτ (T |∆q > 0),

where in this case T consists of all the sets that contain only one agent, since the firm targets only one

agent. Nevertheless, the objective of the firm can be restated slightly differently. Namely, instead

of calculating the number of sales per period, equivalently one could calculate the total sales per

agent of the population. This approach is much simpler, because we know that as soon as an agent

observes the product of higher quality, she consumes it ever after. Therefore, in order to find the

payoff of the firm from each agent, j, of the population is enough to find the number of periods that
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will pass before agent j observes the product. If the firm targets agent i, this number will coincide

with the geodesic distance d(i, j) from i to j. In particular, the payoff of the firm that targets agent

i that comes from selling to agent j will be equal to
+∞∑

τ=d(i,j)

δτ−1 = δd(i,j)−1
+∞∑
τ=0

δτ = 1
1−δδ

d(i,j)−1. The

total payoff of the firm that targets agent i (in case the product is of higher quality) will be equal to

the sum of the previously calculated payoffs, for all j 6= i, that is 1
δ(1−δ)

∑
j 6=i

δd(i,j). Hence, the optimal

strategy for the firm is to target agent i ∈ N so as to satisfy that
∑
j 6=i

δd(i,j) ≥
∑
j 6=k

δd(k,j), for all k ∈ N .

By Definition 1, this is equivalent saying that the optimal strategy for the firm is to target the agent

i ∈ N with the maximum decay centrality.

Proof of Proposition 1. Similarly to the previous result, we restate the payoff of the firm, as being

the sum of payoffs from each agent. If δ = 1 and the product is of higher quality (once again the payoff

is 0 if the product is of lower quality), then the payoff from some agent j ∈ N , when the firm targets

agent i, is equal to 1 in all P periods except of the d(i, j) first ones, because she has not observed

the product yet. Recall that, in the modified version of the problem, P can be any finite number,

as long as it is sufficiently large to ensure total diffusion for any targeting strategy. Therefore, the

total payoff of the firm is equal to Π(T = {i}) =
∑
j∈N

[P − d(i, j)] = nP −
∑
j 6=i

d(i, j). Observe that

the first part of the right hand side does not depend on the targeting strategy. The optimal target,

i ∈ N , needs to satisfy that Π(T = {i}) ≥ Π(T = {k}) for all k ∈ N . This is equivalent saying that∑
j 6=i

d(i, j) ≤
∑
j 6=k

d(k, j) for all k ∈ N . By Definition 2 this means that the optimal strategy for the

firm is to target the agent i ∈ N with the maximum closeness (or equivalently, with the minimum

farness).

Proof of Theorem 2. The proof is similar to that of Theorem 1. We need to determine the payoffs

of the firm in case of the product being of higher or lower quality.

First, if the product is of higher quality then the payoff of the firm is the same as in the case

where it could target only one agent, as long as we substitute the geodesic distance of each agent in

the network from the targeted agent with its distance from the targeted set, d(T, j). This happens

because if the product is of higher quality then the number of periods that is needed before an agent

becomes aware of it is equal to the minimum distance between that agent and someone who has been

targeted. By definition, this is equal to its distance from the targeted set. Therefore, in that case

the payoff of the firm would be equal to 1
δ(1−δ)

∑
j∈TC

δd(T,j).

To the contrary, if the product is of lower quality then only the targeted agents will keep consuming

the product, and this until they observe the alternative product. The number of periods needed

before an agent i ∈ T observed the alternative product is equal to its distance from the complement
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of the targeted set, denoted by TC . Hence, the payoff of the firm from this agent will be equal to
d(TC ,i)−1∑

τ=1

δτ−1 = 1
1−δ [1−δ

d(TC ,i)−1] = 1
1−δ + 1

δ(1−δ)δ
d(TC ,i). The total payoff of the firm will be the sum of

these payoffs for all agents i ∈ T and will be equal to
∑
i∈T

[ 1
1−δ−

1
δ(1−δ)δ

d(TC ,i)] = 1
1−δ t−

1
δ(1−δ)

∑
i∈T

δd(TC ,i),

where t is the number of targeted agents.

Therefore, the expected payoff for the firm will be equal to the following expression:

Π(T ) = p

 1

δ(1− δ)
∑
j∈TC

δd(T,j)

+ (1− p)

[
1

1− δ
t− 1

δ(1− δ)
∑
i∈T

δd(TC ,i)

]
= (1)

=
1

δ(1− δ)

p ∑
j∈TC

δd(T,j) − (1− p)
∑
i∈T

δd(TC ,i)

+ (1− p) 1

1− δ
t (2)

As it becomes apparent the last part of the expression depends only on the size of the targeted

set, therefore the optimal strategy for the firm is to target the set that maximizes the expression:

p
∑
j∈TC

δd(T,j) − (1− p)
∑
i∈T

δd(TC ,i).

Proof of Proposition 2. We first construct the payoffs from two arbitrary groups sj and tj of type

A and type B respectively. A group sj yields no payoff in case the product is of lower quality, since

none of the agents who belong to this group is ever going to use product B. Hence, we can focus on

payoffs in case the product is of higher quality. Notice that, in this group there are two agents who

adopt the product after one period, two agents after two periods, and so on up to two agents who

adopt the product after
sj
2
− 1 periods. This means that the payoff from this group is equal to:

2
1

1− δ
+ 2

δ

1− δ
+ · · ·+ 2

δ
sj
2
−1

1− δ
=

2

1− δ

sj/2∑
i=1

δi−1 =
2

δ(1− δ)

(
δ

1− δ
− δ

sj
2

+1

1− δ

)
=

2(1− δ
sj
2 )

(1− δ)2

. Suppose that sg − s1 ≥ 4 and consider an alternative configuration such that s′g = sg − 2 and

s′1 = s1 + 2. The payoffs from all the other groups are the same. Hence, Π(s1, s2, . . . , sg−1, sg) =

2(1−δ
s1
2 )

(1−δ)2 + 2(1−δ
sg
2 )

(1−δ)2 +
g−1∑
j=2

2(1−δ
sj
2 )

(1−δ)2 and Π(s′1, s2, . . . , sg−1, s
′
g) = 2(1−δ

s′1
2 )

(1−δ)2 + 2(1−δ
s′g
2 )

(1−δ)2 +
g−1∑
j=2

2(1−δ
sj
2 )

(1−δ)2 . We will

show that Π(s′1, s2, . . . , sg−1, s
′
g) ≥ Π(s1, s2, . . . , sg−1, sg) always.

Π(s′1, . . . , s
′
g) ≥ Π(s1, . . . , sg)⇔ 1− δ

s1
2

+1 + 1− δ
sg
2
−1 ≥ 1− δ

s1
2 + 1− δ

sg
2 ⇔

⇔ δ
s1
2 + δ

sg
2 − δ

s1
2

+1 − δ
sg
2
−1 ≥ 0

⇔ (δ
s1
2 − δ

sg
2
−1)(1− δ) ≥ 0

Given that δ ∈ (0, 1), this holds as long as s1 < sg. Therefore, it is optimal to choose sg − s1 ≤ 2.
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The second part of the proposition is proven in an analogous manner. We construct the payoffs

from a group tj in case the product is of lower quality. Observe that in case the product is of higher

quality all initially targeted agents will yield a payoff equal to 1
1−δ irrespectively of the targeting strat-

egy. Each period, two additional targeted agents change to product A, hence the payoff associated

to this group in case the product is of lower quality is equal to:

Πtj = (tj − 2)δ1−1 + (tj − 4)δ2−1 + · · ·+ (tj − tj)δ
tj
2
−1 =

tj/2∑
i=1

(tj − 2i)δi−1 =

= tj

(
1− δ

tj
2

1− δ

)
− 2

(1− δ)2

[(
1− δ

tj
2

)
− tj

2
δ

tj
2 (1− δ)

]
=

= tj
1

1− δ
− 2

1− δ
tj
2

(1− δ)2

And the total payoff is equal to:

Π(t1, . . . , tj) =

g∑
j=1

[
tj

1

1− δ
− 2

1− δ
tj
2

(1− δ)2

]
=

t

1− δ
− 2g

(1− δ)2
+

2

(1− δ)2

g∑
j=1

δ
tj
2

Therefore, the problem is equivalent to that of maximizing
g∑
j=1

δ
tj
2 , given that

g∑
j=1

tj = t. By substitut-

ing tg = t−
g−1∑
j=1

tj and differentiating with respect to tj for j < g we get
∂

(
g∑

j=1
δ
tj
2

)
∂tj

= ln δ
2

(
δ

tj
2 − δ

tg
2

)
<

0. This means that the payoff decreases in the sizes of all groups, but the largest one. Hence, the

optimal strategy is to choose t1 = · · · = tg−1 = 2 and tg = t− 2(g − 1).

Proof of Proposition 3. Let us first construct the objective functions that should be maximized in

case the firm targets one or two groups based on Theorem 2. For targeting one group, the expression

is:

p
(
2δ + 2δ2 + · · ·+ 2δ

s
2

)
− (1− p)

(
2δ + · · ·+ 2δ

t
2

)
= 2p

s/2∑
k=1

δk − 2(1− p)
t/2∑
k=1

δk

For targeting two groups, recall from Proposition 2 that they should be s1 = s2 = s/2 (given that s

is a multiple of 4) and t1 = 2, t2 = t
2
− 2. Therefore, the objective function is:

p
(
4δ + 4δ2 + · · ·+ 4δ

s
4

)
− (1− p)

(
2δ + · · ·+ 2δ

t
2
−1 + 2δ

)
= 4p

s/2∑
k=1

δk − 2(1− p)
t
2
−1∑
k=1

δk − 2(1− p)δ
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Hence, the firm should target two groups instead of one if and only if the following condition holds:

4p

s/2∑
k=1

δk − 2(1− p)
t
2
−1∑
k=1

δk − 2(1− p)δ ≥ 2p

s/2∑
k=1

δk − 2(1− p)
t/2∑
k=1

δk ⇔

⇔4p

[
δ

1− δ
− δ

s
4

+1

1− δ

]
− 2(1− p)δ ≥ 2p

[
δ

1− δ
− δ

s
2

+1

1− δ

]
− 2(1− p)δt2 ⇔

⇔2p
δ

1− δ
+ 2p

δ
s
2

+1

1− δ
− 4p

δ
s
4

+1

1− δ
≥ 2(1− p)

(
δ − δt2

)
⇔

⇔p
(
1− δ

s
4

)2 ≥ (1− p)(1− δ)
(

1− δ
t
2
−1
)
⇔

⇔p ≥
(1− δ)

(
1− δ t

2
−1
)

(1− δ)
(

1− δ t
2
−1
)

+
(
1− δ s

4

)2

Proof of Lemma 1. We first prove that the function f(δ, t) is increasing in t. First of all, recall

that s = n− t, therefore it depends on t. Although, t is an integer, this would be a smooth function

for t being a real number, therefore we can work as if t was a real, but then focus on the integer

values of t. Having clarified this, we can differentiate the function with respect to t and noticing that

∂s
∂t

= −1 we get ∂f
∂t

=
− 1

2
δ
t
2−1 ln δ(1−δ)(1−δ

s
4 )

2
− 1

2(1−δ
s
4 ) ln δ(1−δ)

(
1−δ

t
2−1

)
[
(1−δ)

(
1−δ

t
2−1

)
+(1−δ

s
4 )

2
]2 > 0 for all t and δ ∈ [0, 1).

Now, we turn our attention to the behavior of the function with respect to δ. Attempting to

evaluate the derivative of the function for intermediate values of δ is not easy. However, one can

easily calculate that f(δ = 0, t) = 1
2
, ∂f(δ,t)

∂δ

∣∣
δ=0

= −1
4

both for all t > 2 and lim
δ→1

∂f(δ,t)
∂δ

= −2s2(s−t)(t−2)
(s2+8t−16)2

,

which is negative whenever t ≤ s (equivalent to t ≤ n/2) and positive otherwise.

Instead of working with the derivative, we proceed as follows: Observe that f lies always between

0 and 1. We will show that for any value p̂ ∈ (0, 1) the function f is equal to this value at most

once when t > n/3 (equivalently t > s/2) and at most twice when t > n/2 (equivalently t > s). For

t ≤ n/3, given that the f is strictly decreasing at 0, this means that the function should be always

strictly decreasing. For t > n/2, f is strictly decreasing at 0 and strictly increasing very close to 1,13

which means that it starts decreasing up to some point and then increases.

Consider the equation p̂ = f(δ, t) =
(1−δ)

(
1−δ

t
2−1

)
(1−δ)

(
1−δ

t
2−1

)
+(1−δ

s
4 )

2 . This expression can be rewritten as

p̂
(
1− δ s

4

)2
= (1 − p̂) (1− δ)

(
1− δ t

2
−1
)

. Subsequently, if we define r̂ = p̂
1−p̂ , then the equation

becomes r̂
(
1− δ s

4

)2
= (1− δ)

(
1− δ t

2
−1
)

, where r̂ ∈ [0,∞) and r̂ > 1 when p̂ > 1/2. Now, observe

13This argument holds because the limit of the derivative with respect to δ at 1 is strictly positive and the function

is continuous in δ. Hence, there exists a sufficiently small neighborhood of δ in which the function is strictly increasing.
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that using standard identities of algebra we get that
(

1− δ t
2
−1
)

= (1 − δ)
t
2
−2∑
k=0

δk and analogously

(
1− δ s

4

)
= (1 − δ)

s
4
−1∑
k=0

δk. Hence, we can simplify (1− δ)2 from both sides of the equation and get

r̂

(
s
4
−1∑
k=0

δk

)2

=

t
2
−2∑
k=0

δk. With some appropriate calculations, which can be found at the end of the

proof (see Lemma 2), we can rewrite the equation as follows:

r̂
(

1 + 2δ + 3δ2 + · · ·+ s

4
δ

s
4
−1 + · · ·+ 2δ

s
2
−3 + δ

s
2
−2
)

= 1 + δ + · · ·+ δ
t
2
−2

Bringing all factors to the left hand side of the expression we can create a polynomial, for which

we need to calculate its number of roots. We will do this using Descartes’ Rule of Signs (Descartes,

1886), which states that “the number of positive roots of a polynomial is at most equal to the number

of sign differences between consecutive nonzero coefficients, or is less than it by an even integers”.

First, we consider the case where t < n/3 (or t < s/2). In this case the expression can be written

as follows:

(r̂−1)+(2r̂−1)δ+(3r̂−1)δ2 +· · ·+
(
t

2
r̂ − 1

)
δ

t
2
−2 +

t

2
r̂δ

t
2
−1 +· · ·+ s

4
r̂δ

s
4
−1 +· · ·+2r̂δ

s
2
−3 + r̂δ

s
2
−2 = 0

One can easily see that all coefficients to the right of t
2
r̂δ

t
2
−1 are positive, as well as that the coefficients

of the previous terms are increasing. Hence, if a coefficient (kr̂ − 1), then [(k + 1)r̂ − 1] will also

be positive. Therefore, if r̂ ≥ 1 then all coefficients are positive and the polynomial has no root,

whereas if r̂ < 1 then the first at most t
2

coefficients are negative and the rest are positive, leading

to one sign difference. Therefore, this polynomial will have one root in the positive numbers. Notice

that, this root need not necessarily be in the interval (0, 1), which means that the polynomial has at

most one root in (0, 1). As we have already explained this means that if t < n/3 the function f is

decreasing in [0, 1).

Second, we consider the case where t > n/2 (or t > s). In this case the expression can be written

as follows:

(r̂−1)+(2r̂−1)δ+(3r̂−1)δ2 + · · ·+
(s

4
r̂ − 1

)
δ

s
4
−1 + · · ·+(2r̂−1)δ

s
2
−3 +(r̂−1)δ

s
2
−2−δ

s
2
−1−δ

t
2
−2 = 0

Analogously to the previous case, one can see that the coefficients to the right of δ
s
2
−1 are all negative,

however the coefficients of the previous terms are now first increasing and then decreasing. Hence,

if r̂ ≥ 1 all terms to the left of (r̂ − 1)δ
s
2
−2 are positive and the polynomial has one positive root,

whereas if r̂ < 1 we have to consider two different cases. if it also holds that s
4
r̂ ≤ 1 then all

coefficients are negative and the polynomial has no root, whereas if s
4
r̂ > 1 then the first coefficient
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is negative, but there exists at least one coefficient that is positive. This means that the polynomial

has two sign changes, so either two or no positive roots (which again might not be in (0, 1)). Having

proven this, and given the values of the function and its derivative at 0, as well as their limits at 1,

we can conclude that for t > n/2 the function is first decreasing and then increasing.

The following lemma is needed for the proof of Lemma 1:

Lemma 2.

(
n∑
k=0

δk
)2

=
n−1∑
k=0

(k+1)(δk+δ2n−k)+(n+1)δn = 1+2δ+ · · ·+(n+1)δn+nδn+1 + · · ·+δ2n

Proof. The lemma is proven by induction. First, we need to show that it holds for n = 1. LHS =(
1∑

k=0

δk
)2

= (1 + δ)2 = 1 + 2δ + δ2 and RHS =
1−1∑
k=0

(k + 1)(δk + δ2−k) + 2δ1 = 1 + 2δ + δ2, so the

statement holds. Then, we show that if it holds for n, then it also holds for n+ 1.(
n+1∑
k=0

δk

)2

=

(
n∑
k=0

δk + δn+1

)2

=

(
n∑
k=0

δk

)2

+ 2δn+1

(
n∑
k=0

δk

)
+ δ2n+2 =

Since the statement is true for n, then the above expression is equal to

=
[
1 + 2δ + · · ·+ (n+ 1)δn + nδn+1 + · · ·+ δ2n

]
+
(
2δn+1 + · · ·+ 2δ2n+1

)
+ δ2n+2 =

= 1 + 2δ + · · ·+ (n+ 1)δn + (n+ 2)δn+1 + (n+ 1)δn+2 + · · ·+ 3δ2n + 2δ2n+1 + δ2n+2 =

=
n∑
k=0

(k + 1)(δk + δ2(n+1)−k) + (n+ 2)δn+1

and this concludes the argument.

Proof of Proposition 4. Based on Proposition 2 and on the proof of Theorem 2, the expected

payoff for the firm from targeting g groups (with some appropriate simplifications) is equal to

Πg = 2g
(2p− 1)

(1− δ)2
+ t

(1− p)
1− δ

− 2p

1− δ)2

g∑
k=1

δ
sk
2 +

2(1− p)
1− δ)2

g∑
k=1

δ
tk
2

where
g∑

k=1

δ
sk
2 = gδ

s
2g (when s is a multiple of g!) and

g∑
k=1

δ
tk
2 = (g − 1)δ + δ

t
2
−g+1 Therefore the firm
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prefers to target g + 1 groups instead of g if Πg+1 − Πg ≥ 0. Equivalently this means:

2
(2p− 1)

(1− δ)2
[(g + 1)− g]− 2p

(1− δ)2

[
g+1∑
k=1

δ
sk
2 −

g∑
k=1

δ
sk
2

]
+

2(1− p)
(1− δ)2

[
g+1∑
k=1

δ
tk
2 −

g∑
k=1

δ
tk
2

]
≥ 0⇔

2
(2p− 1)

(1− δ)2
− 2p

(1− δ)2

[
(g + 1)δ

s
2(g+1) − gδ

s
2g

]
+

2(1− p)
(1− δ)2

[
gδ + δ

t
2
−g − (g − 1)δ + δ

t
2
−g+1

]
≥ 0⇔

2p− 1− p
(
gδ

s
2(g+1) − gδ

s
2g

)
+ (1− p)

(
δ + δ

t
2
−g − δ

t
2
−g+1

)
≥ 0⇔

p
(

2− (g + 1)δ
s

2(g+1) − gδ
s
2g − δ − δ

t
2
−g + δ

t
2
−g+1

)
≥ 1− δ − δ

t
2
−g + δ

t
2
−g+1 ⇔

p ≥
(1− δ)

(
1− δ t

2
−g
)

(1− δ)
(

1− δ t
2
−g+1

)
+
[
1− (g + 1)δ

s
2(g+1) − gδ

s
2g

] = f(δ, t, g)

If this condition holds, then the firm prefers to target g+ 1 groups instead of g. If this is true for any

g ≥ 1, which holds if p ≥ max
g≥1

f(δ, t, g) then the firm should target the maximum number of groups.

To the contrary, if this is not true for any g ≥ 1, which happens if p ≤ min
g≥1

f(δ, t, g) then the firm

should target a single group.
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