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Abstract

In this paper, we investigate semiparametric threshold regression models with

endogenous threshold variables based on a nonparametric control function approach.

Using a series approximation we propose a two-step estimation method for the threshold

parameter. For the regression coefficients we consider least-squares estimation in the

case of exogenous regressors and two-stage least-squares estimation in the case of

endogenous regressors. We show that our estimators are consistent and derive their

asymptotic distribution for weakly dependent data. Furthermore, we propose a test

for the endogeneity of the threshold variable, which is valid regardless of whether the

threshold effect is zero or not. Finally, we assess the performance of our methods using

a Monte Carlo simulation.
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1 Introduction

There are several economic theories that suggest threshold-like structures. For example, debt

levels that are above a particular threshold value may have different implications for economic

growth compared to more moderate levels of debt (e.g., Reinhart and Rogoff (2010)).

Another example is motivated by models of intergenerational mobility and poverty traps.

Under certain conditions, credit constraints (e.g., Galor and Zeira (1993)) or neighborhood

influences (e.g., Durlauf (1996)) may generate a linear transmission of socioeconomic status

within a group of individuals, while different levels of credit constraints or neighborhood

quality produce different intercepts and slopes. These types of nonlinearities can be modeled

by the threshold regression, which sorts the observations on the basis of some observed

threshold variable into regimes each of which obeys the same linear model. Threshold-

type regressions are also popular in nonlinear time-series. For example, the threshold-

autoregressive (TAR) model allows the autoregressive coefficients to change between the

regimes while they are constant in each regime based on some time-series which acts as a

threshold variable; see Tong (1990) for a review on TAR models.1

The first generation of threshold regression models developed inference under the

assumption of exogenous or predeteremined threshold variables. Notable examples include

the works of Chan (1993), Hansen (2000), Caner and Hansen (2004), Seo and Linton (2007),

Gonzalo and Wolf (2005), Yu (2012), and Yu (2013). Recently, there is a growing interest in

threshold regression models that accommodate endogenous threshold variables in order to

identify the underlying mechanisms of such theories. Kourtellos, Stengos, and Tan (2016)

1The threshold regression is also related to a number of smoothed parametric or semiparametric
regressions. For example, the threshold regression can be viewed as a special case of the varying coefficient
model of Hastie and Tibshirani (1993) when the varying coefficients take the form of indicator functions.
Similarly, the Smooth Transition Autoregressive (STAR) model (e.g., Terasvirta, Granger, and Nelson
(1986)) replaces the indicator function in TAR with parametric smoothed transition functions such as the
logistic and the exponential functions.
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propose estimation and inference for a threshold regression model that allows for an

endogenous threshold variable as well as for endogenous regressors under certain parametric

assumptions and using the diminishing threshold effect asymptotic framework proposed by

Hansen (2000) and Caner and Hansen (2004). In particular, in the spirit of Heckman’s

sample selection method, they account for the endogeneity bias by including regime specific

inverse Mills ratio bias correction terms in the threshold regression. Seo and Shin (2016)

study a dynamic threshold panel data model, which allows both regressors and threshold

effect to be endogenous. In particular, they propose first-difference GMM and two-step least

squares estimators as well as a bootstrap-based testing procedure for the presence of threshold

effect. An alternative method to deal with endogeneity was proposed by Yu and Phillips

(2015) who propose a nonparametric estimator of the threshold parameter, namely the

integrated difference kernel estimator. Using the fixed threshold effect framework of Chan

(1993) and assuming i.i.d. sample, they show that the threshold parameter can be partially

identified and estimated without the use of any instruments at the rate n. They also show

that while instrumental variables are not necessary for the identification and estimation of

the threshold effect parameters at the rate n, regime-specific regression coefficients can only

be identified and estimated at the usual
√
n rate when instrumental variables are available.

In this paper we propose a semiparametric approach to deal with the endogeneity of

threshold variable and regressors that avoids the challenges of nonparametric estimators and

at the same time relaxes parametric assumptions. Specifically, we propose to estimate the

threshold parameter using a concentrated least squares (CLS) method of estimation which

includes a regime specific control function estimated by series estimation method based on

polynomial and splines.2 We derive the limiting distribution of our proposed estimators

for both the threshold and slope parameters as well as for the smooth control function.

2Chen (2007) provides a recent survey of large sample results on nonparametric and semiparametric
estimation of econometric models using the method of sieves.
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Finally, we propose a test for the endogeneity of the threshold variable and show that limit

distribution of the test statistic is the same under the null hypothesis regardless of whether

the threshold effect exists or not.

The rest of the paper is organized as follows. In Section 2, we propose a semiparametric

threshold model and derive limiting results for the proposed estimator in the case of

exogenous regressors. Section 3 extends the result to the case of endogenous regressors.

Section 4 considers testing for the endogeneity of the threshold variable. Section 5 reports

some Monte Carlo simulation results to assess the finite sample performance of our methods.

Section 6 concludes. We delay all the mathematical proofs in the Appendix. Supplementary

proofs are given in Kourtellos, Stengos, and Sun (2017)-henceforth, we will refer to this as

the Online Appendix.

2 Endogenous threshold variable

We begin by presenting the basic parametric structural threshold regression (or STR) model

yt = x′
tβ1 + σ1ut, qt ≤ γ0 (2.1)

yt = x′
tβ2 + σ2ut, qt > γ0 (2.2)

for t = 1, 2, . . . , n, where yt is dependent variable, xt is a dx × 1 vector of regressors, β1 and

β2 are regime-specific coefficients, and ut is an error with zero mean and unit variance. qt is

a scalar endogenous threshold variable with γ0 being the threshold value. A reduced form

equation for qt is given by

qt = z
′
tπq + vq,t, t = 1, 2, . . . , n, (2.3)
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where zt is a dz × 1 vector of instrument variables for qt satisfying E(vq,tzt) = 0 for all t.

The endogeneity of the threshold variable qt comes from the correlation between {ut} and

{vq,t}.

The STR model is analogous to the sample selection model of Heckman (1979) in the

way that the endogenous dummy variable is modeled. Specifically, in the sample selection

model, the variable qt that determines the assignment of observations to regimes is latent,

but the assignment is known (given by the dummy variable). However, in the STR model,

we observe qt, but the threshold value γ0 is an unknown parameter to be estimated.

Assuming E(ut|xt, zt, vq,t) = E(ut|vq,t) = g (vq,t) almost surely, we obtain

E (ut|xt, zt, vq,t ≤ γ0 − z′tπq)

=
E [g (vq,t) I (vq,t ≤ γ0 − z′tπq) |xt, zt]

Fv|(x,z) (γ0 − z′tπq)
≡ h1(xt, zt, γ0 − z′tπq),

and similarly E (ut|xt, zt, vq,t > γ0 − z′tπq) ≡ h2(xt, zt, γ0−z′tπq), where g (·) is an unknown

function, Fv|(x,z) (·) denotes the conditional cdf of vq,t given xt = x and zt = z, and I(A) is an

indicator function equal to one if event A occurs and zero otherwise. Our estimation method

introduced below can be used to estimate the unknown functions, hj(xt, zt, γ0 − z′tπq),

however, it will incur severe curse-of-dimsionality problem. Without loss of essence, we

therefore consider the case that hj(xt, zt, γ0 − z′tπq) = hj(γ0 − z′tπq) for j = 1, 2 and all t.

Thus, we can rewrite model (2.1) and model (2.2), respectively, as

yt = x′
tβ1 + σ1h1(γ0 − z′tπq) + ε1t, qt ≤ γ0 (2.4)

yt = x′
tβ2 + σ2h2(γ0 − z′tπq) + ε2t, qt > γ0 (2.5)

where εjt = σj [ut − hj(γ0 − z′tπq)] for j=1,2.
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Assuming that (ut, vq,t) are jointly normally distributed and that σ1 = σ2,

Kourtellos, Stengos, and Tan (2016) show that the two control functions take the form of

inverse Mills ratio bias correction terms

h1(γ − z′tπq) = −φ(γ − z′tπq)

Φ(γ − z′tπq)
and h2(γ − z′tπq) =

φ(γ − z′tπq)

1− Φ(γ − z′tπq)
(2.6)

where φ(·) and Φ(·) are the standard normal pdf and cdf, respectively. However, in

practice, it is often expected that the joint normality assumption is violated, which leads to

misspecification of the two inverse Mills ratio terms. In order to avoid this potential model

misspecification problem, this paper is aimed to simultaneously estimate all the unknown

parameters appearing in models (2.4) and (2.5) and the unknown inverse Mills ratio bias

terms without imposing the joint normality assumption.

As the functional forms of h1(·) and h2(·) are both unknown, we cannot identify

(γ0, σ1, σ2) from h1 (·) and h2 (·). Therefore, our semiparametric threshold regression model

is given by

yt = x
′
tβ1I (qt ≤ γ0)+x

′
tβ2I (qt > γ0)+h1 (z

′
tπq) I(qt ≤ γ0)+h2 (z

′
tπq) I(qt > γ0)+εt, (2.7)

where εt = ε1tI(qt ≤ γ0) + ε2tI(qt > γ0) with εjt = σjut − hj(z
′
tπq) for j = 1, 2. Using the

definitions δ = β1 − β2, η (w) = h1 (ω)− h2 (ω), where w ∈ R, we can rewrite (2.7) as

yt = x
′
tβ2 + x

′
tδI (qt ≤ γ0)+ h2 (z

′
tπq) + η (z′tπq) I(qt ≤ γ0) + εt, (2.8)

Note that we set h1 (0) = h2 (0) = 0 for identification purpose when xt contains a constant

term one. When the threshold variable qt is exogenous, i.e., g (v) ≡ 0, the control functions

h1(w) and h2(w) are omitted from model (2.7).
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As in Hansen (2000), our asymptotic results are derived in the framework of “small

threshold” effect; i.e., we assume that the exogenous threshold effect, δ = δn, and the

endogenous threshold bias correction term, η (ω) = ηn (w), both approach to zero slowly

as n diverges. It means that the endogeneity bias vanishes in large samples and that

endogenous regime changes temporally exist around a threshold value. Below, we summarize

the assumptions that support our model (2.8).

Assumption 1. (i) {(x′
t, qt, z

′
t, ut)} is a strictly stationary strong mixing sequence with

the mixing coefficients of size −r/ (r − 2) for some r > 2;

(ii) E (ztvq,t) = 0, E
(
v2q,t
)
= σ2

v , E (‖ztvq,t‖r) < ∞ and E
(
‖zt‖r+δ

)
< ∞ for some

δ > 0 and E (ztz
′
t) exists and is non-singular;

(iii) (a) {(ut,Fn,t)}nt=1 is a martingale difference sequence with E(u2t |Fn,t−1) <∞, where

Fn,t is the smallest sigma-field generated from
{(
x′
s+1, qs, z

′
s+1, us

)
: 1 ≤ s < t ≤ n

}
; (b)

E(ut|Fn,t−1, vq,t = v) = g(v) for any v; (c) vq,t is independent of Fn,t−1 for any t ≥ 1.

(iv) for any λ 6= 0, there is no measurable function m (v) such that x′λ = m (z′πq)

when qt ≤ γ0 and when qt > γ0;

(v) ηn (ω) = n−̺η0 (ω) and δn = n−ςδ0 for some 0 < ς, ̺ < 1/2, δ0 6= 0, and η0 (ω) 6= 0

over at least one non-empty interval.

By Theorem 5.23 in White (2001), Assumptions 1(i)-(ii) are moment bounds.

Assumption 1(iii) states that (x′
t, z

′
t)

′ is contemporaneously exogenous in the model (2.1)-

(2.2) and (2.3). Because the central limit theorem for martingale difference sequences only

requires well-behaved moment conditions up to the second order, and the proofs for the

limit distribution of our proposed estimator implicitly incurs unbounded moments beyond

the second order, we therefore assume that {(εt,Fn,t)}nt=1 is a martingale difference sequence

which is ensured under Assumption 1(iii). Assumption 1(iv) is an identification condition
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similar to Assumption 2.1 in Newey (2009). It is readily seen that z′πq cannot equal a linear

combination of x, because hj (ω) are unknown for j = 1, 2 in model (2.7). Assumption

1(v) regulates how fast the threshold effects vanish as the sample size increases. The reason

for this assumption is that in the case of fixed threshold effect the sampling distribution of

the threshold estimator is too complicated for inference. Specifically, Chan (1993) showed

that the asymptotic distribution of the threshold estimator depends on a host of nuisance

parameters including the marginal distribution of the regressors. To overcome this difficulty,

Hansen (2000) employed Assumption 1(v) that assumes that the difference between the slope

coefficients of the two regimes decreases as the sample size grows. That said, the diminishing

threshold effects framework is not the only way to deal with this problem. Li and Ling (2012)

propose a numerical approach to simulate the limiting distribution of the the estimator

of the threshold parameter based on a simulation of a related compound Poisson process.

An alternative approach is to introduce smoothness in the objective criterion to achieve

asymptotic normality. For example, Seo and Linton (2007) propose a smoothed least squares

estimation strategy that leads to asymptotic normality by smoothing the objective function

by replacing the indicator function in the objective function with an integrated kernel. In

the same spirit, Seo and Shin (2016) exploit the smoothness of the GMM criterion to achieve

asymptotic normality of the threshold estimate, regardless of whether the threshold effects

are fixed or diminishing.

In the next section, we describe our estimation method and study its asymptotic

properties.
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2.1 Estimation

Let {φ1 (ω) , φ2 (ω) , . . .} be a sequence of orthonormal basis functions in L2 (−∞,∞) space

if z′tπq takes value from the real line or L2 [0, 1] space if z′tπq has a finite support. We

approximate hj (ω) (j=1,2) and η0 (ω) by

h∗j (ω) = α
′
Ln,jΦLn

(ω) and η∗0 (ω) = α
′
Ln,0ΦLn

(ω)

respectively, where ΦLn
(ω) = [φ1 (ω) , . . . , φLn

(ω)]′ denotes an Ln × 1 vector. As ηn (ω) =

h1 (ω)− h2 (ω) = n−̺η0 (ω), we have n−̺αLn,0 = αLn,1 − αLn,2 and ηn (ω) is approximated

by η∗n (ω) = n−̺α′
Ln,0ΦLn

(ω). Below, we explain our proposed estimation procedure.

Step 1. Given instruments zt, the LS estimator from model (2.3) is, π̂q =

(
∑n

t=1 ztz
′
t)

−1∑n
t=1 ztqt. Assumptions 1(i)-(ii) imply that π̂q exists and ensure consistency

π̂q = πq +Op

(
n−1/2

)
. We then denote the fitted value of qt as q̂t = z

′
tπ̂q for all t throughout

the rest of this paper.

Step 2. For a given γ ∈
[
γ, γ
]
, we estimate θ =

(
β′
1,α

′
Ln,1,β

′
2,α

′
Ln,2

)′
from the objective

function

θ̂ (γ) = argmin
θ

n∑

t=1

[
yt − x′

−,tβ1 −α′
Ln,1Φ

−
Ln,γ

(q̂t)− x′
+,tβ2 −α′

Ln,2Φ
+
Ln

(q̂t)
]2
, (2.9)

where we denote x−,t = xtI(qt ≤ γ), x+,t = xtI(qt > γ), Φ−
Ln,γ

(q̂t) = ΦLn
(q̂t) I(qt ≤ γ)

and Φ+
Ln,γ

(q̂t) = ΦLn
(q̂t) I(qt > γ). Denoting an n× [2 (dx + Ln)] matrix Xγ = [X−,γ,X+,γ],

where X−,γ stacks up
[
x′
−,t,Φ

−′
Ln,γ

(q̂t)
]
and X+,γ stacks up

[
x′
+,t,Φ

+′
Ln,γ

(q̂t)
]
, and solving (2.9)

give

θ̂ (γ) =
(
X ′

γXγ

)−1X ′
γy. (2.10)
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We can estimate the threshold parameter γ by minimizing the concentrated least squares

criterion

γ̂ = arg min
γ∈[γ,γ]

n∑

t=1

[
yt −X ′

t,γ θ̂ (γ)
]2

(2.11)

and then estimate θ by θ̂ = θ̂ (γ̂), where the Xt,γ in (3.5) is the tth row of the Xγ .

Step 3. Calculating ỹt = yt − x′
−,tβ̂1 − x′

+,tβ̂2, we can re-estimate h2 (ω) and ηn (ω) by

the local linear regression approach from ỹt = h2 (q̂t) + ηn (q̂t) I(qt ≤ γ̂) + ε̃t, t = 1, 2, . . . , n.

We denote the estimator for ψ (ω) = [h2 (ω) , ηn (ω)]
′ by ψ̃ (ω) =

[
h̃2 (ω) , η̃n (ω)

]′
.

Of course, one can obtain the series estimator of h1 (·), h2 (·) and ηn (·) once θ̂ is obtained

from Step 2. However, estimating these unknown curves by the local linear regression

approach enables us to derive the explicit form for the asymptotic bias term and the optimal

bandwidth. We therefore add Step 3 in the paper.

2.2 Limiting results

As in Blundell, Chen, and Kristensen (2007), we denote a Hölder space Λξ (R). For

any h (·) in Λξ (R), h (·) is [ξ]-times continuously differentiable over the real line R and
∣∣∇[ξ]h (ω)−∇[ξ]h (ω′)

∣∣ ≤ M |ω − ω′|ξ−[ξ] for any ω ∈ R and ω′ ∈ R, where [ξ] is the largest

positive integer less than ξ. Below, we list some regularity conditions used to derive the

consistency and limit distribution of our proposed estimators.

Assumption 2. (i) E (x′
txtz

′
tzt) < ∞, E ‖xt‖2r

′

< ∞ and E ‖εtxt‖r < ∞ for some

r′ > r > 2, where r is defined in Assumption 1 and || · || denotes the Euclidean norm;

(ii) for every Ln and uniformly over γ ∈
[
γ, γ
]
, there exist constants c and c such that

0 < c ≤ λmin (Σγ) ≤ λmax (Σγ) ≤ c < ∞, where Σγ = E
(
X ∗

t,γX ∗′
t,γ

)
and E

(
ε2tX ∗

t,γX ∗′
t,γ

)
, and

X ∗
t,γ equals Xt,γ with q̂t replaced by z′tπq;
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(iii) qt has a probability density function fq (q) with respect to the Lebesgue measure

and infq∈R fq (q) > 0, and η0 (ω), h1 (ω), h2 (w), and fq (q) all belong to the Hölder space

Λξ (R) for some ξ > 2, and these functions and their first- and second-order derivatives are

all uniformly bounded;

(iv) h1 (ω) and h2 (ω) are squared integrable, and there

exists finite constants αLn,0 and αLn,j such that supω∈R

∣∣η0 (ω)−α′
Ln,0ΦLn

(ω)
∣∣ ≤ ML−ξ

n

and supω∈R

∣∣hj (ω)−α′
Ln,jΦLn

(ω)
∣∣≤ML−ξ

n for j=1,2;

(v) {φl(·), l = 1, 2, ...} is a sequence of orthonormal basis functions in Λξ (R) and

uniformly bounded over R. Also, we denote supω∈R

∑Ln

l=1

[
φ
(s)
l (ω)

]2
= ‖ΦLn

‖2s for s ≥ 0.

Assumption 2 (i)-(ii) ensures the existence of θ̂ (γ), which is standard in the literature;

see, e.g., Newey (1997) and Ozabaci, Henderson, and Su (2014). As the eigenvalues of a

squared matrix are a continuous function of the matrix, the uniform boundness holds over a

compact set
[
γ, γ
]
as long as the eigenvalues are bounded pointwise. Assumption 2(iii) is a

standard smoothness condition in nonparametric estimation. Assumption 2(iv) restricts

the sieve approximation error, and it holds by Theorem 1.1 in Dzyadyk and Shevchuk

(2008) if z′tπq has compact support and η0 (w) and hj (ω) are all ξ-smooth. If z′tπq has

unbounded support, (−∞,∞), Xiang (2012) showed that Assumption 2 (iv) holds for the

normalized Hermite orthonormal basis functions if η0 (w) and hj (w) are all p-smooth for

some p > 2 (ξ + 1). In addition, Assumption 2(v) describes the properties of the basis

functions and implies ‖ΦLn
‖0 = O

(
L
1/2
n

)
and ‖ΦLn

‖1 = O
(
L
3/2
n

)
; see, e.g., the normalized

Hermite functions and wavelet functions defined in Blundell, Chen, and Kristensen (2007).

Assumption 3. Denote ϑn = L−ξ
n +

√
Ln/n + n−1/2 ‖ΦLn

‖1. (i) ϑn = o (1) and

‖ΦLn
‖21 Ln/n = o (1); (ii) n−1+2[min(ς,̺)−̺] ‖ΦLn

‖21 = o (1) and nmin(ς,̺)ϑn = o (1); (iii)

min (ς, ̺) < 1/4 and
√
nL−ξ

n = o (1).

10



Assumption 3(i) is used to derive the consistency result of γ̂ and θ̂ for Theorem 1,

and Assumptions 3(ii)-(iii) are used to derive below the limit distribution for γ̂ and β̂ in

Theorems 2 and 3, respectively. Below, we give the limit results for γ̂ and θ̂.

Theorem 1 Under Assumptions 1-3(i), we have γ̂ − γ0 = op (1) and
∥∥∥θ̂ − θ

∥∥∥ =

Op

(
ϑn + n−min(ς,̺)

)
.

Theorem 1 shows the consistency of γ̂ and θ̂. Compared with the conventional

convergence rate of series estimator, ϑn contains an additional bias term of order

Op

(
n−1/2 ‖ΦLn

‖1
)
, which results from the estimation of πq, the parameter appearing in

the reduced-form model of the endogenous threshold variable qt.

Theorem 2 Under Assumptions 1-3(i)(ii), we have

n1−2min(ς,̺) (γ̂ − γ0)
d→ ̟T ,

where we denote σ2
j = E

{
ε2jt [I (ς ≤ ̺) δ′0xt + I (ς ≥ ̺) η0 (z

′
tπq)]

2 |qt = γ0
}

for j = 1, 2,

ω0 = E
{
[I (ς ≤ ̺) δ′0xt + I (ς ≥ ̺) η0 (z

′
tπq)]

2 |qt = γ0
}
,

̟ =
σ2
1

ω2
0fq (γ0)

and T = arg max
−∞<r<∞

T (r)

T (r) denotes an asymmetric two-sided Brownian motion on the real line

T (r) =





− |r| /2 +W1 (−r) , if r ≤ 0

− |r| /2 +
√
σ2
2/σ

2
1W2 (r) , if r > 0

and W1 (r) and W2 (r) are two independent standard Brownian motion processes defined on

[0,∞).
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Theorem 2 shows that the asymptotic distribution of the threshold estimate is a Chernoff-

type distribution featuring unequal scales for each regime as in Kourtellos, Stengos, and Tan

(2016). One difference is that the different scales that reflect the regime-specific

heteroskedasticity depend on the nonparametric control functions rather than the inverse

Mills ratio functions.

Letting β̂ =
[
β̂′
1, β̂

′
2

]′
and β = [β′

1,β
′
2]
′, we obtain β̂’s limit result as follows.

Theorem 3 Under Assumptions 1-3, we have

√
n
(
β̂ − β

)
d→ N

(
0,J−1ΩJ−1

)
, (2.12)

where J and Ω are defined by (A.20) and (A.23) in Appendix, respectively.

Theorem 3 shows that the parametric part of parameter β is root-n consistent and

asymptotically normally distributed. Below, we will examine the third-step estimator, ψ̃ (ω).

The following conditions are required for the derivation of the limit distribution of the local

linear estimator of η0 (·) and h2 (·).

Assumption 4. (i) For some δ∗ > δ > 0, E
(
|z′tπq|2(2+δ∗)

)
< ∞,

E
(
|yt|2+δ∗ |xt = x, zt = z

)
≤ M < ∞ for all x ∈ Sx in the neighborhood of z, and

E (y20 + y2t |z0 = z0,x0 = x0, zt = z,xt = xt) ≤ M < ∞ for all (z0,x0,xt) ∈ Sz × Sx × Sx

in the neighborhood of z. (ii) fzπ (ω), E
[
‖zt‖j |z′tπq = w

]
, E [I (qt ≤ γ0) |z′tπq = w],

E (xt|z′tπq = ω), and E [ztx
′
t|z′tπq = w] are all twice continuously differentiable up to their

second-order derivatives with respect to w, where fzπ (ω) is the probability density function

of z′tπq, and j ≤ rk with rk defined in Assumption 5; (iii) the conditional density function

of qt given z
′
tπq = w, f (q|ω), is continuous and uniformly bounded over its domain; (iv)

E
(
ε2jt |z′tπq = ω

)
, E

(
ε2jt I (qt ≤ γ0) |z′tπq = ω

)
, and E

(
|εt|2(2+δ) |z′tπq = ω

)
are bounded in

12



the neighborhood of w for j = 1, 2.

Assumption 5. (i) The kernel function K (u) is a symmetric probability density

function with a compact support [−1, 1]; (ii) K (u) is continuously differentiable up to order

rk > 2; (iii) as n → ∞, h → 0, nh2(rk+3)/(rk+2) → ∞, ‖ΦLn
‖1 n−1/2h(2−r′)/(2r′) → 0, and

limn→∞ nh5 = c0 > 0, where r′ > r > 2. Also, we denote κi,j =
∫
Ki (u)ujdu.

Assumption 4(i) is Condition A.2 in Cai, Fan, and Yao (2000), and Assumption 4(ii) is

a regularity smoothness condition. As usual, the kernel function with compact support is

not essential in Assumption 5(i), and Assumption 5(ii) is required to remove the asymptotic

impact of the first-step estimation and the estimation of πq on the second-step estimator of

ψ (ω). Assumption 5(iii) implies that the conventional optimal bandwidth of order n−1/5

can be used to calculate ψ̃ (ω). Below, we give our limit result of ψ̃ (ω).

Theorem 4 Under Assumptions 1-5, we have at an interior point ω

√
nh
[
ψ̃ (ω)−ψ (ω)− κ1,2

2
h2B (ω)

]
d→ N

(
0,

κ2,0
fzπ (ω)

Ω (ω)−1E
(
ε21X1,γ0X ′

1,γ0
|z′1πq = ω

)
Ω (ω)−1

)
.

where X1,γ0 = [1, I (q1 ≤ γ0)]
′, Ω (ω) = E

(
X1,γ0X ′

1,γ0 |z′1πq = ω
)

and B (ω) =
[
h
(2)
2 (ω) , n−̺η

(2)
0 (ω)

]
Ω (ω).

As expected, Theorem 4 implies that the limit distribution of the local linear estimator,

ψ̃ (ω), is not affected by the estimation of the unknown parameters (γ,β′
1,β

′
2). In

addition, let Ln = cnϕ, then Assumptions 3 and 5 imply min (ς, ̺) /ξ < ϕ <

min (ξ−1, 1/3 + (2− r′) / (15r′)), where we use ‖ΦLn
‖21 = O

(
L
3/2
n

)
which is true for Hermite

basis functions. So, ϕ < 1/4.
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3 Endogenous threshold variable and regressors

This section considers the case that both qt and some of variables in xt are endogenous.3

The reduced-form model for xt is given by

xt = Πxzt + vx,t, t = 1, 2, . . . , n, (3.1)

whereΠx is a dx×dz parameter matrix, vx,t is a dx×1 vector of errors satisfying E(vx,t|zt) = 0

for all t and dz ≥ dx + 1. The endogeneity of the regressor xt comes from the correlation

between {ut} and {vx,t}.

Combining (2.1), (2.2) and (3.1) gives

yt = [β′
1 (Πxzt + vx,t) + σ1ut] I (qt ≤ γ0) + [β′

2 (Πxzt + vx,t) + σ2ut] I (qt > γ0)

= β′
1ΠxztI (qt ≤ γ0) + β

′
2ΠxztI (qt > γ0) + et

where et = (β′
1vx,t + σ1ut) I (vq,t ≤ γ0 − z′tπq) + (β′

2vx,t + σ2ut) I (vq,t > γ0 − z′tπq). Then,

following the discussion given in Section 2.1, we have

yt = β
′
2Πxzt + δ

′
nΠxztI (qt ≤ γ0) + h2(z

′
tπq) + ηn(z

′
tπq)I (qt ≤ γ0) + εt, (3.2)

where εt = ε1tI (qt ≤ γ0)+ε2tI (qt ≤ γ0) and εjt = β
′
jvx,t+σjut−hj(z′tπq) for j=1,2. Further

descriptions of model (3.2) are given by the following assumption.

Assumption 1’.

(i) {(x′
t, qt, z

′
t, ut)} is a strictly stationary strong mixing sequence with the mixing

3Our framework allows for the threshold variable qt to be included in the set of regressors xt.
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coefficients of size −r/ (r − 2) for some r > 2;

(ii) Assumption 1(i) holds and E
(
ztv

′
x,t

)
= 0, E

(
vx,tv

′
x,t

)
= Ωx is positive definite, and

E
(∥∥ztv′x,t

∥∥r) <∞;

(iii) (a) {(ut,Fn,t)}nt=1 is a martingale difference sequence with E (u2t |Fn,t−1) < ∞,

where Fn,t is the smallest sigma-field generated from
{(
x′
s, qs, z

′
s+1, us

)
: 1 ≤ s < t ≤ n

}
; (b)

E (ut|Fn,t−1, vq,t = v) = g (v) for any v; (c) vq,t is independent of Fn,t−1 and vq,t ⊥ vx,t for

any t ≥ 1.

(iv) for any λ 6= 0, there is no measurable function m (v) such that z′λ = m (z′πq) when

qt ≤ γ0 and when qt > γ0;

(v) Assumption 1(v) holds.

Assumption 1’(iii) states that zt is contemporaneously exogenous in model (2.1)-(2.2),

(2.3), and (3.1). Assumptions 1’(iv) is an identification condition.

Below, in Section 3.1 we explain our proposed estimation procedure, using the same

notation as in Section 2 unless we explicitly define some notation differently.

3.1 Estimation

Step 1: Given instruments zt, we obtain the LS estimates of πq and Πx, π̂q =

(
∑n

t=1 ztz
′
t)

−1∑n
t=1 ztqt and Π̂x = (

∑n
t=1 ztz

′
t)

−1∑n
t=1 xtz

′
t, from models (2.3) and (3.1),

respectively. Assumptions 1(i)-(ii) and 1’(i)-(ii) imply existence and consistency of π̂q =

πq + Op

(
n−1/2

)
and Π̂x = πx + Op

(
n−1/2

)
. We then denote the fitted values as q̂t = z′tπ̂q

and x̂t = Π̂xzt and the estimated residuals as v̂q,t = qt − q̂t and v̂x,t = xt − x̂t for all t

throughout the rest of this paper.

Step 2: For a given γ ∈
[
γ, γ
]
, we estimate θ =

(
β′
1,α

′
Ln,1,β

′
2,α

′
Ln,2

)′
from the objective
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function

θ̂ (γ) = argmin
θ

n∑

t=1

[
yt − x̂′

−,tβ1 −α′
Ln,1Φ

−
Ln,γ

(q̂t)− x̂′
+,tβ2 −α′

Ln,2Φ
+
Ln

(q̂t)
]2
, (3.3)

where we denote x̂−,t = x̂tI(qt ≤ γ), x̂+,t = x̂tI(qt > γ). Solving (3.3) yields

θ̂ (γ) =
(
X ′

γXγ

)−1X ′
γy (3.4)

where Xγ = [X−,γ,X+,γ] and X−,γ and X+,γ are defined the same as in Section 2 with x+,t

and x−,t replaced with x̂−,t and x̂−,t, respectively. We then estimate the threshold parameter

γ by minimizing the concentrated least squares criterion

γ̂ = arg min
γ∈[γ,γ]

n∑

t=1

[
yt −X ′

t,γ θ̂ (γ)
]2

(3.5)

and then estimate θ by θ̂ = θ̂ (γ̂).

3.2 Inference

Assumption 2’:

(i) E ‖zt‖2r
′

< ∞ and E ‖εtzt‖r < ∞ for some r′ > r > 2, where r is defined in

Assumption 1;

(ii) for every Ln and uniformly over γ ∈
[
γ, γ
]
, there exist constants c and c such that

0 < c ≤ λmin (Σγ) ≤ λmax (Σγ) ≤ c < ∞, where Σγ = E
(
X ∗

t,γX ∗′
t,γ

)
and E

(
ε2tX ∗

t,γX ∗′
t,γ

)
, and

X ∗
t,γ equals Xt,γ with x̂t and q̂t replaced with Πxzt and z′tπq, respectively;

(iii) Assumption 2(iii) holds.
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Below, we give the limit results for γ̂ and θ̂.

Theorem 5 Under Assumptions 1’, 2’ and 3(i), we have γ̂ − γ0 = op (1) and
∥∥∥θ̂ − θ

∥∥∥ =

Op

(
ϑn + n−min(ς,̺)

)
.

Theorem 6 Under Assumptions 1’, 2’ and 3(i)(ii), we have

n1−2min(ς,̺) (γ̂ − γ0)
d→ ̟T ,

where we denote σ2
j = E

{
ε2jt [I (ς ≤ ̺) δ′0Πxzt + I (ς ≥ ̺) η0 (z

′
tπq)]

2 |qt = γ0
}
for j = 1, 2,

ω = E
{
[I (ς ≤ ̺) δ′0Πxzt + I (ς ≥ ̺) η0 (z

′
tπq)]

2 |qt = γ0
}
.

Theorem 7 Under Assumptions 1’, 2’ and 3, we have

√
n
(
β̂ − β

)
d→ N

(
0,J−1ΩJ−1

)
, (3.6)

where J and Ω are defined by (A.30) and (A.33) in Appendix, respectively.

Compared with Theorems 1-3, Theorems 5-7 indicate that the endogeneity of the

regressors has impacts on the variation of γ̂ and β̂ not their convergence rates.

4 Testing for the Endogeneity of the Threshold

Variable

In this section, we are interested in testing whether the threshold variable, qt, is endogenous

in a linear threshold model (2.1)-(2.2). As the proposed test statistic is applicable regardless

of whether xt is endogenous or exogenous, we give details for the case that xt is exogenous.
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Under the null hypothesis, qt is exogenous, while under the alternative hypothesis, qt, is

endogenous. As it is not necessary to test the endogeneity of qt if there is no threshold effect

at all or β1 = β2, it would be intuitive to define the null and alternative hypotheses as HA
0 :

β1 = β2 and h1 (z) = h2 (z) ≡ 0 vs. HA
1 : not H0. However, rejecting this null hypothesis

will not reveal whether the threshold effect or the threshold variable being endogenous is

rejected. Therefore, we define our null and alternative hypotheses as follows

H0 : h1 (z) = h2 (z) ≡ 0 vs. H1 : not H0 (4.1)

and the working null and alternative hypotheses can be written as, H′
0 : αLn,1 = αLn,2 = 0Ln

against H′
1 : not H

′
0. The null hypothesis defined in (4.1) imposes no extra restriction on β1

and β2, other than the restriction given by Assumption 1(v), so the model under the null

hypothesis can be a simple linear regression model or a linear threshold regression model

with exogenous threshold variable.

In Section 2, applying series approximation to model (2.7) gives

yt = β
′
1x−,t + β

′
1x+,t +α

′
Ln,1Φ

−
Ln,γ

(q̂t) +α
′
Ln,2Φ

+
Ln,γ

(q̂t) + vγ,t (4.2)

where we denote vγ,t = [h1 (z
′
tπq)− h∗1 (z

′
tπ̂q)] I (qt ≤ γ) + [h2 (z

′
tπq)− h∗2 (z

′
tπ̂q)] I (qt > γ) +

εt. Denoting Qγ be an n × (2dx) matrix with its tth row equal to
[
x′
tI

−
γ,t,x

′
tI

+
γ,t

]
and

Mγ,Q = In −Qγ

(
Q′

γQγ

)−1
Qγ and multiplying Mγ,Q to the both sides of eq. (4.2) gives

y∗ = Φ̂−,∗
Ln,γ

αLn,1 + Φ̂+,∗
Ln,γ

αLn,2 + v
∗

where y∗ =Mγ,Qy, Φ̂
−,∗
Ln,γ

=Mγ,QΦ̂
−
Ln,γ

, Φ̂+,∗
Ln,γ

=Mγ,QΦ̂
+
Ln,γ

, and v∗ =MQv; y and v are

n× 1 vector with typical element yt and vt, respectively; Φ̂
−
Ln,γ

and Φ̂+
Ln,γ

are n×Ln matrix
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with tth row equal to Φ−′
Ln,γ

(q̂t) and Φ+′
Ln

(q̂t), respectively. Then given γ ∈
[
γ, γ̄
]
, we have

α̂Ln
(γ) =

(
Φ̂∗′

Ln,γΦ̂
∗
Ln,γ

)−1

Φ̂∗′
Ln,γy

∗ (4.3)

where we denote Φ̂∗
Ln,γ =

[
Φ̂−,∗

Ln,γ
, Φ̂+,∗

Ln,γ

]
and α̂Ln

(γ) =
[
α̂′

Ln,1 (γ) , α̂
′
Ln,2 (γ)

]′
. We then

construct a Wald statistic

Wn (γ) = α̂Ln
(γ)′ Φ̂∗′

Ln,γΦ̂
∗
Ln,γ

(
Φ̂∗′

Ln,γε̂γε̂
′
γΦ̂

∗
Ln,γ

)−1

Φ̂∗′
Ln,γΦ̂

∗
Ln,γα̂Ln

(γ) (4.4)

where ε̂γ is an n × 1 vector of residuals calculated from the alternative hypothesis and its

tth element equals ε̂γ,t = yt − x′
−,tβ̂1 − x′

+,tβ̂2 − α̂′
Ln,1Φ

−
Ln,γ

(q̂t)− α̂′
Ln,2Φ

+
Ln

(q̂t).

Next, let γ̂ be the estimate of γ under the null hypothesis. That is,

γ̂ = arg min
γ∈[γ,γ̄]

y′Mγ,Qy. (4.5)

Our final test statistic is defined as Wn (γ̂). Motivated by Gonzalo and Pitarakis (2016), we

will show that Wn (γ̂) has the same limit distribution under the null hypothesis regardless

of whether β1 = β2 or β1 6= β2.

Theorem 8 Under Assumptions 1-3(i)(ii) and H0 and E (u4t ) < M < ∞, we have (i)

n1−2min(ς,̺) (γ̂ − γ0)
d→ ̟T when β1 6= β2, (ii) γ̂

d→ γ∗, where γ∗ is defined in (A.34) when

σ2
1 = σ2

2 = σ2 and β1 = β2, and (iii) γ̂
a.s.→ γ∗, where γ∗ = γI (σ2

1 > σ2
2) + γ̄I (σ2

1 < σ2
2) when

σ2
1 6= σ2

2 and β1 = β2.

Theorem 9 Under Assumptions 1-3 and H0, Wn (γ̂)
d→ χ2

2Ln
holds (i) if β1 6= β2 or (ii) if

β1 = β2, σ
2
1 = σ2

2, and {ut} is independent of {(xt, zt)}.

As shown in the Appendix, out test statistic does not converge to a chi-squared
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distribution when β1 = β2 and σ2
1 6= σ2

2 .
4

5 Monte Carlo Simulations

5.1 Threshold and slope parameters

Athreya and Pantula (1986) provide theoretical argument on the strong mixing properties

of stationary ARMA processes. Following Chen (2007), we can use the Hermite functions as

the basis functions for the series approximation of h (·).

We first consider a model with endogeneity only in the threshold variable:

yi = β1 + β2xi + (δ1 + δ2xi)I{qi ≤ γ}+ ui, (5.1)

where

qi = 2 + zqi + vqi. (5.2)

The threshold parameter is set at the center of the distribution of qi, hence γ = 2. The

instrumental variable zqi is given by

zqi = (xi + ςzi) /2
√
2 (5.3)

and

ui = 0.1ςui + κvqi, (5.4)

where xi, vqi, ςzi, and ςui are independent i.i.d. N(0, 1) random variables. The degree of

endogeneity of the threshold is controlled by κ. We fix β1 = β2 = 1, and δ1 = 0 and vary δ2

4For details, please read the proof given in the Appendix.
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over the values of 1, 2, 3, 4, 5, which correspond to a range of small to large threshold effects.

We also vary κ over the values of 0.05, 0.50, 0.95 that correspond to low, medium, and large

degrees of endogeneity of the threshold variable.

Our second DGP adds an endogenous regressor to model (5.1)

yi = β1 + β2x1i + β3x2i + (δ1 + δ2x1i + δ3x2i)I{qi ≤ γ}+ ui, (5.5)

where

x1i = zxi + vxi,

with

zxi = (wx2i + (1− w)ςzi) /
√
w2 + (1− w)2, (5.6)

and

ui = (cxuvxi + cquvqi + (1− cxu − cqu)ςui) /
√
c2xu + c2qu + (1− cxu − cqu)2, (5.7)

where x2i, ςzi and ςui are independent i.i.d. N(0, 1) random variables. The degree

of endogeneity of the threshold variable is controlled by the correlation coefficient

between ui and vqi given by cqu/
√
c2xu + c2qu + (1− cxu − cqu)2. Similarly, the degree

of endogeneity of x1i is determined by the correlation between ui and vxi given by

cxu/
√
c2xu + c2qu + (1− cxu − cqu)2. We vary δ3 and fix cxu, w = 0.5, β1 = β2 = 1, and

δ1 = δ2 = 0. We set cqu at 0.45, which corresponds to correlation of 0.7.

We begin by assessing the performance of our estimators for the threshold parameter

and the threshold effect by considering sample sizes of 100, 250, 500, and 1000 using 1000

Monte Carlo replications simulations. Tables 1 and 2 present the quantiles of the distribution

of γ and δ2 by varying the threshold effect δ2 over the values 1, 2, 3, and 4 using a 6th order
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Hermite basis function for models (5.1) and (5.5), respectively.5 We see that the performance

of the estimators for both the threshold parameter and the threshold effect improve as the

threshold effect and the sample size increase. Specifically, the 50th quantile approaches

the true threshold parameter, γ = 2, as the sample size n increases and the width of the

distribution becomes smaller as δ2 increases.

5.2 Size and power of the Wald statistic

We assess the size and power of the Wald statistic in equation (4.4) and γ estimated by the

objective function defined by (4.5), which tests for the endogeneity of the threshold variable.

Table 3 provides the results for the case of the DGP in equation (5.1).6 We present the size

(ρ = 0) and the power (ρ > 0) for various orders Ln of Hermite basis functions and sample

sizes. Panel A presents results of the test statistic defined in equation (4.4), which is based

on a White covariance estimator. Panel B present results of a homoskedastic version of the

test statistic and Panel C shows results based on Andrews (1991) covariance estimator based

on the principle of leave-one-out cross-validation.

Our simulations reveal several things. In general, we find that our test exhibits good

size and power properties, especially when the number of basis functions is small. However,

we see that the basis functions that correspond to higher order polynomials are likely to lead

an oversized test. This size problem appears to go away when we employ a homoskedastic

version of the test statistic and is mitigated when we use the Andrews covariance estimator

at the cost of lower power.7

5In Figures 1 and 2 of the Online Appendix we also show the corresponding Monte Carlo kernel densities
of the threshold estimator for a small threshold effect (δ2 = 1) and a large threshold effect (δ2 = 4).

6We also investigated models that impose the restriction that h1 = h2. As expected both the size and
power of the test improve using this extra information. All results including those for the DGP in equation
(5.5) are available on request.

7We also investigated a finite-sample correction of the White estimator as well as Horn, Horn, and Duncan
(1975) estimator but the results were not better than the Andrews estimator. An important factor in
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6 Conclusion

In this paper we propose different types of semiparametric threshold regression models with

endogenous threshold variables based on a nonparametric control function approach. Using

a series approximation we propose to estimate the threshold parameter using a concentrated

least squares which includes a regime specific control function. We develop estimation and

inference for weakly dependent data for the estimators of both the threshold and slope

parameters. Furthermore, we propose a test for the endogeneity of the threshold variable,

which is valid regardless of whether the threshold effect is zero or not. Finally, we assess the

performance of the proposed estimation method using a Monte Carlo simulation.

achieving substantial improvements in both size and power is the restriction h1 = h2.
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Table 1: Threshold Parameter and Threshold Effect - Exogenous Regressor
This table presents Monte Carlo quantiles of the estimates of the true threshold parameter γ = 2 and true
threshold effect δ2 = 1, 2, 3, 4 in the case of exogenous regressor and endogenous threshold variable using a
6th order Hermite basis function.

Threshold Parameter Threshold Effect
Quantile 5th 50th 95th 5th 50th 95th
Sample size

δ2 = 1

100 1.472 1.957 2.307 0.531 0.931 1.326

250 1.758 1.991 2.182 0.760 0.974 1.179

500 1.873 1.996 2.087 0.822 0.980 1.126

1000 1.931 1.998 2.039 0.883 0.994 1.096

δ2 = 2

100 1.752 1.974 2.150 1.616 1.973 2.355

250 1.911 1.992 2.058 1.794 1.998 2.204

500 1.960 1.996 2.028 1.841 1.993 2.131

1000 1.979 1.998 2.014 1.891 2.000 2.100

δ2 = 3

100 1.831 1.976 2.092 2.641 2.987 3.361

250 1.937 1.991 2.032 2.794 3.005 3.208

500 1.970 1.996 2.014 2.842 2.994 3.131

1000 1.985 1.998 2.009 2.893 3.000 3.101

δ2 = 4

100 1.851 1.975 2.063 3.658 3.991 4.372

250 1.947 1.991 2.024 3.794 4.005 4.211

500 1.974 1.996 2.010 3.843 3.994 4.132

1000 1.987 1.998 2.006 3.894 4.000 4.101
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Table 2: Threshold Parameter and Threshold Effect - Endogenous Regressor
This table presents Monte Carlo quantiles of the estimates of the true threshold parameter γ = 2 and true
threshold effect δ2 = 1, 2, 3, 4 in the case of both endogenous regressor and endogenous threshold variable
using a 6th order Hermite basis function.

Threshold Parameter Threshold Effect
Quantile 5th 50th 95th 5th 50th 95th
Sample size

δ2 = 1

100 0.648 1.836 2.980 0.149 0.883 1.554

250 0.908 1.922 2.913 0.499 0.910 1.231

500 1.266 1.962 2.509 0.613 0.932 1.165

1000 1.467 1.973 2.277 0.729 0.948 1.105

δ2 = 2

100 1.011 1.934 2.529 1.120 1.892 2.517

250 1.592 1.983 2.209 1.584 1.974 2.251

500 1.809 1.992 2.079 1.765 1.979 2.185

1000 1.913 1.997 2.040 1.842 1.985 2.125

δ2 = 3

100 1.538 1.969 2.278 2.352 2.979 3.506

250 1.867 1.989 2.088 2.700 2.999 3.252

500 1.929 1.994 2.037 2.800 2.990 3.189

1000 1.971 1.998 2.019 2.857 2.991 3.132

δ2 = 4

100 1.717 1.975 2.151 3.444 3.992 4.507

250 1.904 1.990 2.050 3.720 4.005 4.263

500 1.956 1.995 2.026 3.806 3.992 4.193

1000 1.980 1.998 2.014 3.863 3.992 4.135
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Table 3: Size and Power
This table presents the size (ρ = 0) and the power (ρ > 0) for various orders of Hermite basis functions Ln

and sample sizes. Panel A presents results of the test statistic defined in equation (4.4), which is based on
a White covariance estimator. Panel B present results of a homoskedastic version of the test statistic and
Panel C use Andrews (1991) covariance estimator based on the principle of leave-one-out cross-validation.

Panel A: White covariance matrix

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sample size

Ln = 2

100 0.21 0.62 0.89 0.94 0.95 0.96 0.96 0.97 0.97 0.97
250 0.10 0.60 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 0.08 0.55 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.06 0.56 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Ln = 3

100 0.38 0.75 0.93 0.96 0.97 0.98 0.98 0.98 0.98 0.98
250 0.16 0.65 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 0.12 0.61 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.08 0.56 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Ln = 4

100 0.61 0.86 0.96 0.98 0.99 0.99 0.99 0.99 0.99 0.99
250 0.31 0.74 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 0.19 0.66 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.11 0.58 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Ln = 5

100 0.78 0.93 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99
250 0.52 0.84 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 0.31 0.74 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.17 0.63 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Ln = 6

100 0.90 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
250 0.70 0.90 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 0.51 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.29 0.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 3 continued

Panel B: Homoskedastic covariance matrix

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sample size

Ln = 2

100 0.05 0.40 0.72 0.81 0.84 0.86 0.88 0.88 0.89 0.89
250 0.05 0.50 0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00
500 0.06 0.50 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.06 0.51 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Ln = 3

100 0.06 0.40 0.71 0.81 0.83 0.85 0.86 0.86 0.87 0.87
250 0.05 0.48 0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00
500 0.05 0.51 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.06 0.52 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Ln = 4

100 0.06 0.37 0.68 0.77 0.81 0.82 0.84 0.84 0.84 0.84
250 0.04 0.46 0.91 0.99 1.00 1.00 1.00 1.00 1.00 1.00
500 0.06 0.49 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.05 0.48 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00

Ln = 5

100 0.06 0.35 0.65 0.75 0.78 0.79 0.80 0.81 0.81 0.81
250 0.05 0.42 0.90 0.98 0.99 1.00 1.00 1.00 1.00 1.00
500 0.06 0.44 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.05 0.45 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00

Ln = 6

100 0.07 0.33 0.62 0.72 0.76 0.77 0.77 0.78 0.78 0.78
250 0.05 0.40 0.89 0.98 0.99 0.99 1.00 1.00 1.00 1.00
500 0.07 0.43 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.05 0.42 0.98 0.99 0.99 0.99 1.00 1.00 1.00 1.00
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Table 3 continued

Panel C: Andrews leave-one-out cross-validation

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sample size

Ln = 2

100 0.11 0.48 0.80 0.88 0.91 0.92 0.93 0.93 0.93 0.93
250 0.06 0.53 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 0.06 0.51 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.06 0.54 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Ln = 3

100 0.17 0.53 0.81 0.88 0.92 0.92 0.93 0.93 0.93 0.94
250 0.09 0.54 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 0.08 0.53 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.06 0.54 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Ln = 4

100 0.23 0.54 0.79 0.87 0.90 0.91 0.92 0.92 0.93 0.93
250 0.13 0.55 0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00
500 0.10 0.54 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.07 0.52 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Ln = 5

100 0.31 0.60 0.80 0.86 0.89 0.90 0.91 0.91 0.91 0.92
250 0.16 0.54 0.93 0.99 1.00 1.00 1.00 1.00 1.00 1.00
500 0.14 0.51 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.10 0.51 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Ln = 6

100 0.39 0.66 0.84 0.89 0.90 0.92 0.93 0.93 0.93 0.93
250 0.23 0.54 0.92 0.98 1.00 1.00 1.00 1.00 1.00 1.00
500 0.17 0.51 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.11 0.50 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Appendix

Proof of Theorem 1: Denote Pγ = Xγ

(
X ′

γXγ

)−1X ′
γ , P

−
γ = X−,γ

(
X ′

−,γX−,γ

)−1X ′
−,γ,

and P+
γ = X+,γ

(
X ′

+,γX+,γ

)−1X ′
+,γ, where X−,γ and X+,γ are defined in Section 2.1. Applying

simple calculation gives Pγ = P−
γ + P+

γ . As (In −Pγ)Xγ = 0, by (2.10), we have

Sn (γ) =
n∑

t=1

[
yt −X ′

t,γ θ̂ (γ)
]2

= y′ (In −Pγ)y, (A.1)

where In denotes the n× n identity matrix. Below, we will show that

n−1Sn (γ) = S (γ) + op (1) (A.2)

holds uniformly over γ ∈
[
γ, γ
]
, where S (γ) = S1 (γ) I (γ > γ0) + S2 (γ) I (γ ≤ γ0) , S1 (γ)

is a strictly increasing function of γ over the interval of [γ0, γ], S2 (γ) is a strictly decreasing

function of γ over the interval of
[
γ, γ0

]
and both S1 (γ) and S2 (γ) are continuous over

γ ∈
[
γ, γ
]
. Therefore, S (γ) is a continuous function of γ and is uniquely minimized at γ0,

and we then obtain γ̂
p→ γ0 by Theorem 2.1 in Newey and McFadden (1994) if we can show

that S (γ) is uniquely minimized at point γ0.

Specifically, applying simple algebras give

Sn (γ) = (X−δn + η− (z′πq) + ε̂)
′
(In − Pγ) (X−δn + η− (z′πq) + ε̂)

= δ′nX
′
− (In −Pγ)X−δn + η− (zπq)

′ (In −Pγ)η− (z′πq) + ε̂
′ (In − Pγ) ε̂

+2δ′nX
′
− (In − Pγ)η− (zπq) + 2δ′nX

′
− (In − Pγ) ε̂+ 2η− (zπq)

′ (In − Pγ) ε̂

= Sn1 + Sn2 + Sn3 + 2 (Sn4 + Sn5 + Sn6) ,

where X− is an n × dx matrix with its tth row equal to x′
tI (qt ≤ γ0), and η− (zπq) is an
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n× 1 vector with its tth element equal to ηn (z
′
tπq) I (qt ≤ γ0), ε̂ is an n× 1 vector stacking

up ε̂t = h2 (z
′
tπq)−h∗2 (z′tπ̂q)+ εt, and the subscript j in Snj (j=1,. . . ,6) is labelled according

to the ordering of appearance.

(i) Under Assumption 1(v), we have

Sn1 = δ′nX
′
− (In − Pγ)X−δn = n−2ςδ′0X

′
− (In − Pγ)X−δ0,

Sn2 = η− (zπq)
′ (In −Pγ)η− (zπq) = n−2̺η0,− (zπq)

′ (In −Pγ)η0,− (zπq) ,

Sn4 = δ′nX
′
− × (In − Pγ)η− (zπq) = n−ς−̺δ′0X

′
− (In −Pγ)η0,− (zπq) ,

where η0,− (zπq) is an n × 1 vector with its tth element equal to η0 (z
′
tπq) I (qt ≤ γ0). By

Lemmas 1 and 2 of the Online Appendix, we have

max
γ∈[γ,γ]

∣∣n−1δ′0X
′
−PγX−δ0 − δ′0g′1 (γ)Σ−1

X ∗X ∗′,γg1 (γ) δ0
∣∣ = op (1) , (A.3)

max
γ∈[γ,γ]

∣∣n−1η0,− (zπq)
′
Pγη0,− (zπq)− g′2 (γ)Σ−1

X ∗X ∗′,γg2 (γ)
∣∣ = op (1) , (A.4)

max
γ∈[γ,γ]

∣∣n−1δ′0X
′
−Pγη0,− (zπq)− δ′0g′1 (γ)Σ−1

X ∗X ∗′,γg2 (γ)
∣∣ = op (1) . (A.5)

Under Assumption 1(i), {(x′
t, qt, z

′
t, ut)} is ergodic by Proposition 3.44 in White (2001). As

E (‖xtx
′
t‖) < ∞ under Assumption 2(i) and a uniformly bounded η0 (·) under Assumption

2(iii), we apply the law of large numbers for stationary ergodic time series data and obtain

n−1δ′0X
′
−X−δ0

a.s.→ δ′0E [xtx
′
tI (qt ≤ γ0)] δ0 ≡ δ′0m1 (γ0) δ0, (A.6)

n−1η0,− (zπq)
′
η0,− (zπq)

a.s.→ E
[
η20 (z

′
tπq) I (qt ≤ γ0)

]
≡ m2 (γ0) , (A.7)

n−1δ′0X
′
−η0,− (zπq)

a.s.→ δ′0E [xtη0 (z
′
tπq) I (qt ≤ γ0)] ≡ δ′0m3 (γ0) . (A.8)

(ii) We consider Sn,3 (γ) = ε̂
′ (In − Pγ) ε̂ = ε̂

′ε̂− ε̂′Pγε̂. Note that h2 (z
′
tπq)− h∗2 (z

′
tπ̂q)
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= [h2 (z
′
tπq)− h∗2 (z

′
tπq)] + [h∗2 (z

′
tπq)− h∗2 (z

′
tπ̂q)], where the first term is uniformly bounded

by O
(
L−ξ
n

)
for all t by Assumption 2(iv), and the second term h∗2 (z

′
tπq) − h∗2 (z

′
tπ̂q)

= α′
Ln,2 [ΦLn

(z′tπq)−ΦLn
(z′tπ̂q)] = α′

Ln,2Φ
(1)
Ln

(z′tπ̃q) z
′
t (πq − π̂q) with z′tπ̃q lying between

z′tπq and z′tπ̂q. It therefore follows

1

n

n∑

t=1

[h2 (z
′
tπq)− h∗2 (z

′
tπ̂q)]

2
= Op

(
L−2ξ
n + n−1 ‖ΦLn

‖21
)

(A.9)

under Assumptions 1(i)-(ii) and 2(iv)-(v) as
∑∞

l=1 α
2
l,2 =

∫
h22 (ω) dw < ∞ by Parseval’s

equality if h2 (·) is squared integrable over its domain. Therefore, we have

n−1ε̂′ε̂ = n−1

n∑

t=1

ε2t +O
(
L−2ξ
n

)
+Op

(
n−1/2 ‖ΦLn

‖1
)

(A.10)

under Assumption 1(iii). In addition, we have ε̂′Pγε̂ = ‖Pγε̂‖2 ≤ ‖h2 (zπq)− h∗2 (zπ̂q)‖2

+ ‖Pγε‖2 by the triangular inequality, |x′Ax| ≤ λmax (A)x′x, and an idempotent matrix’s

eigenvalues equal to either zeros or ones. Applying Lemma 3 of the Online Appendix gives

maxγ∈[γ,γ] n
−1ε′Pγε = Op (Ln/n). Therefore, we obtain

max
γ∈[γ,γ]

∣∣n−1Sn,3 (γ)− n−1ε′ε
∣∣ = Op

(
ϑ2n
)
, (A.11)

where we denote ϑn = L−ξ
n +

√
Ln/n+ n−1/2 ‖ΦLn

‖1.

(iii) We consider Sn,5 (γ) = δ′nX
′
− (In − Pγ) ε̂ = n−ςδ′0X

′
− (In − Pγ) ε̂, where

n−1δ′0X
′
−ε̂ = n−1

n∑

t=1

δ′0x
′
tI (qt ≤ γ0) [h2 (z

′
tπq)− h∗2 (z

′
tπ̂q) + εt]

= Op

(
L−ξ
n + ‖ΦLn

‖1 n−1/2 + n−1/2
)
. (A.12)
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As |x′Ay| ≤ ‖Ax‖ ‖Ay‖ for any conformable vectors x and y, and matrix A, we have

max
γ∈[γ,γ]

δ′0X
′
−Pγ ε̂

n
≤ 1

n
max
γ∈[γ,γ]

‖PγX−δ0‖ ‖Pγ ε̂‖ = Op (ϑn) . (A.13)

It follows that

max
γ∈[γ,γ]

∣∣n−1Sn,5 (γ)
∣∣ = Op

(
n−ςϑn

)
. (A.14)

Similarly, for Sn,6 (γ) = η− (z′πq)
′ (In − Pγ) ε̂ = n−̺η0,− (z′πq)

′ (In −Pγ) ε̂,we obtain

max
γ∈[γ,γ]

∣∣n−1Sn,6 (γ)
∣∣ = Op

(
n−̺ϑn

)
. (A.15)

(iv) Taking together (A.3)-(A.15) gives

max
γ∈[γ,γ]

∣∣n−1Sn (γ)− S1 (γ)
∣∣ = op (1) (A.16)

where

S1 (γ) =σ̄
2
ε + n−2ςδ′0m1 (γ0) δ0 + n−2̺m2 (γ0) + 2n−ς−̺δ′0m3 (γ0)− µ (γ),

σ̄2
ε = limn→∞ n−1

∑n
t=1 E (ε2t ), and

µ (γ) = [n−ςg1 (γ) δ0 + n−̺g2 (γ)]
′
Σ−1

X ∗X ∗′,γ [n
−ςg1 (γ) δ0 + n−̺g2 (γ)]. Evidently, S1 (γ) is

continuous in γ.

(v) Denote D (γ) = E [χ∗
tχ

∗′
t I (qt ≤ γ)] and M (γ) = E [χ∗

tη0 (z
′
tπq) I (qt ≤ γ)], where

χ∗
t =

[
x′
t,Φ

′
Ln

(z′tπq)
]′
. Then, we have

ΣX ∗X ∗′,γ = E
(
X ∗

t,γX ∗′
t,γ

)
=



D (γ) 0

0′ Σχ∗χ∗′ −D (γ)


 ,

and for γ ∈ [γ0, γ], g
′
1 (γ) = [D′

1 (γ) , 0
′] and g′2 (γ) = [M ′ (γ) , 0′], where D1 (γ) =
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E [χ∗
tx

′
tI (qt ≤ γ)]. As for any random variable z, d {E [zI (q ≤ γ)]} /dγ = E (z|q =γ) fq (γ),

we have D(1) (γ) = E (χ∗
tχ

∗′
t |qt = γ) fq (γ), M

(1) (γ) = E (χ∗
tη0 (z

′
tπq) |qt = γ) fq (γ), and

∂ (ΣX ∗X ∗′,γ) /∂γ = diag {1,−1} ⊗ D(1) (γ). Moreover, applying Propositions 17.3(a) and

17.25 in Seber (2008), for any differentiable function a (γ), we have

d
(
a (γ)Σ−1

X ∗X ∗′,γa (γ)
)

dγ
= 2a′ (γ)Σ−1

X ∗X ∗′,γ

d (a (γ))

dγ
−a′ (γ)Σ−1

X ∗X ∗′,γ

d (ΣX ∗X ∗′,γ)

dγ
Σ−1

X ∗X ∗′,γa (γ) .

Hence, we have

−dµ (γ)
dγ

=
[
n−ςD1 (γ) δ0 + n−̺M (γ)

]′
D−1 (γ)D(1) (γ)D−1 (γ)

[
n−ςD1 (γ) δ0 + n−̺M (γ)

]
> 0

as D−1 (γ)D(1) (γ)D−1 (γ) is a p.d.f. matrix uniformly over γ under Assumption 2(ii).

Therefore, S1 (γ) is a strictly increasing function over γ ∈ [γ0, γ].

By symmetry, we can rewrite Sn (γ) as

Sn (γ) = [−X+δ − η+ (z′πq) + ε̂]
′
(In − Pγ) [−X+δ − η+ (z′πq) + ε̂]

where X+ is an n × dx matrix with its tth row equal to x′
tI (qt > γ0), and η+ (z′πq) is an

n×1 vector with its tth element equal to η (z′tπq) I (qt > γ0), ε̂ is an n×1 vector stacking up

ε̂t = h1 (z
′
tπq) − h∗1 (z

′
tπ̂q) + εt. Applying the same proof method used above, we can show

that

max
γ∈[γ,γ]

∣∣n−1Sn (γ)− S2 (γ)
∣∣ = op (1) (A.17)

where S2 (γ) equals S1 (γ) with I (qt ≤ γ0) replaced by I (qt > γ0). For γ ∈
[
γ, γ0

]
, we have
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g′1 (γ) =
[
0′,Σ′

χ∗χ∗′ −D′ (γ)
]
and g′2 (γ) = [0′, E [χ∗

tη0 (z
′
tπq) I (qt > γ)]], so that

−dµ (γ)
dγ

= −{[Σχ∗χ∗′ −D (γ)] δ0 + E [χ∗′
t η0 (z

′
tπq) I (qt > γ)]}′ [Σχ∗χ∗′ −D (γ)]−1

D(1) (γ)

× [Σχ∗χ∗′ −D (γ)]−1 {[Σχ∗χ∗′ −D (γ)] δ0 + E [χ∗′
t η0 (z

′
tπq) I (qt > γ)]}

< 0.

Therefore, S2 (γ) is a strictly decreasing function of γ ∈
[
γ, γ0

]
.

To sum up, we have

max
γ∈[γ,γ]

∣∣n−1Sn (γ)− S (γ)
∣∣ = op (1) (A.18)

where S (γ) = S1 (γ) I (γ > γ0)+S2 (γ) I (γ ≤ γ0) is continuous function of γ and is uniquely

minimized at γ0. It then follows γ̂
p→ γ0.

Finally, we verify
∥∥∥θ̂ − θ

∥∥∥ = Op (ϑn + n−ς) in Lemma 4 of the Online Appendix. This

completes the proof of this theorem.

Proof of Theorem 2: In matrix form, we have y = Xβ2 + Xγ0δn + h2 (zπq) +

ηn,γ0 (zπq) + ε, and

y −Xγ θ̂

= Xβ2 +Xγ0δn + h2 (zπq) + ηn,γ0 (zπq) + ε−Xβ̂2 −Xγ δ̂n − ĥ∗
2 (zπ̂q)− η̂∗

n,γ (zπ̂q)

= ε+∆n −∆Xγ δ̂n −∆η̂∗
n,γ (zπ̂q)

where ∆Xγ = Xγ − Xγ0 , ∆η̂∗
n,γ = η̂∗

n,γ (zπ̂q) − η̂∗
n,γ0

(zπ̂q), ∆n = X
(
β2 − β̂2

)
+

Xγ0

(
δn − δ̂n

)
+h2 (zπq) − ĥ∗

2 (zπ̂q) +ηn,γ0 (zπq) − η̂∗
n,γ0 (zπ̂q), and the typical element

of X, Xγ , h2 (zπq), ĥ
∗
2 (zπ̂q), ηn,γ (zπq), and η̂∗

n,γ (zπ̂q) are xt, xtI (qt ≤ γ), h2 (z
′
tπq),
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ĥ∗
2 (z

′
tπ̂q), ηn (z

′
tπq) I (qt ≤ γ), and η̂∗

n,γ (z
′
tπ̂q) I (qt ≤ γ), respectively. Denote Sn (γ) =

(
y − Xγθ̂

)′ (
y − Xγθ̂

)
. Then γ̂ minimizes

Sn (γ)− Sn (γ0)

=
(
∆η̂∗

n,γ (zπ̂q) + ∆Xγ δ̂n

)′ (
∆η̂∗

n,γ (zπ̂q) + ∆Xγ δ̂n

)

−2 (ε+∆n)
′
(
∆η̂∗

n,γ (zπ̂q) + ∆Xγ δ̂n

)

= κ′n

n∑

t=1

χtχ
′
td

2
t (γ, γ0)κn − 2κ̂′n

n∑

t=1

εtχtdt (γ, γ0)

−2κ̂′n

n∑

t=1

[(
β2 − β̂2

)′
xt +

(
δn − δ̂n

)′
xtI (qt ≤ γ0)

+h2 (z
′
tπq)− ĥ∗2 (z

′
tπ̂q) + n−̺ (η0 (z

′
tπq)− η̂∗0 (z

′
tπ̂q)) I (qt ≤ γ0)

]
χtdt (γ, γ0)

+ (κ̂n + κn)
′

n∑

t=1

χtχ
′
td

2
t (γ, γ0) (κ̂n − κn)

= S∗
n,1 (γ)− 2S∗

n,2 (γ)− 2S∗
n,3 (γ) + S∗

n,4 (γ) (A.19)

where we denote χt =
[
x′
t,Φ

′
Ln

(z′tπ̂q)
]′
, κ̂n =

[
δ̂′n, n

−̺α̂′
Ln,0

]′
and κn =

[
n−ςδ′0, n

−̺α′
Ln,0

]′

with δ̂n = β̂1−β̂2, n
−̺α̂Ln,0 = α̂Ln,1−α̂Ln,2, n

−ςδ0 = β1−β2 and n
−̺αLn,0 = αLn,1−αLn,2.

Closely following the proof of A.9 in Hansen (2000), we can show that

an (γ̂ − γ0) = argmax
v
Qn (v) = Op (1) ,

where an = n1−2min(ς,̺) and Qn (v) = Sn (γ0)− Sn (γ0 + v/an).

Now, we consider S∗
n,1 (γ) = κ

′
n

∑n
t=1 χtχ

′
td

2
t (γ, γ0)κn. For any given v ∈ [v, v], a finite
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interval, we have

S∗
n,1 (v) = κ′

n

n∑

t=1

χtχ
′
td

2
t

(
γ0 +

v

an
, γ0

)
κn

= Gn (v) + 2

n∑

t=1

κ′
n (χt − χ∗

t )χ
∗′
t κnd

2
t

(
γ0 +

v

an
, γ0

)

+

n∑

t=1

[κ′
n (χt − χ∗

t )]
2
d2t

(
γ0 +

v

an
, γ0

)

= Gn (v) + 2n−2̺
n∑

t=1

α′
Ln,0 [ΦLn

(z′tπ̂q)−ΦLn
(z′tπq)] η

∗
0 (z

′
tπq) d

2
t

(
γ0 +

v

an
, γ0

)

+n−2̺
n∑

t=1

(
α′

Ln,0 [ΦLn
(z′tπ̂q)−ΦLn

(z′tπq)]
)2
d2t

(
γ0 +

v

an
, γ0

)

= Gn (v) + An (v) ,

where we denote χ∗
t =

[
x′
t,Φ

′
Ln

(z′tπq)
]′
, and Gn (v) =

∑n
t=1 (κ

′
nχ

∗
t )

2 d2t (γ0 + v/an, γ0) is

uniformly bounded in probability over v ∈ [v, v] by Lemma 5 of the Online Appendix. As

π̂q − πq = Op

(
n−1/2

)
and max1≤t≤n |η∗0 (z′tπq)| <∞ under Assumptions 2(iii)-(iv), we have

|An (v)|

≤ Mn−1/2−2̺ ‖ΦLn
‖1

n∑

t=1

‖zt‖ d2t
(
γ0 +

v

an
, γ0

)
+Mn−1−2̺ ‖ΦLn

‖21
n∑

t=1

d2t

(
γ0 +

v

an
, γ0

)

= Op

(
n1/2−2̺ ‖ΦLn

‖1 a−1
n

)
+Op

(
n−2̺ ‖ΦLn

‖21 a−1
n

)

= Op

(
n−1+2[min(ς,̺)−̺] ‖ΦLn

‖21
)
= op (1)

under Assumption 3. Also, closely following the interval split method used in the proof of

Lemma 1 of the Online Appendix, we can show that An (v) = op (1) holds uniformly over

v ∈ [v, v]. Hence, Gn (v) is the leading term of S∗
n,1 (v) for any v ∈ [v, v].
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Secondly, we consider S∗
n,2 (γ) = κ̂

′
n

∑n
t=1 εtχtdt (γ, γ0). For any given v ∈ [v, v], we have

S∗
n,2 (v) = κ̂′

n

n∑

t=1

εtχtdt

(
γ0 +

v

an
, γ0

)

= Rn (v) + κ̂
′
n

n∑

t=1

εt (χt − χ∗
t ) dt

(
γ0 +

v

an
, γ0

)

+ (κ̂n − κn)
′

n∑

t=1

εtχ
∗
tdt

(
γ0 +

v

an
, γ0

)

= Rn (v) [1 + op (1)] +Op

(
n−1/2−̺+min(̺,ς) ‖ΦLn

‖1
)

if ‖κ̂n − κn‖ = op(1), where Rn (v) =
∑n

t=1 εtκ
′
nχ

∗
tdt (γ0 + v/an, γ0) = Oe (1) holds

uniformly over v ∈ [v, v] by Lemma 5 of the Online Appendix. Therefore, we show that

the leading term of S∗
n,2 (v) is Rn (v) under Assumption 3. Note that we can improve the

result in Lemma 4 of the Online Appendix to
∥∥∥θ̂ − θ

∥∥∥ = Op (ϑn) as γ̂ = γ0 +Op (an).

Thirdly, we can show that S∗
n,4 (v) = (κ̂n + κn)

′∑n
t=1χtχ

′
td

2
t (γ0 + v/an, γ0) (κ̂n − κn)

= op
(
S∗
n,1 (v)

)
and S∗

n,3 (v) = op
(
S∗
n,1 (v)

)
. And, taking above results together with Lemma

5 of the Online Appendix, we have Qn (v) = −Gn (v) + 2Rn (v) + op (1) and

Q (v) = −µ |v|+ 2
√
σ2
1W1 (v) I (v ≤ v ≤ 0) +

√
σ2
2W2 (v) I (0 < v ≤ v) .

Following the proof of Theorem 1 in Kourtellos, Stengos, and Tan (2016), we complete the

proof of this theorem.

Proof of Theorem 3: Denote ∆v = [∆−,v,∆+,v] andXv = [X−,v,X+,v], where the t
th

row vector of ∆−,v, ∆+,v, X−,v and X+,v are ∆−
v,t = ΦLn

(z′tπ̂q) I (qt ≤ γ0 + v/an), ∆
+
v,t =

ΦLn
(z′tπ̂q) I (qt > γ0 + v/an), X

−
v,t = xtI (qt ≤ γ0 + v/an), and X

+
v,t = xtI (qt > γ0 + v/an),

respectively. Also, denote Pv = ∆v (∆
′
v∆v)

−1∆′
v and v̂ = an (γ̂ − γ0). Applying the

partitioned least squares gives β̂ − β = [X ′
v̂ (In −Pv̂)Xv̂]

−1
X ′

v̂ (In −Pv̂) (y −Xv̂β).
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Firstly, we consider An (v) = X ′
v (In − Pv)Xv = X ′

vXv −X ′
vPvXv. Denote An1 (v)

= n−1
∑n

t=1 xtx
′
tI (qt ≤ γ0 + v/an), An2 (v) = n−1

∑n
t=1ΦLn

(z′tπ̂q)x
′
tI (qt ≤ γ0 + v/an), and

An3 (v) = n−1
∑n

t=1ΦLn
(z′tπ̂q)ΦLn

(z′tπ̂q) I (qt ≤ γ0 + v/an). By Lemma 1 of the Online

Appendix, we have

An1 (v) = E [An1 (v)] + op (1) = E [xtx
′
tI (qt ≤ γ0)]

[
1 +O

(
a−1
n

)]
+ op (1)

A∗
n2 (v) = E [A∗

n2 (v)] + op (1) = E [ΦLn
(z′tπq)x

′
tI (qt ≤ γ0)]

[
1 +O

(
a−1
n

)]
+ op (1)

uniformly over v ∈ [v, v], whereA∗
n2 (v) equalsAn2 (v) with π̂q replaced with πq. In addition,

by equation (B.3) of the Online Appendix we can show that

max
v∈[v,v]

‖An2 (v)−A∗
n2 (v)‖ = Op

(
‖ΦLn

‖1 n−1/2
)
= op (1)

under Assumption 3. And, from the proof of Lemma 2 of the Online Appendix, we have

An3 (v) = E [ΦLn
(z′tπq)ΦLn

(z′tπq) I (qt ≤ γ0)]
[
1 +O

(
a−1
n

)]
+ op (1)

uniformly over v ∈ [v, v]. Hence, we obtain n−1X ′
v̂Xv̂

p→ Σxx′,γ0, n
−1X ′

v̂∆v̂
p→ ΣxΦ′

Ln
,γ0 ,

and n−1∆′
v̂∆v̂

p→ ΣΦLnΦ
′

Ln
,γ0 , where

Σxx′,γ0 ≡



E [xtx

′
tI (qt ≤ γ0)] 0

0′ E [xtx
′
tI (qt > γ0)]


 ,

ΣxΦ′

Ln
,γ0 ≡



E
[
xtΦLn

(z′tπq)
′ I (qt ≤ γ0)

]
0

0′ E [ΦLn
(z′tπq)x

′
tI (qt > γ0)]


 ,

ΣΦLnΦ
′

Ln
,γ0 ≡



E
[
ΦLn

(z′tπq)ΦLn
(z′tπq)

′ I (qt ≤ γ0)
]

0

0′ E
[
ΦLn

(z′tπq)Φ
′
Ln

(z′tπq) I (qt > γ0)
]


 .
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It then follows

n−1An (v̂)
p→ Σxx′,γ0 −ΣxΦ′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0
ΣΦLnx

′,γ0 ≡ J . (A.20)

Secondly, we consider Bn (v̂), where Bn (v) = n−1X ′
v (In − Pv) (y −Xvβ), yt −X ′

v,tβ

= ηv,0,t + h1 (z
′
tπq) I (qt ≤ γ0) +h2 (z

′
tπq) I (qt > γ0) +εt and ηv,0,t = −δ′nxtdt (γ0 + v/an, γ0).

(i) We will show n−1X ′
v̂ (In −Pv̂)ηv̂,0 = op

(
n−1/2

)
, where ηv,0 is an n ×

1 vector with its tth element equal to ηv,0,t. By Lemma 1 of the Online

Appendix, n−1
∑n

t=1 δ
′
nxtx

′
tdt (γ0 + v/an, γ0) = n−ςE [δ′0xtx

′
tdt (γ0 + v/an, γ0)] [1 + op (1)] =

Op (a
−1
n n−ς) holds uniformly over v ∈ [v, v]. Hence, we obtain n−1X ′

v̂ηv̂,0 = Op (a
−1
n n−ς).

Moreover, we have

∥∥n−1X ′
v̂Pv̂ηv̂,0

∥∥ ≤
∥∥∥n−1X ′

v̂∆v̂ (∆
′
v̂∆v̂/n)

−1/2
∥∥∥
sp

∥∥∥n−1 (∆′
v̂∆v̂/n)

−1/2
∆′

v̂ηv̂,0

∥∥∥
sp

≤ λ1/2max

(
ΣxΦ′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0
ΣΦLnx

′,γ0

)
[1 + op (1)]

√
n−1η′

v̂,0ηv̂,0 = Op

(
a−1/2
n n−ς

)
.

Therefore, we obtain n−1X ′
v̂ (In − Pv̂)ηv̂,0 = Op

(
a
−1/2
n n−ς

)
= op

(
n−1/2

)
.

(ii) We will consider n−1X ′
v̂ (In − Pv̂)h1,γ0 (zπq), where h1,γ0 (zπq) denotes an

n × 1 vector and its tth element equals h1 (z
′
tπq) I (qt ≤ γ0). As In − Pv̂ removes

any linear combination of ΦLn
(z′tπ̂q) I (qt ≤ γ0 + v̂/an), we have (In − Pv̂)h1,γ0 (zπq)

= (In − Pv̂)
[
h1,γ0 (zπq)− h∗

1,v̂ (zπ̂q)
]
, where the tth element of h∗

1,v (zπ̂q) equals
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h∗1 (z
′
tπ̂q) I (qt ≤ γ0 + v/an) and

h1 (z
′
tπq) I (qt ≤ γ0)− h∗1 (z

′
tπ̂q) I (qt ≤ γ0 + v/an)

= [h1 (z
′
tπq)− h∗1 (z

′
tπq)] I (qt ≤ γ0)− h∗1 (z

′
tπ̂q) dt (γ0 + v/an, γ0)

+ [h∗1 (z
′
tπq)− h∗1 (z

′
tπ̂q)] I (qt ≤ γ0)

= ηv,1,t + ηv,2,t,

where we denote ηv,2,t = [h∗1 (z
′
tπq)− h∗1 (z

′
tπ̂q)] I (qt ≤ γ0). Let ηv,j = [ηv,j,1, . . . , ηv,1,n]

′ for

j=1,2. Applying again Lemma 1 of the Online Appendix, we show that n−1X ′
vηv,1 and

n−1∆′
vηv,1 are both of order Op

(
L−ξ
n + a−1

n

)
uniformly over v ∈ [v, v]. Hence, we obtain

n−1X ′
v̂ (In − Pv̂)ηv̂,1 = Op

(
L−ξ
n + a−1

n

)
= op

(
n−1/2

)
if min (ς, ̺) < 1/4 and

√
nL−ξ

n = o (1).

Next, as h∗1 (z
′
tπq)−h∗1 (z′tπ̂q) = h1 (z

′
tπq)−h1 (z′tπ̂q)+O

(
L−ξ
n

)
= h

(1)
1 (z′tπ̃q) z

′
t (πq − π̂q)+

O
(
L−ξ
n

)
, closely following the proof of Lemma 1 of the Online Appendix, we have

max
v∈[v,v]

∥∥∥∥∥n
−1

n∑

t=1

wteth
(1)
1 (z′tπ̃q) z

′
tI (qt ≤ γ0)−E

[
wteth

(1)
1 (z′tπq) z

′
tI (qt ≤ γ0)

]∥∥∥∥∥ = op (1)

where wt = xt or ΦLn
(z′tπq) and et = I (qt ≤ γ0 + v/an) or et = I (qt > γ0 + v/an). It

then follows n−1X ′
−,v̂ηv̂,2 = Γx,1 (πq − π̂q) + Op

(
L−ξ
n

)
, n−1X ′

+,v̂ηv̂,2 =

Op

(
a−1
n ‖ΦLn

‖1 /
√
n+ L−ξ

n

)
, n−1∆′

−,v̂ηv̂,2 = ΓΦLn,1
(πq − π̂q) + Op

(
L−ξ
n

)
, n−1∆′

+,v̂ηv̂,2 =

Op

(
a−1
n ‖ΦLn

‖1 /
√
n+ L−ξ

n

)
, where we denote Γx,1 = E

[
xth

(1)
1 (z′tπq) z

′
tI (qt ≤ γ0)

]
and

ΓΦLn ,1
= E

[
ΦLn

(z′tπq) h
(1)
1 (z′tπq) z

′
tI (qt ≤ γ0)

]
. Hence, we have

n−1X ′
v̂ (In − Pv̂)h1,γ0 (zπq) = B1 (πq − π̂q) + op

(
n−1/2

)

where

B1 =
[
Γ′

x,1, 0
′
]′ −ΣxΦ′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0

[
Γ′
ΦLn ,1

, 0′
]′
. (A.21)
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(iii) Let h2,γ0 (zπq) denote an n×1 vector and its tth element equals h2 (z
′
tπq) I (qt > γ0).

Closely following the proof for (ii) above, we obtain that the leading term of

n−1X ′
v̂ (In − Pv̂)h2,γ0 (zπq) is

B2 =
[
0′,Γ′

x,2

]′ −ΣxΦ′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0

[
0′,Γ′

ΦLn ,2

]′
(A.22)

where

Γx,2 = E
[
xth

(1)
2 (z′tπq) z

′
tI (qt > γ0)

]

and

ΓΦLn ,2
= E

[
ΦLn

(z′tπq)h
(1)
2 (z′tπq) z

′
tI (qt > γ0)

]
,

Taking together all the results above, we have

Bn (v̂) = n−1X ′
v̂ (In − Pv̂) (y −Xv̂β)

= −B (π̂q − πq) + n−1X ′
v̂ (In − Pv̂) ε+ op

(
n−1/2

)

= −B (π̂q − πq) + n−1
(
X0 −ΣxΦ′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0
∆0

)
ε+ op

(
n−1/2

)

where B = B1 + B2 =
[
Γ′

x,1,Γ
′
x,2

]′ − ΣxΦ′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0

[
Γ′

ΦLn ,1
,Γ′

ΦLn ,2

]′
. Applying

Wooldridge and White’s central limit theorem for strong mixing process (White (2001),

Th. 5.2, p.130), we obtain




n−1/2
∑n

t=1 ztvq,t

n−1/2
(
X0 −ΣxΦ′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0
∆0

)
ε


 d→ N


0,




Ω11 Ω12

Ω′
12 Ω22







where Ω11 = limn→∞ V ar
(
n−1/2

∑n
t=1 ztvq,t

)
, Ω12 = limn→∞ n−1

∑n
t=2

∑t−1
s=1E (ztϕ

′
svq,tεs) =

45



O (1) under Assumption 1, and φ is the sth element of
(
X0 −ΣxΦ′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0
∆0

)

Ω22 = Σε,xx′,γ0 −ΣxΦ′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0
Σε,ΦLnx

′,γ0 −Σε,xΦ′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0
ΣΦLnx

′,γ0

+ΣxΦ′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0
Σε,ΦLnΦ

′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0
ΣΦLnx,γ0

.

Therefore, we obtain
√
n
(
β̂ − β

)
d→ N (0,Ω), where

Ω = B [E (z1z
′
1)]

−1
Ω11 [E (z1z

′
1)]

−1
B − 2BΩ12 +Ω22. (A.23)

This completes the proof of this theorem.

Proof of Theorem 4: Denoting Kh (ω) = K ((q̂t − ω) /h), Wt = [1, (q̂t − ω) /h]T , and

Xt,γ = [1, I(qt ≤ γ)]′, xt,γ = xtI (qt ≤ γ), and η0,γ (ω) = η0 (ω) I (qt ≤ γ), we have



ψ̃ (ω)

ψ̇ (ω)


 ≡

[
1

nh

n∑

t=1

K

(
q̂t − w

h

)
(WtW ′

t)⊗
(
Xt,γ̂X ′

t,γ̂

)
]−1

1

nh

n∑

t=1

K

(
q̂t − w

h

)
(Wt ⊗ Xt,γ̂) ỹt

=




ψ (ω)

hψ(1) (ω)


+A−1

n1 (An2/2 +An3 +An4) ,

where ỹt = yt − x′
−,tβ̂1 − x′

+,tβ̂2 and ψ(s) (ω) = ∂sψ (ω) /∂ws for an integer s > 0, ψ̃ (ω) and
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ψ̇ (ω) are the estimator for ψ (ω) and hψ(1) (ω), respectively, and

An1 =
1

nh

n∑

t=1

K

(
q̂t − w

h

)
(WtW ′

t)⊗
(
Xt,γ̂X ′

t,γ̂

)

An2 =
1

nh

n∑

t=1

(q̂t − ω)2K

(
q̂t − w

h

)
(Wt ⊗Xt,γ̂)X ′

t,γψ
(2) (q̃t)

An3 =
1

nh

n∑

t=1

K

(
q̂t − w

h

)
(Wt ⊗ Xt,γ̂) λt

An4 =
1

nh

n∑

t=1

K

(
q̂t − w

h

)
(Wt ⊗ Xt,γ̂) εt,

λt = x′
t

(
β2 − β̂2

)
+δ′nxt,γ0 − δ̂′nxt,γ̂ +h2 (z

′
tπq)−h2 (q̂t)+n−̺ [η0,γ0 (z

′
tπq)− η0,γ̂ (z

′
tπ̂q)], and

q̃t lies between q̂t and w.

Firstly, we calculate

K

(
q̂t − w

h

)
= K

(
z′tπq − w

h

)
+K ′

(
z′tπq − w

h

)
z′t (π̂q − πq)

h

+ . . .+
1

r!
K(rk)

(
ζtz

′
t (π̂q − πq) + z′tπq − w

h

)(
z′t (π̂q − πq)

h

)rk

(A.24)

for some ζt ∈ (0, 1) uniformly for all t and some rk > 2. Therefore, we obtain

An1 =
1

nh

n∑

t=1

K

(
z′tπq − w

h

)
(WtW ′

t)⊗
(
Xt,γ̂X ′

t,γ̂

)

+
1

nhj!

rk−1∑

j=1

n∑

t=1

K(j)

(
z′tπq − w

h

)(
z′t (π̂q − πq)

h

)j

(WtW ′
t)⊗

(
Xt,γ̂X ′

t,γ̂

)

+
1

nhrk!

n∑

t=1

K(rk)

(
ζtz

′
t (π̂q − πq) + z′tπq − w

h

)(
z′t (π̂q − πq)

h

)rk

(WtW ′
t)⊗

(
Xt,γ̂X ′

t,γ̂

)

= An1,1 +An1,2 +An1,3,
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where as π̂q − πq = Op

(
n−1/2

)
and γ̂ − γ0 = Op

(
n−1+2min(ς,̺)

)
, we obtain

An1,1 = fzπ (ω)




1 0

0 κ1,2


⊗ E

(
X1,γ0X ′

1,γ0
|z′1πq = ω

)

+Op

(
h2 + (nh)−1/2 h(2−r′)/(2r′) +

(√
nh
)−1

+ n2min(ς,̺)−1
)

under Assumption 4, where we apply Davydov’s inequality to obtain the stochastic order of

the variance of each term in An1,1. In addition, under Assumption 5(ii), we have

An1,2 =
1

nhj!

r−1∑

j=1

n∑

t=1

K(j)

(
z′tπq − w

h

)(
z′t (π̂q − πq)

h

)j

(WtW ′
t)⊗

(
Xt,γ̂X ′

t,γ̂

)

≤ 1

nhj!

r−1∑

j=1

n∑

t=1

∣∣∣∣∣K
(j)

(
z′tπq − w

h

)(
z′t (π̂q − πq)

h

)j
∣∣∣∣∣
∥∥(WtW ′

t)⊗
(
Xt,γ̂X ′

t,γ̂

)∥∥

= Op

(
1

(
√
nh)

j

)

and

An1,3 =
1

nhrk!

n∑

t=1

K(rk)

(
ζtz

′
t (π̂q − πq) + z′tπq − w

h

)(
z′t (π̂q − πq)

h

)rk

(WtW ′
t)⊗

(
Xt,γ̂X ′

t,γ̂

)

≤ M

nhrk!

n∑

t=1

∣∣∣∣
(
z′t (π̂q − πq)

h

)rk
∣∣∣∣
∥∥(WtW ′

t)⊗
(
Xt,γ̂X ′

t,γ̂

)∥∥ = Op

(
n−rk/2h−rk−3

)
.

Therefore, under Assumption 5, we have An1,2 = op (1) and An1,3 = op (1).
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Similarly, we can show that

An2

h2

= fzπ (ω)



κ1,2

0


⊗




h
(2)
2 (ω) + n−̺η

(2)
0 (ω)E [I (qt ≤ γ0) |w][

h
(2)
2 (ω) + n−̺η

(2)
0 (ω)

]
E [I (qt ≤ γ0) |w]




+Op

(
h2 + (nh)−1/2 h(2−r′)/(2r′) +

(√
nh
)−1

+ n2min(ς,̺)−1
)

+Op

(
n−(rk+2)/2

[
h−(rk+3), h−(rk+4)

]′)

and by Theorem 3 and under Assumptions 4 and 5, we have

An3 = Op

(
‖ΦLn

‖1 n−1/2
(
h2 + (nh)−1/2 h(2−r′)/(2r′) +

(√
nh
)−1

+ n2min(ς,̺)−1
))

+Op

(
‖ΦLn

‖1 n−(rk+1)/2
[
h−(rk+1), h−(rk+3)

])
.

Now, we consider An4. Applying similar method used above, we have

An4 =
1

nh

n∑

t=1

K

(
q̂t − w

h

)
(Wt ⊗ Xt,γ̂) εt = An4,1 +An4,2,

where we have

√
nhAn4,1 =

1√
nh

n∑

t=1

K

(
q̂t − w

h

)
(Wt ⊗ Xt,γ0) εt

=
1√
nh

n∑

t=1

εtK

(
z′tπq − w

h

)






1

(z′tπq − ω) /h


⊗ Xt,γ0




+Op

((
nh3/2

)−1
)
+Op

(
n−rk/2

[
h−(rk+1), h−(rk+2)

]′)

d→ N


0, fzπ (ω)



κ2,0 0

0 κ2,2


⊗E

(
ε2tXt,γ0X ′

t,γ0 |z′1πq = ω
)
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by (A.24) and the central limit theorem for martingale difference sequence (e.g., Theorem

5.24 in White (2001)) under Assumptions 4 and 5, and

√
nhAn4,2 =

1√
nh

n∑

t=1

K

(
q̂t − w

h

)

Wt ⊗




0

dt (γ̂, γ0)





 εt = Op

(
n2min(ς,̺)−1

)
.

Therefore we obtain
√
nhAn4,1 is the leading term of

√
nhAn4. Taking together all the

results above completes the proof of this theorem.

Proof of Theorem 5: Given that the proof of this theorem closely follows the proof

of Theorem 1, we only provide detailed proofs where they differ. Also, we borrow the same

notation used in the proof of Theorem 1 unless defined differently. Our objective function is

rewritten as

Sn (γ) =

n∑

t=1

[
yt −X ′

t,γ θ̂ (γ)
]2

= y′ (In −Pγ)y

=
[
z (Πx − π̂x)

′
β2 +X−δn + η− (z′πq) + ε̂

]′
(In −Pγ)

·
[
z (Πx − π̂x)

′
β2+X−δn + η− (z′πq) + ε̂

]

= β′
2 (Πx − π̂x) z

′ (In − Pγ) z (Πx − π̂x)
′
β2 + δ

′
nX

′
− (In − Pγ)X−δn

+η− (zπq)
′ (In − Pγ)η− (z′πq) + ε̂

′ (In −Pγ) ε̂

+2δ′nX
′
− (In − Pγ)η− (zπq) + 2δ′nX

′
− (In − Pγ) ε̂+ 2η− (zπq)

′ (In − Pγ) ε̂

+2β′
2 (Πx − π̂x)z

′ (In −Pγ)η− (zπq) + 2β′
2 (Πx − π̂x) z

′ (In − Pγ)X−δn

+2β′
2 (Πx − π̂x)z

′ (In −Pγ) ε̂

= Sn0 + Sn1 + Sn2 + Sn3 + 2 (Sn4 + Sn5 + Sn6) + 2 (Sn7 + Sn8 + Sn9) ,

where Snj for j=0,1,. . . ,9 are named accoroding to the sequence of appearance, X− is an

n × dx matrix with its tth row equal to x̂′
tI (qt ≤ γ0), ε̂t = h2 (z

′
tπq) − h∗2 (z

′
tπ̂q) + εt, and
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εt = ε1tI (qt ≤ γ0) + ε2tI (qt ≤ γ0) with εjt = β
′
jvx,t + σjut − hj(z

′
tπq) for j=1,2.

Firstly, we consider Sn0 = β′
2 (Πx − π̂x) z

′ (In − Pγ) z (Πx − π̂x)
′
β2. As πx − π̂x =

Op

(
n−1/2

)
and In −Pγ is an idemponent matrix, we have

max
γ∈[γ,γ]

|Sn0| ≤
∣∣β′

2 (Πx − π̂x) z
′z (Πx − π̂x)

′
β2

∣∣

≤ λmax (z
′z)
∣∣β′

2 (Πx − π̂x) (Πx − πx)
′
β2

∣∣ = Op (1) .

Then, under Assumption 1’(vi) and by Lemmas 6 and 7 of the Online Appendix, we

have (A.3)-(A.8) hold for Sn1, Sn2 and Sn4 with newly defined X ∗
t,γ in Assumption 2’,

g1 (γ) = E
[
X ∗

t,γz
′
tI (qt ≤ γ0)

]
π′

x, m1 (γ0) = ΠxE [ztz
′
tI (qt ≤ γ0)]Π

′
x, and m3 (γ0) =

ΠxE [ztη0 (z
′
tπq) I (qt ≤ γ0)]. Also, (A.11), (A.14) and (A.15) continue to hold for Sn,j (γ)

for j=3,5 and 6 by Lemmas 7 and 8 of the Online Appendix. In addition, for

Sn7 (γ) = β′
2 (Πx − π̂x)z

′ (In −Pγ)η− (zπq), Sn8 (γ) = β′
2 (Πx − π̂x) z

′ (In − Pγ)X−δn,

and Sn9 (γ) = β′
2 (Πx − π̂x) z

′ (In − Pγ) ε̂, applying Lemma 8 of the Online Appendix and

π̂x − πx = Op

(
n−1/2

)
, we can show that

max
γ∈[γ,γ]

∣∣n−1Sn,7 (γ)
∣∣ = Op

(
n−̺ϑn

)
, (A.25)

max
γ∈[γ,γ]

∣∣n−1Sn,8 (γ)
∣∣Op

(
n−̺−1/2ϑn

)
, (A.26)

max
γ∈[γ,γ]

∣∣n−1Sn9 (γ)
∣∣ = Op

(
n−1/2ϑn

)
. (A.27)

Therefore, taking together all these results gives

max
γ∈[γ,γ]

∣∣n−1Sn (γ)− S1 (γ)
∣∣ = op (1) (A.28)

where S1 (γ) has the same formula as in the proof of Theorem 1 with newly defined g1 (γ),
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g2 (γ), and mj (γ0) for j=1,2,3.

Secondly, denote χ∗
t =

[
z′tπ

′
x,Φ

′
Ln

(z′tπq)
]′

and D1 (γ) = E [χ∗
tz

′
tΠ

′
xI (qt ≤ γ)]. Closely

following the proof of Theorem 1, we obtain γ̂
p→ γ0. Taking together this result with Lemma

9 of the Online Appendix completes the proof of this theorem.

Proof of Theorem 6: In matrix form, we have

y = Zπ′
xβ2 +Zγ0Π

′
xδn + h2 (zπq) + ηn,γ0 (zπq) + ε,

and

y −Xγ θ̂

= ZΠ′
xβ2 + Zγ0π

′
xδn + h2 (zπq) + ηn,γ0 (zπq) + ε− Zπ̂′

xβ̂2 − Zγπ̂
′
xδ̂n − ĥ∗

2 (zπ̂q)− η̂∗
n,γ (zπ̂q)

= ε+∆n −∆ZγΠ
′
xδ̂n −∆η̂∗

n,γ (zπ̂q)

where ∆Zγ = Zγ − Zγ0 , ∆η̂∗
n,γ = η̂∗

n,γ (zπ̂q) − η̂∗
n,γ0

(zπ̂q), ∆n = ZΠ′
x

(
β2 − β̂2

)
+

Z (Πx − π̂x)
′
β̂2+Zγ0π

′
x

(
δn − δ̂n

)
+Zγ0 (Πx − π̂x)

′
δ̂n +h2 (zπq) −ĥ∗

2 (zπ̂q) +ηn,γ0 (zπq)−

η̂∗
n,γ0

(zπ̂q), and the typical element of Z, Zγ, h2 (zπq), ĥ
∗
2 (zπ̂q), ηn,γ (zπq), and η̂

∗
n,γ (zπ̂q)

are z′t, z′tI (qt ≤ γ), h2 (z
′
tπq), ĥ∗2 (z

′
tπ̂q), ηn (z

′
tπq) I (qt ≤ γ), and η̂∗n,γ (z

′
tπ̂q) I (qt ≤ γ),
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respectively. Denote Sn (γ) =
(
y − Xγθ̂

)′ (
y −Xγ θ̂

)
. Then γ̂ minimizes

Sn (γ)− Sn (γ0)

=
(
∆η̂∗

n,γ (zπ̂q) + ∆ZγΠ
′
xδ̂n

)′ (
∆η̂∗

n,γ (zπ̂q) + ∆Zγπ
′
xδ̂n

)

−2 (ε+∆n)
′
(
∆η̂∗

n,γ (zπ̂q) + ∆Zγπ
′
xδ̂n

)

= κ′
n

n∑

t=1

χtχ
′
td

2
t (γ, γ0)κn − 2κ̂′

n

n∑

t=1

εtχtdt (γ, γ0)

−2κ̂′
n

n∑

t=1

[(
β2 − β̂2

)′
Πxzt +

(
δn − δ̂n

)′
ΠxztI (qt ≤ γ0)

+h2 (z
′
tπq)− ĥ∗2 (z

′
tπ̂q) + n−̺ (η0 (z

′
tπq)− η̂∗0 (z

′
tπ̂q)) I (qt ≤ γ0)

]
χtdt (γ, γ0)

+ (κ̂n + κn)
′

n∑

t=1

χtχ
′
td

2
t (γ, γ0) (κ̂n − κn)

= S∗
n,1 (γ)− 2S∗

n,2 (γ)− 2S∗
n,3 (γ) + S∗

n,4 (γ) (A.29)

where we denote χt =
[
z′tπ

′
x,Φ

′
Ln

(z′tπ̂q)
]′
, and S∗

n,j (γ)’s are defined the same as in the proof

of Theorem 2 with newly defined χt. Closely following the proof of Theorem 2 and applying

Lemma 10 of the Online Appendix complete the proof of this theorem.

Proof of Theorem 7: The notation is defined the same as in the proof of

Theorem 3 unless defined differently. Throughout this proof, we replace xt in X−
v,t

and X+
v,t with π̂xzt. This notation replacement only affects Xv̂ in β̂ − β =

[X ′
v̂ (In − Pv̂)Xv̂]

−1
X ′

v̂ (In − Pv̂) (y −Xv̂β).

Firstly, closely following the proof of Theorem 3 and applying Lemmas 6 and 7 of

the Online Appendix, we obtain n−1X ′
v̂Xv̂

p→ ΣΠxzz′Π′

x
,γ0, n

−1X ′
v̂∆v̂

p→ ΣπxzΦ
′

Ln
,γ0 , and
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n−1∆′
v̂∆v̂

p→ ΣΦLnΦ
′

Ln
,γ0 , where

ΣΠxzz′Π′

x
,γ0 ≡




ΠxE [ztz
′
tI (qt ≤ γ0)]Π

′
x 0

0′ ΠxE [ztz
′
tI (qt > γ0)]π

′
x


 ,

ΣΠxzΦ
′

Ln
,γ0 ≡




ΠxE
[
ztΦLn

(z′tπq)
′ I (qt ≤ γ0)

]
0

0′ E [ΦLn
(z′tπq) z

′
tI (qt > γ0)]Π

′
x


 .

It then follows

n−1X ′
v̂ (In −Pv̂)Xv̂

p→ ΣΠxzz′Π′

x
,γ0 −ΣΠxzΦ

′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0
ΣΦ′

Ln
z′Π′

x
,γ0 ≡ J . (A.30)

Secondly, we consider Bn (v̂) = n−1X ′
v (In − Pv) (y −Xvβ), where yt − X ′

v,tβ

= ηv,0,t + h1 (z
′
tπq) I (qt ≤ γ0) +h2 (z

′
tπq) I (qt > γ0) +εt and ηv,0,t = β′

2 (Πx − π̂x) zt

+δ′n (Πx − π̂x) ztI (qt ≤ γ0) −δ′nΠxztdt (γ0 + v/an, γ0). By πx − π̂x = Op

(
n−1/2

)
and

Lemma 6 of the Online Appendix, we obtain n−1X ′
v̂ (In −Pv̂)ηv̂,0 = Op

(
a
−1/2
n n−ς

)
=

op
(
n−1/2

)
. In addition, we have

n−1X ′
v̂ (In − Pv̂)h1,γ0 (zπq) = B1 (πq − π̂q) + op

(
n−1/2

)

n−1X ′
v̂ (In − Pv̂)h2,γ0 (zπq) = B2 (πq − π̂q) + op

(
n−1/2

)

where

B1 =
[
Γ′
Πxz,1, 0

′
]′ −ΣΠxzΦ

′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0

[
Γ′
ΦLn ,1

, 0′
]′

(A.31)

B2 =
[
0′,Γ′

Πxz,2

]′ −ΣxΦ′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0

[
0′,Γ′

ΦLn ,2

]′
(A.32)

where
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ΓΠxz,1 = E
[
Πxzth

(1)
2 (z′tπq) z

′
tI (qt ≤ γ0)

]
and ΓΠxz,2 = E

[
Πxzth

(1)
2 (z′tπq) z

′
tI (qt > γ0)

]
.

It follows that

Bn (v̂) = n−1X ′
v̂ (In − Pv̂) (y −Xv̂β)

= −B (π̂q − πq) + n−1
(
Z0Π

′
x −ΣΠxzΦ

′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0
∆0

)
ε+ op

(
n−1/2

)

where B = B1 +B2 =
[
Γ′

Πxz,1
,Γ′

Πxz,2

]′ −ΣΠxzΦ
′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0

[
Γ′

ΦLn ,1
,Γ′

ΦLn ,2

]′
, and that

√
n
(
β̂ − β

)
d→ N (0,Ω) where

Ω = B [E (z1z
′
1)]

−1
Ω11 [E (z1z

′
1)]

−1
B − 2BΩ12 +Ω22 (A.33)

and

Ω22 = Σε,Πxzz′Π′

x
,γ0 −ΣΠxzΦ

′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0
Σε,Φ′

Ln
Π′

x
z′,γ0 −Σε,ΠxzΦ

′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0
ΣΦLnΠ

′

x
z′,γ0

+ΣΠxzΦ
′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0
Σε,ΦLnΦ

′

Ln
,γ0Σ

−1
ΦLnΦ

′

Ln
,γ0
ΣΦLnπ

′

xz
′,γ0.

This completes the proof of this theorem.

Proof of Theorem 8: We only need to give proofs when β1 = β2 = β and

h1 (z) = h2 (z) ≡ 0, under which model (2.1)-(2.2) becomes yt = x′
tβ + et, where

et = ut [σ1I (qt ≤ γ) + σ2I (qt > γ)]. It follows that y′Mγ,Qy = e′Mγ,Qe = e′e −

e′Qγ

(
Q′

γQγ

)−1
Q′

γe. Applying Lemma 1 in Hansen (1996, p.428), we obtain uniformly

over γ ∈
[
γ, γ
]
,

n−1e′e =
σ2
1

n

n∑

t=1

u2t I (qt ≤ γ) +
σ2
2

n

n∑

t=1

u2t I (qt > γ)

a.s→ σ2
1E [I (qt ≤ γ)] + σ2

2E [I (qt > γ)]
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and

e′Qγ

(
Q′

γQγ

)−1
Q′

γe

= σ2
1

n∑

t=1

x′
tutI (qt ≤ γ)

(
n∑

t=1

xtx
′
tI (qt ≤ γ)

)−1 n∑

t=1

xtutI (qt ≤ γ)

+σ2
2

n∑

t=1

x′
tutI (qt > γ)

(
n∑

t=1

xtx
′
tI (qt > γ)

)−1 n∑

t=1

xtutI (qt > γ)

⇒ σ2
1B

′
u (1, λ)Bu (1, λ)

+σ2
2

(
Σ

1/2
xx′Bu (1)−Σ

1/2
xx′,γBu (1, λ)

)′
(Σxx′ −Σxx′,γ)

−1
(
Σ

1/2
xx′Bu (1)−Σ

1/2
xx′,γBu (1, λ)

)

because
[
n−1/2Σ

−1/2
xx′

∑[ns]
t=1 xtut, n

−1/2Σ
−1/2
xx′,γ

∑[ns]
t=1 xtutI (qt ≤ γ)

]
⇒ [Bu (s) ,Bu (s, λ)] by the

functional central limit theorem of Caner and Hansen (Theorem 1, 2001) for s ∈ [0, 1],

where we denote λ = Fq (γ) = E [I (qt ≤ γ)], Σxx′ = E (xtx
′
t), Σxx′,γ = E [xtx

′
tI (qt ≤ γ)],

Bu (λ) is the dx-dimensional standard multivariate Brownian motion, and “=⇒” denotes

weak convergence on D[0,1] as n → ∞ with D[0,1] being the space of cadlag functions on

[0,1] equipped with Skorohod topology.

Denoting λ= Fq

(
γ
)
, λ̄ = Fq (γ̄), λ

∗ = Fq (γ
∗) and λ̂ = Fq (γ̂), we can rewritten the

optimization problem (4.5) in terms of λ. If σ2
1 = σ2

2 = σ2, we have

λ̂ ⇒ λ∗ = arg max
λ∈[λ,λ̄]

B′
u (1, λ)Bu (1, λ) +

(
Σ

1/2
xx′Bu (1)−Σ

1/2
xx′,γBu (1, λ)

)′

× (Σxx′ −Σxx′,γ)
−1
(
Σ

1/2
xx′Bu (1)−Σ

1/2
xx′,γBu (1, λ)

)

so that γ̂ ⇒ γ∗ by the continuous mapping theorem, where

γ∗ = F−1
q (λ∗) . (A.34)
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If σ2
1 6= σ2

2 , we have

λ̂
p→ λ∗ = arg min

λ∈[λ,λ̄]
σ2
1λ+ σ2

2 (1− λ) (A.35)

so that λ∗ = λI (σ2
1 > σ2

2) + λ̄I (σ2
1 < σ2

2) or equivalently, γ
∗ = γI (σ2

1 > σ2
2) + γ̄I (σ2

1 < σ2
2)

because Fq (·) is strictly increasing. This completes the proof of this theorem.

Proof of Theorem 9: For a given γ, we have α̂Ln
(γ) =

(
Φ̂∗′

Ln,γΦ̂
∗
Ln,γ

)−1

Φ̂∗′
Ln,γy

∗, so

that

Wn (γ) = α̂Ln
(γ)′ Φ̂∗′

Ln,γΦ̂
∗
Ln,γ

(
Φ̂∗′

Ln,γε̂γε̂
′
γΦ̂

∗
Ln,γ

)−1

Φ̂∗′
Ln,γΦ̂

∗
Ln,γα̂Ln

(γ)

= y∗′Φ̂∗
Ln,γ

(
Φ̂∗′

Ln,γε̂γε̂
′
γΦ̂

∗
Ln,γ

)−1

Φ̂∗′
Ln,γy

∗.

Applying tedious but straightforward calculations, we obtain the respective tth row

vector of Φ̂−,∗
Ln,γ

and Φ̂−,∗
Ln,γ

as follows

a′
γ,t,− = [ΦLn

(q̂t)− π̂Φ,γ,−xt]
′ I (qt ≤ γ) and a′

γ,t,+ = [ΦLn
(q̂t)− π̂Φ,γ,+xt]

′ I (qt > γ) ,

where we denote Σn,xx′ = n−1
∑n

t=1 xtx
′
t, Σn,xx′,γ = n−1

∑n
t=1 xtx

′
tI (qt ≤ γ), π̂Φ,γ,− =

∑n
s=1ΦLn

(q̂s)x
′
sI (qs ≤ γ)Σ−1

n,xx′,γ,

and π̂Φ,γ,+ =
∑n

s=1ΦLn
(q̂s)x

′
sI (qs > γ) (Σn,xx′ −Σn,xx′,γ)

−1. It follows that

Φ̂∗′
Ln,γy

∗ =

[(
Φ̂−,∗′

Ln,γ
y∗
)′
,
(
Φ̂+,∗′

Ln,γ
y∗
)′]′

=
[∑n

t=1 yta
′
γ,t,−,

∑n
t=1 yta

′
γ,t,+

]′
, and Φ̂∗′

Ln,γε̂γε̂
′
γΦ̂

∗
Ln,γ

=




∆−
n,γ 0Ln×Ln

0Ln×Ln
∆+

n,γ


, where ∆−

n,γ =
∑n

t=1

∑n
t′=1 ε̂

−
γ,tε̂

−
γ,t′a

′
γ,t,−aγ,t′,−, ∆+

n,γ =
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∑n
t=1

∑n
t′=1 ε̂

+
γ,tε̂

+
γ,t′a

′
γ,t,+aγ,t′,+,

ε̂−γ,t =
[
yt − x′

tβ̂1 (γ)− α̂′
Ln,1 (γ)ΦLn

(q̂t)
]
I (qt ≤ γ)

=
[
x′
t

(
β1 − β̂1 (γ)

)
+ h1 (z

′
tπq)− α̂′

Ln,1 (γ)ΦLn
(q̂t) + σ1ut

]
I (qt ≤ γ)

and

ε̂+γ,t =
[
yt − x′

tβ̂2 (γ)− α̂′
Ln,2 (γ)ΦLn

(q̂t)
]
I (qt > γ)

=
[
x′
t

(
β2 − β̂2 (γ)

)
+ h2 (z

′
tπq)− α̂′

Ln,2 (γ)ΦLn
(q̂t) + σ2ut

]
I (qt > γ) .

It is readily seen that n−1
∑n

t=1 ε̂
−
γ,taγ,t,− = σ1n

−1
∑n

t=1 utaγ,t,− and n−1
∑n

t=1 ε̂
+
γ,taγ,t,+ =

σ2n
−1
∑n

t=1 utaγ,t,+ under H0.

Firstly, we consider the case that β1 6= β2 under which γ̂ = γ0 +Op

(
n−1+2min(ς,̺)

)

by Theorem 2 and yt = x′
tβ1I (qt ≤ γ0) + x′

tβ2I (qt > γ0) +εt, where εt =

σ1utI (qt ≤ γ0) +σ2utI (qt > γ0). In the proof of Theorem 2, we have
∥∥∥θ̂ − θ

∥∥∥ =

Op (ϑn) if γ̂ = γ0 + Op

(
n−1+2min(ς,̺)

)
. For notation simplification, we denote

χn,ω,1 = n−1
∑n

t=1 ωtx
′
tI (qt ≤ γ̂) I (qt ≤ γ0), χn,ω,2 = n−1

∑n
t=1ωtx

′
tI (qt ≤ γ̂), λn,ω,1 =

n−1
∑n

t=1 utωtI (qt ≤ γ̂) I (qt ≤ γ0), and λn,ω,2 = n−1
∑n

t=1 utωtI (qt ≤ γ̂) for ωt = ΦLn
(q̂t)
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and xt. Then, we have π̂Φ,γ,− = χn,Φ,2χ
−1
n,x,2 and

n−1Φ̂−,∗′
Ln,γ̂

y∗

=
(
χn,Φ,1 − χn,Φ,2χ

−1
n,x,2χn,x,1

)
δn + σ1

(
λn,Φ,1 − χn,Φ,2χ

−1
n,x,2λn,x,1

)

+σ2
[
λn,Φ,2 − λn,Φ,1 + χn,Φ,2χ

−1
n,x,2 (λn,x,1 − λn,x,2)

]

= σ1n
−1

n∑

t=1

utΦLn
(z′tπq) I (qt ≤ γ0)− σ1n

−1
n∑

t=1

ΦLn
(z′tπq)x

′
tI (qt ≤ γ0)

×
[
n−1

n∑

t=1

xtx
′
tI (qt ≤ γ0)

]−1

n−1

n∑

t=1

utxtI (qt ≤ γ0)

+Op

(
n−1+2min(ς,̺)

(
‖ΦLn

‖0 n−ς + ‖ΦLn
‖0 /

√
n
))

by Lemma 11 of the Online Appendix. By Lemma 1 of the Online Appendix, we have

n−1Φ̂−,∗′
Ln,γ̂

y∗ ≈ σ1n
−1

n∑

t=1

utc−,t (γ0) = Op

(
‖ΦLn

‖0 /
√
n
)

(A.36)

where

we denote c−,t (γ0) =
{
ΦLn

(z′tπq)− E [
∑n

t=1ΦLn
(z′tπq)x

′
tI (qt ≤ γ0)]Σ

−1
xx′,γ0

x′
t

}
I (qt ≤ γ0).

Similarly, we can show that

n−1Φ̂+,∗′
Ln,γ̂

y∗ ≈ σ2n
−1

n∑

t=1

utc+,t (γ0) = Op

(
‖ΦLn

‖0 /
√
n
)

(A.37)

where c+,t (γ0) =
{
ΦLn

(z′tπq)−E [
∑n

t=1 ΦLn
(z′tπq)x

′
tI (qt > γ0)] (Σxx′,γ0 −Σxx′,γ0)

−1 x′
t

}
I (qt > γ0).

Similarly, we obtain n−1
∑n

t=1 ε̂
−
γ̂,taγ̂,t,− ≈ σ1n

−1
∑n

t=1 utc−,t (γ0) and n−1
∑n

t=1 ε̂
+
γ̂,taγ̂,t,+ ≈

σ2n
−1
∑n

t=1 utc+,t (γ0).

Applying the Cramer-Wold device and Wooldrige and White’s central limit theorem for
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strong mixing process gives

√
nΩ−1/2



σ1n

−1
∑n

t=1 utc−,t (γ0)

σ2n
−1
∑n

t=1 utc+,t (γ0)


 d→ N (02Ln

, I2Ln
)

where we denote Ω− = n−1
∑n

t=1

∑n
t′=1E

[
utut′c−,t (γ0) c

′
−,t′ (γ0)

]
and Ω+ =

n−1
∑n

t=1

∑n
t′=1E

[
utut′c−,t (γ0) c

′
−,t′ (γ0)

]
. Under Assumption 1, both Ω− and Ω+ are finite

nonsingular matrix. Taking the above results together gives Wn (γ̂)
d→ χ2

2Ln
as n→ ∞.

Next, we consider the case that β1 = β2 = β and h1 (z) = h2 (z) ≡ 0. We consider three

cases.

(i) If σ2
1 < σ2

2, γ̂
p→ γ̄ by Theorem 8. We have n−1Φ̂−,∗′

Ln,γ̂
y∗

= σ1
(
λn,Φ,1 − χn,Φ,2χ

−1
n,x,2λn,x,1

)
+σ2

[
λn,Φ,2 − λn,Φ,1 + χn,Φ,2χ

−1
n,x,2 (λn,x,1 − λn,x,2)

]
≈

n−1
∑n

t=1 ut {c−,t (γ0, γ̄) (σ1 − σ2) + σ2c−,t (γ̄, γ̄)},

where c−,t (γ1, γ2) =
{
ΦLn

(z′tπq)−E [
∑n

t=1 ΦLn
(z′tπq)x

′
tI (qt ≤ γ2)]Σ

−1
xx′,γ2

x′
t

}
I (qt ≤ γ1),

while n−1Φ̂+,∗′
Ln,γ̂

y∗ ≈ n−1
∑n

t=1 utc+,t (γ̄). In addition,

we have n−1
∑n

t=1 ε̂
−
γ̂,taγ̂,t,− = σ1

(
λn,Φ,2 − χn,Φ,2χ

−1
n,x,2λn,x,2

)
≈ n−1

∑n
t=1 utc−,t (γ̄) and

n−1
∑n

t=1 ε̂
+
γ̂,taγ̂,t,+ ≈ n−1

∑n
t=1 utc+,t (γ̄). As n−1Φ̂−,∗′

Ln,γ̂
y∗ and n−1

∑n
t=1 ε̂

−
γ̂,taγ̂,t,− converge

to normal distribution with different variance, Wn (γ̂)
d→ χ2

2Ln
fails to hold.

(ii) If σ2
1 > σ2

2, γ̂
p→ γ by Theorem 8, then χn,ω,1 − χn,ω,2 = 0 and λn,ω,1 −

λn,ω,2 = 0. It is readily seen that n−1Φ̂−,∗′
Ln,γ̂

y∗ = σ1
(
λn,Φ,1 − χn,Φ,2χ

−1
n,x,2λn,x,1

)

≈ σ1n
−1
∑n

t=1 utc−,t

(
γ
)
, n−1Φ̂+,∗′

Ln,γ̂
y∗ ≈ σ2n

−1
∑n

t=1 utc+,t

(
γ0, γ

)
, where c+,t (γ1, γ2) =

{
ΦLn

(z′tπq)− E [
∑n

t=1ΦLn
(z′tπq)x

′
tI (qt > γ2)]Σ

−1
xx′,γ2

x′
t

}
I (qt > γ1). In addition,

n−1
∑n

t=1 ε̂
−
γ̂,taγ̂,t,− ≈ n−1

∑n
t=1 utc−,t

(
γ
)
and n−1

∑n
t=1 ε̂

+
γ̂,taγ̂,t,+ ≈ n−1

∑n
t=1 utc+,t

(
γ
)
. As

n−1Φ̂+,∗′
Ln,γ̂

y∗ and n−1
∑n

t=1 ε̂
+
γ̂,taγ̂,t,+ converge to normal distribution with different variance,

Wn (γ̂)
d→ χ2

2Ln
fails to hold.
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(iii) If σ2
1 = σ2

2, γ̂
d→ γ∗ by Theorem 8. We then

have n−1Φ̂−,∗′
Ln,γ̂

y∗ = σ
(
λn,Φ,2 − χn,Φ,2χ

−1
n,x,2λn,x,2

) d≈ σn−1
∑n

t=1 utc−,t (γ
∗) and n−1Φ̂+,∗′

Ln,γ̂
y∗ d≈

σn−1
∑n

t=1 ut {c+,t (γ
∗)}. In addition, n−1

∑n
t=1 ε̂

−
γ̂,taγ̂,t,− ≈ σn−1

∑n
t=1 utc−,t (γ

∗) and

n−1
∑n

t=1 ε̂
+
γ̂,taγ̂,t,+ ≈ σn−1

∑n
t=1 utc+,t (γ

∗). If {ut} is independent of {(xt, zt)}, all the four

terms converges to mixed normal distribution with zero mean, therefore Wn (γ̂)
d→ χ2

2Ln

continues to hold as n→ ∞.

This completes the proof of this theorem.
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