
 
 
DEPARTMENT OF ECONOMICS 
UNIVERSITY OF CYPRUS 
 

 

 

 
 
 
 
 
 

FORECASTING WITH MIXED-FREQUENCY 
DATA 
 
 
 

 
Elena Andreou, Eric Ghysels and Andros Kourtellos 
 
 
 
 
 
 
 

 

Discussion Paper 2010-10 

 

 

 

 

 

 

 

 

 
P.O. Box 20537, 1678 Nicosia, CYPRUS Tel.: ++357-22893700, Fax: ++357-22895028 

Web site: http://www.econ.ucy.ac.cy 



Forecasting with mixed-frequency data∗

Elena Andreou† Eric Ghysels‡ Andros Kourtellos§

First Draft: January 2010

This Draft: May 30, 2010

∗This chapter was prepared for the Oxford Handbook on Economic Forecasting edited by Michael P.
Clements and David F. Hendry. The authors would like to thank the Leventis foundation UCY grant 3411-
32021. The first author also acknowledges support of the European Research Council under the European
Community FP7/2007-2013 ERC grant 209116. We also benefitted from the valuable comments of two
referees and Mike Clements.

†Department of Economics, University of Cyprus, P.O. Box 537, CY 1678 Nicosia, Cyprus, e-mail:
elena.andreou@ucy.ac.cy.

‡Department of Economics, University of North Carolina, Gardner Hall CB 3305, Chapel Hill, NC 27599-
3305, USA, and Department of Finance, Kenan-Flagler Business School, e-mail: eghysels@unc.edu.

§Department of Economics, University of Cyprus, P.O. Box 537, CY 1678 Nicosia, Cyprus, e-mail:
andros@ucy.ac.cy



1 Introduction

Innovations in computer technology have made it possible to easily collect and store large

data sets. One consequence of this is that many (financial) time series are recorded at very

high sampling frequencies. Yet, many real activity series have maintained the traditional

monthly or quarterly collection and release scheme. As a result, interest in forecasting with

mixed-frequency data has emerged as an important topic.

Take, for example, the situation of macroeconomic forecasting involving a combination of

past quarterly series and the choice between using past quarterly financial series - or instead

using those same series sampled daily. Not using the readily available daily series has two

important implications: (1) one looses information through temporal aggregation and (2) one

foregoes the possibility of providing real-time daily, weekly or monthly updates of forecasts.

Both topics have been addressed using state space models, which consist of a system with

two types of equations, the measurement equations which link observed series to a latent

state process, and the state equations which describe the state process dynamics. The

setup treats the low-frequency data as “missing data” and the Kalman filter is a convenient

computational device to extract the missing data.1 The approach has many benefits, but

also some drawbacks. State space models can be quite involved, as one must explicitly

specify a linear dynamic model for all the series involved: the high-frequency data series, the

latent high-frequency series treated as missing and the low-frequency observed processes.

The system of equations therefore typically requires a lot of parameters, namely for the

measurement equation, the state dynamics and their error processes. The steady state

Kalman filter gain, however, yields a linear projection rule to (1) extract the current latent

state, and (2) predict future observations as well as states. The Kalman filter can then

be used to predict low frequency macro series, using both past high and low frequency

observations. A number of recent papers also documented the gains of real-time forecast

updating, sometimes also nowcasting when it applies to current quarter assessments.2 These

studies used again the state space setup.

An alternative approach to deal with data sampled at different frequencies has emerged

1See for example, Harvey and Pierse (1984), Harvey (1989), Zadrozny (1990), Bernanke, Gertler, and
Watson (1997), Mariano and Murasawa (2003), Mittnik and Zadrozny (2004), Aruoba, Diebold, and Scotti
(2009), Bai, Ghysels, and Wright (2009), Kuzin, Marcellino, and Schumacher (2009), among others.

2Nowcasting is studied at length by Doz, Giannone, and Reichlin (2008), Doz, Giannone, and Reichlin
(2006), Stock (2006),Angelini, Camba-Mendez, Giannone, Rünstler, and Reichlin (2008), Giannone, Reichlin,
and Small (2008), Moench, Ng, and Potter (2009), among others.
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in recent work by Ghysels, Santa-Clara, and Valkanov (2004), Ghysels, Santa-Clara, and

Valkanov (2006) and Andreou, Ghysels, and Kourtellos (2010a), using so called MIDAS,

meaning Mi(xed) Da(ta) S(ampling), regressions. It is a regression framework that is

parsimonious - notably not requiring to model the dynamics of each and every daily predictor

series - in contrast to the system of equations that require imposing many assumptions and

estimating many parameters, for the measurement equation, the state dynamics and their

error processes.3

The topic of mixing different sampling frequencies also emerges even when time series are

available at the same frequency, but one is interested in multi-period forecasting. Take the

example of an annual forecast with quarterly data. The first approach is to estimate a model

with past annual data, and hence collapse the original multi-period setting into a single step

forecast. The second approach is to estimate a quarterly forecasting model and then iterate

forward the forecasts to a multi-period annual prediction. The forecasting literature refers

to the first approach as “direct” and the second as “iterated”. (Marcellino, Stock, and

Watson (2006)). Traditionally, the comparison has been made between direct and iterated

forecasting, see e.g. Findley (1983), Findley (1985), Lin and Granger (1994), Clements and

Hendry (1996), Bhansali (1999), and Chevillon and Hendry (2005)). Multi-period forecasts

can also be constructed using a mixed-data sampling approach. A MIDAS model can use

past quarterly data to produce directly multi-period forecasts. The MIDAS approach can

be viewed as a middle ground between the direct and the iterated approaches. Namely, one

preserves the past high frequency data, to directly produce multi-period forecasts.

There is a related literature on aggregation and forecasting in regression models (see, for

instance, the surveys by Granger (1985) and Lütkepohl (2004) and more recent work by

Hendry and Hubrich (2010), Hotta and Neto (2008) among others) as well as aggregation

and volatility forecasting (see, for instance, the recent survey by Andersen, Bollerslev,

Christoffersen, and Diebold (2006), and Ghysels and Sinko (2010)). While this literature

recognizes the forecasting gains of disaggregation, the idea of using models where the

variables are of mixed data sampling frequencies was first introduced in Ghysels, Santa-

Clara, and Valkanov (2005) and since then there is a large and growing literature. Empirical

applications involve regression and quantile regression models for forecasting macroeconomic

variables as well as volatility models for understanding and forecasting financial risk.

The original work on MIDAS focused on volatility predictions; see for instance, Alper,

3See Armesto, Engemann, and Owyang (2010) for a user-friendly introduction to MIDAS regressions.

2



Fendoglu, and Saltoglu (2008), Chen and Ghysels (2009), Engle, Ghysels, and Sohn (2008),

Forsberg and Ghysels (2006), Ghysels, Santa-Clara, and Valkanov (2004), León, Nave, and

Rubio (2007), Clements, Galvão, and Kim (2008) among others. In addition a number

of recent papers have documented the advantages of using such MIDAS regressions in

terms of improving quarterly macro forecasts with monthly and daily data. For instance,

Bai, Ghysels, and Wright (2009), Kuzin, Marcellino, and Schumacher (2009), Armesto,

Hernandez-Murillo, Owyang, and Piger (2009), Clements and Galvão (2009), Clements and

Galvão (2008), Galvão (2006), Schumacher and Breitung (2008), Tay (2007), use monthly

data to improve quarterly forecasts. Similarly, quarterly and monthly macroeconomic

predictions are improved by daily financial series, see e.g. Ghysels and Wright (2009),

Hamilton (2006), Tay (2006), Monteforte and Moretti (2009), and Andreou, Ghysels, and

Kourtellos (2010b).

The remainder of the chapter is structured as follows. In section 2 we cover MIDAS

regressions. Section 3 covers so called nowcasting and relationship with the Kalman filter

and its relationship with MIDAS regressions. A final section discusses volatility models using

mixed frequencies.

2 MIDAS Regressions

Suppose we are interested in forecasting quarterly GDP growth rate, Y Q
t+1, using daily stock

returns, XD
ND−j,t, in the jth day counting backwards in quarter t.4 Hence, the last day of

quarter t corresponds to j = 0 and is therefore XD
ND−j,t. The conventional approach, in its

simplest form, aggregates the data at the quarterly frequency by computing simple averages

to obtain XQ
t = (XD

ND,t + XD
ND−1,t + ... + XD

1,t)/ND and then estimates a simple Distributed

Lag (DL) model

Y Q
t+1 = α + βXQ

t + ut+1, (2.1)

where α and β are unknown parameters and ut+1 is an error term. The implicit assumption in

traditional models such as (2.1) is that temporal aggregation is based on an equal weighting

4For notational brevity, we will be dealing with one-step ahead forecasts. All the models and methods
we will be presenting can be easily extended to multi-step forecasting.
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scheme of the high frequency data. An alternative naive approach would estimate the model

Y Q
t+1 = µ + αY Q

t +

ND−1
∑

j=0

βjX
D
ND−j,t + ut+1, (2.2)

where ND denotes the daily lags or the number of trading days per quarter. This is an

unappealing approach because of parameter proliferation: when ND = 66, we have to

estimate not only 66 parameters βj but also µ and α, hence a total of 68 slope coefficients.5

Instead, the MIDAS regression models use a parsimonious and data-driven aggregation

scheme based on a low dimensional high frequency lag polynomial, W (LND ; θ) such that

W (LND ; θD
X)XD

t =
∑ND−1

j=0 wj(θ
D
X)XD

t−j. There are various alternatives for the polynomial

specification. Two flexible specifications that parameterize the weights into a two parameter

vector include the two parameter exponential Almon lag and the Beta lag. Ghysels, Sinko,

and Valkanov (2006) provide a discussion on the two specifications as well as for step-

functions. The exponential Almon lag is specified as:

wj(θ1, θ2) =
exp{θ1j + θ2j

2}
∑m

j=1 exp{θ1j + θ2j2}
. (2.3)

with θ = (θ1, θ2). The Beta function is given by

wj(θ1, θ2) =
f(j, θ1; θ2)

∑M
j=1 f(j, θ1; θ2)

(2.4)

where f(x, θ1; θ2) = xα−1(1 − x)b−1Γ(a + b)/(Γ(a)Γ(b)) and Γ(a) =
∫

∞

0
e−xxa−1dx.

This approach yields a distributed lag model as a linear projection of high frequency data

XD
t onto Y Q

t using a MIDAS filter, DL − MIDAS(qD
X)

Y Q
t+1 = µ + β

qD
X
−1

∑

j=0

ND−1
∑

i=0

wi+j∗ND
(θD)XD

ND−i,t−j + ut+1, (2.5)

where the second summation allows for daily lags to extend beyond the last day of quarter

t, but to simplify notation, we will always take lags in blocks of quarterly sets of daily

data, qD
X . Note that equation (2.5) nests the simple DL model in equation (2.1) under flat-

5Typically we have about 66 observations for many daily financial data over a quarter since each month
has 22 trading days.
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weights. To see this, note that, if θ1 = θ2 = 0 then the exponential almon lag polynomial

function yields equal/flat aggregation weights. We assume that wi+j∗ND
(θD) ∈ (0, 1) and

∑qD
X
−1

j=0

∑ND−1
i=0 wi+j∗ND

(θD) = 1, that allows the identification of the slope coefficient β in

the MIDAS regression model. The parameters (µ, β, θD) are estimated by Nonlinear Least

Squares (NLS).

Our understanding of MIDAS regression can be further enhanced by decomposing the

conditional mean in equation as the sum of an aggregated term based on flat weights, XQ
t ,

and a weighted sum of (higher order) differences of the high frequency variable. Following

Andreou, Ghysels, and Kourtellos (2010a), in the case of qD
X = 1 we can easily show that the

MIDAS term in equation (2.5) can be written as

ND−1
∑

i=0

wi(θ
D)XD

ND−i,t =
1

ND

(XD
ND,t + XD

ND−1,t + ... + XD
1,t)

+ (w0 −
1

ND

)XD
ND,t + (w1 −

1

ND

)XD
ND−1,t + ...

+ (wND−2 −
1

ND − 2
)XD

2,t + (
ND − 1

ND

− w0 − w1 − ... − wND−2)X
D
1,t,

(2.6)

where the last parenthesis uses the assumption that the weights sum to one. Substituting

equation (2.6) into (2.5) we get

Y Q
t+1 = µ + βXQ

t + β

ND−1
∑

i=0

(wi(θ
D) −

1

ND

)∆ND−iXD
ND−i,t (2.7)

Equation (2.7) shows that the traditional temporal aggregation approach, which imposes flat

weights wi = 1/ND and only accounts for XQ
t , yields a nonlinear omitted variable term in the

regression model (2.1). The nonlinearity of the omitted term is due to the nonlinear weighting

schemes of MIDAS regression models such as the exponential Almon lag polynomial in (2.3).

In order to study the effects of misspecification imposed by the flat aggregation scheme, in

the case of qD
X = 1, let us denote the omitted term in (2.7) as XB

t (θ) =
∑ND−1

i=0 (wi(θ
D) −

1
ND

)∆ND−iXD
ND−i,t. Equation (2.7) implies that for a general, non-flat weighting scheme

the traditional temporal aggregation approach may result in an omitted variable bias if the
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omitted term, XB
t (θ), is correlated with XQ

t . This implies that the LS estimation of equation

(2.1) will generally give rise to a bias, which depends on the type of the high frequency process

and on the shape of the weighting scheme W (LND ; θ). For instance, declining weights imply

an omitted variable that exhibits memory decay or mean reversion, which will be associated

with higher bias than an omitted variable with a near-flat weighting scheme. Moreover, the

bias will be zero in two cases: (i) When the omitted term XB
t (θ) is orthogonal to XQ

t , even

when the true model is the DL-MIDAS regression. (ii) When the true weighting scheme is

flat, θ = 0, and the true model is the traditional DL model.

Andreou, Ghysels, and Kourtellos (2010a) show that when the omitted term is correlated

with the equally weighted aggregated term in (2.5), then the Asymptotic Mean Squared Error

(AMSE) of the LS estimator of β, is relatively larger than the AMSE of the NLS estimator

of β in (2.5). In this case, one can easily show that the DL-MIDAS model in equation (2.5)

based on NLS yields more accurate forecasts than forecasts based on LS estimation of the

simple DL model in equation (2.1) assuming flat weights. In the section below we show

the analytical expressions of the decomposition of the DL-MIDAS model in one important

example namely when the high frequency predictor is an AR(1) process.

2.1 DL-MIDAS model with AR(1) high frequency predictor

Let abstract from the example of obtaining quarterly forecasts using daily observations

and let us consider, in general, the high frequency univariate process {X
(m)
t/m} sampled at

some arbitrary high frequency m between t and t − 1 (which can be daily as in previous

section or even intradaily), follow a stationary AR(1) given by X
(m)
t = c0 + φX

(m)
t−1/m + et/m,

et/m ∼ i.i.d.(0, σ2
e).

6 Then the MIDAS regression model with an AR(1) high frequency

regressor is

Yt+1 = β0 + β1X
A
t + β1X

B
t (θ) + ut+1 (2.8)

where the simple average term XA
t = 1

m

∑m−1
j=1 X

(m)
t−(j−1)/m can be expressed as

XA
t =

1

m
(

c0

1 − φ
(m −

1 − φm

1 − φ
) + (

1 − φm

1 − φ
)Xt−(m−1) +

1

1 − φ

m−1
∑

j=1

(

1 − φj
)

et−(j−1)) (2.9)

6Following the previous section, this general notation also allows for the daily lags to extend beyond one
quarter, m ≥ ND.
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and the nonlinear term as

XB
t (θ) =

m−1
∑

i=1

(

wi(θ) −
1

m

)

(c0(
1 − φm−i

1 − φ
) − (1 − φm−i)x(t−(m−1))/m +

m−i−1
∑

j=0

φjet−j−(i−1)).

(2.10)

Andreou, Ghysels, and Kourtellos (2010a) show that the LS estimator of β1 in the linear

DL-MIDAS model which omits XB
t (θ) in (2.8), will be asymptotically biased. The analytical

expression of the asymptotic bias for the slope coefficient given by

βm(−1−φm

(1−φ)
σ2

e

1−φ2

∑m−1
i=1

((

wi(θ) −
1
m

)

(1 − φm−i)
)

(1−φm

1−φ
)2 σ2

e

1−φ2 + σ2
e

(1−φ)2

∑m−1
j=1 (1 − φj)2

+

β
(1−φ)

∑m−1
j=1 ((1 − φj) (

∑j
i=1(wi(θ) −

1
m

)φj−i)))

(1−φm

1−φ
)2 σ2

e

1−φ2 + σ2
e

(1−φ)2

∑m−1
j=1 (1 − φj)2

(2.11)

Andreou, Ghysels, and Kourtellos (2010a) evaluate numerically the analytical expression in

(2.11) as a function of the aggregation horizon, m, for different values of the parameters, θ,

φ, and σ2
e , in order to gain further insights about the behavior of the asymptotic bias. They

find that the asymptotic bias for a persistent AR(1) process, φ = 0.9 and σ2
e = 1, for the

different weighting schemes: θ = (0,−0.05), θ = (0,−0.005), and θ = (0,−0.0005). In all

cases they find that the bias becomes negative and increases in magnitude with m, where

m = 3 and 100. As m becomes large the bias appears to stabilize at some negative value,

which depends on the weighting scheme. This value is larger in absolute terms for faster

decaying weights. As expected the bias of β1 is larger for higher degrees of persistence, φ.

In addition, simulation evidence reported in Table 1 of Andreou, Ghysels, and Kourtellos

(2010a) shows that the Mean Square Error (MSE) gains from estimating a MIDAS regression

model instead of a flat aggregation model are relevant even for m = 3 and realistic sample

sizes, T , depending on the high frequency process and the pattern of the aggregation weights.

2.2 ADL-MIDAS regressions

When Y Q
t+1 is serially correlated, as it is typically the case for time series variables, the

simple model in equation (2.1) is extended to a dynamic linear regression or autoregressive

distributed lag (ADL) model. Again the conventional approach, in its simplest form,

aggregates the high frequency data at the low frequency by computing simple averages and
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estimates a simple linear regression of Y Q
t+1 on XQ

t . Take for instance the ADL(1,1)

Y Q
t+1 = µ + αY Q

t + βXQ
t + ut+1, (2.12)

where α and β are unknown parameters and ut+1 is an error term. In a similar manner the

ADL − MIDAS(pQ
Y , qD

X) is:

Y Q
t+1 = µ +

pQ
Y
−1

∑

j=0

αj+1Y
Q
t−j + β

qD
X
−1

∑

j=0

ND−1
∑

i=0

wi+j∗ND
(θD)XD

ND−i,t−j + ut+1 (2.13)

Note that the number of daily lags is a multiple of the number of trading days in a quarter,

ND. As above the slope coefficient β in the MIDAS regression is identified via the scaling of

the weights, such that they add up to one. The above model specification generates notation

very similar to ARMA models, e.g. ADL-MIDAS(1,1) or ADL-MIDAS(AIC,AIC).

A MIDAS regression specification related to the ADL-MIDAS was proposed by Clements

and Galvão (2008). Namely consider:

Y Q
t+1 = µ + αY Q

t + β

qD
X
−1

∑

j=0

ND−1
∑

i=0

wi+j∗ND
(θD)XD

ND−i,t−j + ut+1, (2.14)

which can be written as a constrained DL-MIDAS regression with autocorrelated errors:

Y Q
t+1 = µ(1 − α)−1 + β

qD
X
−1

∑

j=0

ND−1
∑

i=0

wi+j∗ND
(θD)(1 − LQ)−1XD

ND−i,t−j + ũt+1, (2.15)

where LQ is a quarterly lag operator and ũt+1 = (1 − αLQ)−1ut. Clements and Galvão

(2008) also consider a specification closely related to the ADL-MIDAS with a common factor

restriction:

Y Q
t+1 = µ + αY Q

t + β

qD
X
−1

∑

j=0

ND−1
∑

i=0

wi+j∗ND
(θD)(1 − αLQ)−1XD

ND−i,t−j + ut+1. (2.16)

An undesirable property of both specifications is that the lag polynomial is characterized by

geometrically declining spikes at distance ND due to the interaction of the high frequency

with the low frequency polynomials; see Ghysels, Sinko, and Valkanov (2006). Moreover,
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while the ADL-MIDAS can be simply estimated by NLS, the DL-MIDAS with autocorrelated

errors requires a more involved estimation such as nonlinear feasible GLS.

The comparison with temporal aggregation prompts us to consider two MIDAS regression

models that allow for quarterly lags. First, define the following filtered parameter-driven

quarterly variable

XQ
t (θD

X) ≡

ND
−1

∑

i=0

wi(θ
D
X)XD

ND−i,t, (2.17)

Then, we can define the ADL − MIDAS − M(pQ
Y , pQ

X) model, where −M refers to the fact

that the model involves a multiplicative weighting scheme, namely:

Y Q
t+1 = µ +

pQ
Y
−1

∑

k=0

αkY
Q
t−k +

pQ
X
−1

∑

k=0

βkX
Q
t−k(θ

D
X) + ut+1. (2.18)

To alleviate the increasing number of parameters in equation (2.18) we can restrict the

coefficients of the quarterly lags using another layer of a lag polynomial. This yields the

ADL − MIDAS − M(pQ
Y [r], pQ

X [r]) model:

Y Q
t+1 = µ + α

pQ
Y
−1

∑

k=0

wk(θ
Q
Y )Y Q

t−k + β

pQ
X
−1

∑

k=0

wk(θ
Q
X)XQ

t−k(θ
D
X) + ut+1, (2.19)

where [r] stands for the restricted case of estimating the model in equation ADL −

MIDAS − M(pQ
Y [r], pQ

X [r]). Both equations (2.18) and (2.19) apply MIDAS aggregation

to the daily data of one quarter but they differ in the way they treat the quarterly lags.

More precisely, while equation (2.18) does not restrict the coefficients of the quarterly lags,

equation (2.19) restricts the coefficients of the quarterly lags - hence the notation pQ
X [r] -

by hyper-parameterizing these coefficients using a multiplicative MIDAS polynomial.7 Both

specifications nest the equally weighted aggregation scheme.

An interesting generalization of the ADL-MIDAS and ADL-MIDAS-M in equations (2.18)

and (2.13), respectively, emerges when yt is observed at a monthly frequency but one is

7The multiplicative MIDAS scheme was originally suggested for purpose of dealing with intra-daily
seasonality in high frequency data, see Chen and Ghysels (2009).
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interested at quarterly forecasts (e.g. CPI Inflation or Industrial Production). In this case

we can easily generalize these models to allow for a MIDAS filter for the lagged dependent

variable using another MIDAS polynomial.

2.3 Factors and other regressors in ADL-MIDAS models

A large body of recent work has developed factor model techniques that are tailored to

exploit a large cross-sectional dimension; see for instance, Bai and Ng (2002), Bai (2003),

Forni, Hallin, Lippi, and Reichlin (2000), Forni, Hallin, Lippi, and Reichlin (2005), Stock

and Watson (1989), Stock and Watson (2003), among many others. These factors, which are

usually estimated at quarterly frequency using a large cross-section of time-series are used

as predictors in ADL models. Following this literature Andreou, Ghysels, and Kourtellos

(2010b) investigate whether one can improve quarterly factor model forecasts by augmenting

such models with daily financial variables and in particular daily financial factors. Such

factors (at either low or high frequency) can be obtained by the following Dynamic Factor

Model (DFM)

Xt = ΛtFt + et (2.20)

Ft = ΦtFt−1 + ηt

eit = ait(L)eit−1 + εit, i = 1, 2, ..., n,

where Xt = (X1t, ..., Xnt)
′, Ft is the r-vector of static factors, Λt is a n × r matrix of factor

loadings, et = (e1t, ..., ent)
′ is an n-vector of idiosyncratic disturbances, which can be serially

correlated and (weakly) cross-sectionally correlated.8 The factor model representation in

(2.20) allows for the possibility that the factor loadings change over time (compared to

the standard DFMs) which may address potential instabilities during our sample period.

The extracted common factors could be robust to instabilities in individual time series, if

such instability is small and sufficiently dissimilar among individual variables; see Stock and

Watson (2002) for formal conditions. Following the above assumptions the time-varying

8The static representation in equation (2.20) can be derived from the DFM assuming finite lag lengths
and VAR factor dynamics in the DFM in which case Ft contains the lags (and possibly leads) of the dynamic
factors. Although generally the number of factors from a DFM and those from a static one differ, we have
that r = d(s + 1) where r and d are the numbers of static and dynamic factors, respectively, and s is
the order of the dynamic factor loadings. Moreover, empirically static and dynamic factors produce rather
similar forecasts (Bai and Ng (2008)).
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DFM can be estimated using principal components, which delivers consistent estimates of

the common factors if N → ∞ and T → ∞.9 The number of factors can be chosen by the

information criteria proposed; see for example Bai and Ng (2002).

These factors are then employed to augment the aforementioned MIDAS regression models.

For instance, in the case of quarterly factors equation (2.13) generalizes to the FADL −

MIDAS(pQ
Y , pQ

F , kD
X) model given by

Y Q
t+1 = µ +

pQ
Y
−1

∑

k=0

αkY
Q
t−k +

pQ
F
−1

∑

k=0

βkF
Q
t−k (2.21)

+γ

pD
X
−1

∑

j=0

ND−1
∑

i=0

wi+j∗ND(θD
X)XD

ND−i,t−j + ut+1

Additionally, using the DFM in equation (2.20), Andreou, Ghysels, and Kourtellos (2010b)

construct daily factors, denoted by FD
t , which pool information from a large cross-section

of daily financial data. This approach allows us to specify ADL-MIDAS models with both

quarterly and daily factors that incorporate information across different frequencies while at

the same time retain parsimony. For example, consider the FADL-MIDAS model in equation

(2.22) using the daily factor as the daily predictor, XD
t = FD

t . Using a similar approach

Clements and Galvão (2009) use leading indicators as predictors for quarterly macroeconomic

variables, which is estimated using DL-MIDAS models with AR errors as in equation (2.15).

Note that we can also formulate a FADL−MIDAS−M(pQ
Y , pQ

F , pQ
X) model, which involves

the multiplicative MIDAS weighting scheme, hence generalizing equation (2.18). Notice also

that equation (2.22) simplifies to the traditional factor model with additional regressors when

the MIDAS features are turned off - i.e. say a flat aggregation scheme is used. When the

lagged dependent variable is excluded then we have a projection on daily data, combined with

aggregate factors. This brings us to the following benchmark models of FADL(pQ
Y , pQ

F , pQ
X)

Y Q
t+1 = µ +

pQ
Y
−1

∑

k=0

αkY
Q
t−k +

pQ
F
−1

∑

k=0

βkF
Q
t−k +

pQ
X
−1

∑

k=0

γkX
Q
t−k + ut+1 (2.22)

9Although the parametric AR assumption for Ft and eit is not needed to estimate the factors, such
assumptions can be useful when discussing forecasts using factors.
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and FAR(pQ
Y , pQ

X) when the regressor XQ is not present

Y Q
t+1 = µ +

pQ
Y
−1

∑

k=0

αkY
Q
t−k +

pQ
F
−1

∑

k=0

βkF
Q
t−k + ut+1 (2.23)

3 Nowcasting and the Kalman Filter

We noted in the Introduction that the Kalman filter is a convenient computational device

to extract missing data. We also noted that the approach has many benefits, but also some

drawbacks. State space models can be quite computationally involved, as one must explicitly

specify a linear dynamic model for all the series. State space models are therefore also prone

to specification errors.

In this section we discuss how the regression in (2.13) relates to the more traditional approach

involving the Kalman filter. It is natural to discuss this also in conjunction with the so called

nowcasting literature discussed notably by Giannone, Reichlin, and Small (2008), among

others. We start with a subsection on MIDAS with leads. The latter can be compared

to nowcasting - although we consider the term MIDAS with leads more appropriate than

nowcasting. The difference between nowcasting and MIDAS with leads can be explained

with a simple example. Nowcasting refers to within-period updates of forecasts. An example

would be weekly updates of current quarter GDP forecasts. MIDAS with leads can be viewed

as - say again weekly updates - of not only current quarter GDP forecasts, but any future

horizon GDP forecast (i.e. over several future quarters). Of course, when MIDAS with leads

applies to updates of current quarter forecasts - it coincides with the exercise of nowcasting.

The Kalman filter is typically used for nowcasting. We start with a discussion of MIDAS

with leads and then cover connections with the Kalman filter.

3.1 MIDAS with leads

Giannone, Reichlin, and Small (2008), among others, have formalized the process of updating

the nowcast and forecasts as new releases of data become available. This process can be

mimicked via MIDAS regression models with leads. Say we are one or two months into

quarter t + 1. Namely, we consider the MIDAS models with leads in order to incorporate

real-time information available mainly on financial variables. Our objective is to forecast
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quarterly economic activity and in practice we often have a monthly release of macroeconomic

data within the quarter and the equivalent of at least 44 trading days of financial data

observed with no measurement error. This means that if we stand on the first day of the

last month of the quarter and wish to make a forecast for the current quarter we could use

and around 44 leads of daily data for financial markets that trade on weekdays.

Consider the Factor ADL model with MIDAS in equation (2.22), which allows for JD
X daily

leads for the daily predictor, expressed in multiples of months, JD
X = 1, 2, ..., J . Then we can

specify the FADL − MIDAS(pQ
Y , pQ

F , pD
X , JD

X ) model

Y Q
t+1 = µ +

pQ
Y
−1

∑

k=0

αkY
Q
t−k +

pQ
F
−1

∑

k=0

βkF
Q
t−k + γ[

JD
X
−1

∑

i=0

wi(θ
D
X)XD

JD
X
−i,t+1

+

pD
X
−1

∑

j=0

ND−1
∑

i=0

wi+j∗ND(θD
X)XD

ND−i,t−j] + ut+1,

(3.1)

Note that equation (3.1) differs from FADL-MIDAS model in (2.22) in that it includes the

leads term
∑JD

X
−1

i=0 wi(θ
D
X)XD

JD
X
−i,t+1

, which uses daily information during period t + 1 to

provide end of the quarter forecast of Yt+1.

MIDAS with leads differs from the MIDAS regressions involving “leading indicator” series,

as in Clements and Galvão (2009). The latter use of MIDAS regressions such as in equation

(2.16) without leads appearing in the MIDAS polynomial, but with (monthly) leading

indicator series aligned with quarterly GDP growth data.

3.2 Comparison with the Kalman filter

Bai, Ghysels, and Wright (2009) and Kuzin, Marcellino, and Schumacher (2009) discuss in

detail the connections between the Kalman filter and MIDAS regressions. It is the purpose

of this subsection to summarize their findings. The first important observation is that a

MIDAS regression can be viewed as a reduced form representation of the linear projection

that emerges from a state space model approach - where by reduced form we mean that the

MIDAS regression does not require the specification of a full state space system of equations.
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For illustrative purposes, consider a simple dynamic single factor model:

Fi,t = ρF(i−l),t + ηi,t ∀t = 1, . . . , T, i = 2, . . . , ND (3.2)

and F1,t = ρFND,t−1 + η1,t. Moreover, let η.,t be i.i.d. Gaussian with mean zero and variance

σ2
η. Suppose now the daily data XD

i,t relates to the factors as follows:

XD
i,t = γFi,t + ui,t i 6= ND (3.3)

with u.,t i.i.d. Gaussian with mean zero and variance σ2
u. Finally, at the end of each quarter,

we have:

XD
ND,t = γFND,t + uND,t Y Q

t = FND,t + vND,t (3.4)

with v.,t i.i.d. Gaussian with mean zero and variance σ2
v . This highly stylized state space

model with mixed sampling and minimal parametric specification (involving five parameters

collected in θS ≡ (ρ, γ, σ2
η, σ

2
u, σ

2
v)). Bai, Ghysels, and Wright (2009) show that the steady

state Kalman filter corresponds to the following ADL − MIDAS(∞,∞) :

Et[Y
Q
t+1] =

∞
∑

j=0

αj+1(θ
S)Y Q

t−j + β
∞

∑

j=0

ND
∑

i=1

wi+j∗nD
(θS)XD

i,t−j (3.5)

where Et is linear projection using past quarterly and daily data combined. The weights

have a structure very similar to the MIDAS regression appearing in (2.13) and a related one

discussed below in equation (2.18). It is important to note that the Kalman filter requires to

specify a complete system of equations, which we kept to an absolute minimum representation

in the above motivating example. Nevertheless, we counted five parameters driving the

weights in equation (3.5) compared to two for the Exponential Almon weighting scheme of

the MIDAS regression. In some cases the MIDAS regression is an exact representation of

the Kalman filter, in other cases it involves approximation errors that are typically small.10

The Kalman filter, while clearly optimal as far as linear projections goes, has two main

disadvantages (1) it is more prone to specification errors as a full system of equations for Y,

X, and latent factors is required and (2) as already noted it requires a lot more parameters

to achieve the same goal. Bai, Ghysels, and Wright (2009) show that the weighting scheme

in equations (2.18) and (2.19) corresponds to the structure of a steady state Kalman filter

10Bai, Ghysels, and Wright (2009) discusses both the cases where the mapping is exact and the
approximation errors in cases where the MIDAS does not coincide with the Kalman filter.
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linear projection with mixed sampling frequencies. Namely,

Et[Y
Q
t+1] =

∞
∑

j=0

αj+1(θ
S)Y Q

t−j + β

∞
∑

j=0

ND
∑

i=1

wk(θ
S)XQ

t−k(θ
S) (3.6)

with XQ
t−k(θ

S) similar to XQ
t (θD

X) appearing in equation (2.17). The downside of the MIDAS

specification in equations (2.18) and (2.19) is that it is less parsimonious than the single

weighting scheme in equation (2.13). Yet, it typically involves less parameters than the

multiplicative scheme emerging from the Kalman filter appearing in driven by θS. Note also

that equation (2.19) is more parsimonious than equation (2.18), and at the same time also

more restrictive.

4 Forecasting volatility

There is a large literature on forecasting volatility and in particular using high frequency

(intraday) data (see for instance Andersen, Bollerslev, Christoffersen, and Diebold (2006)).

Here, we focus on the issues pertaining to mixed frequencies - typically created by multi-step

volatility forecasting. In this respect, the MIDAS approach complements the literature on

forecasting volatility in several important directions. Note that a related topic to multi-step

volatility forecasting is that of forecasting Value-at-Risk (VaR) within the risk management

literature. In the context of forecasting the 10-day VaR, required following the Basle accord,

using daily or even intradaily information, MIDAS models can be used to produce directly

multi-step forecasts (see for instance, Chen and Ghysels (2009)).

In order to analyze the role of MIDAS in forecasting volatility let us introduce the relevant

notation. Let Vt+1,t be a measure of volatility in the next period. We focus on predicting

future conditional variance, measured as increments in quadratic variation (or its log

transformation), due to the large body of existing recent literature on this subject. The

increments in the quadratic variation of the return process, Qt+1,t, is not observed directly

but can be measured with some discretization error. One such measure would be the sum of

(future) m intra-daily squared returns denoted rID
. , namely

∑m
j=1[r

ID
j ]2, which we will denote

by Q̃
(m)
t+1,t since it involves a discretization based on m intra-daily returns. The superscript

in parentheses indicates the number of high-frequency data used to compute the variable.

We change slightly the notation in this section for the regressors. We used the notation XD
j,t
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to refer to daily data in quarter t. In this section we simply refer to XD
t . A MIDAS volatility

regression with daily predictors is:

Q̃
(m)
t+1,t = µ + φ

kmax
∑

k=0

w(k, θ)XD
t−k + εt (4.1)

The volatility specification (4.1) has a number of important features.

First, the volatility measure on the left-hand side, and the predictors on the right-hand

side are sampled at different frequencies. As a result the volatility in equation (4.1), can

be measured at different horizons (e.g. daily, weekly, and monthly frequencies), whereas the

forecasting variables XD
t−k are available at daily or higher frequencies. Thus, this specification

allows us not only to forecast volatility with data sampled at different frequencies, but also

to compare such forecasts and ultimately evaluate empirically the continuous asymptotic

arguments. In addition, equation (4.1) provides a method to investigate whether the use of

high-frequency data necessarily leads to better volatility forecasts at various horizons.

Second, the weight function or the polynomial lag parameters w not only share all the

advantages (discussed in previous section), but they can be especially relevant in estimating

a persistent process parsimoniously, such as volatility, where distant XD
t−k are likely to have

an impact on current volatility. In addition, the parameterization also allows us to compare

MIDAS regressions at different frequencies as the number of parameters to estimate will be

the same even though the weights on the data and the forecasting capabilities might differ

across horizons. Most importantly one does not have to adjust measures of fit for the number

of parameters and in most situations with one predictor one has a MIDAS model with either

one or two parameters determining the pattern of the weights.

Third, MIDAS regressions typically do not exploit an autoregressive scheme, so that XD
t−k

is not necessarily related to lags of the left hand side variable. Instead, MIDAS regressions

are first and foremost regressions and therefore the selection of XD
t−k amounts to choosing

the best predictor of future quadratic variation from the set of several possible measures

of past fluctuations in returns. In other words, MIDAS can be considered as a reduced-

form forecasting method of volatility, rather than a model of conditional variance. Various

regressors can be used in the MIDAS equation (4.1) to examine whether future volatility

is well predicted that synthesize alternative methods in the literature. Examples of XD
t−k

are past daily squared returns (that correspond to the ARCH-type of models with some

16



parameter restrictions, Engle (1982) and Bollerslev (1986)), absolute daily returns (that

relate to the specifications of (see e.g. Ding, Granger, and Engle (1993)), realized daily

volatility (e.g. Andersen, Bollerslev, and Diebold (2010)), realized daily power of (Barndorff-

Nielsen and Shephard (2003) and Barndorff-Nielsen, Graversen, and Shephard (2004)), and

daily range (e.g. Alizadeh, Brandt, and Diebold (2002) and Gallant, Hsu, and Tauchen

(1999)). Since all of the regressors are used within a framework with the same number of

parameters and the same maximum number of lags, the results from MIDAS regressions are

directly comparable. Moreover, MIDAS regressions can also be extended to study the joint

forecasting power of the regressors.

Related to the MIDAS volatility regression is the Heterogeneous Autoregressive Realized

Volatility (HAR-RV) regressions proposed in Andersen, Bollerslev, and Diebold (2007) and

Corsi (2009). The HAR-RV model is given by (dropping m as argument for future and past

realized volatilities):

RV t+1,t = µ + βDRV D
t + βW RV W

t + βMRV M
t + εt+1, (4.2)

which has a simple linear prediction regression using RV over heterogeneous interval sizes,

daily (D), weekly (W) and monthly (M). As noted by Andersen, Bollerslev, and Diebold

(2007) (footnote 16) the above equation is in a sense a MIDAS regression with “step

functions” (in the terminology of Ghysels, Sinko, and Valkanov (2006)).11 In this regards the

HAR-RV can be related to the MIDAS-RV in (4.1) of Ghysels, Santa-Clara, and Valkanov

(2006) and Forsberg and Ghysels (2006), using different weight functions such as the Beta,

exponential Almon or step functions and different regressors not just autoregressive with

mixed frequencies. Note also that both models exclude the jump component of quadratic

variation. Simulation results reported in Forsberg and Ghysels (2006) also show that the

difference between HAR and MIDAS models is very small for RV. For other regressors, such

as the realized absolute variance, the MIDAS model performs slightly better.

The MIDAS approach can also be used to study various other interesting aspects of

forecasting volatility. Chen and Ghysels (2009) provide a comprehensive study and a

novel method to analyze the impact of news on forecasting volatility. The following semi-

parametric regression model is proposed to predict future realized volatility (RV) with past

11See also the discussion in Corsi (2009) - page 181 - on this topic.
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high-frequency returns:

RVt+1,t = ψ0 +
τ

∑

j=1

m
∑

i=1

ψi,j(θ)NIC(rID
j,t ) + εt+1 (4.3)

where ψi,j(θ) is a polynomial lag structure parameterized by θ, NIC(.) is the news impact

curve and rt/m is the log asset price difference (return) over some short time interval i of

length m on day t. Note i = 1, . . . , m of intervals on day t.

The regression model in (4.3) shows that each intra-daily return has an impact on future

volatility measured by NIC(rID
j,t ) and fading away through time with weights characterized

by ψi,j(θ). One can consider (4.3) as the semi-parametric (SP) model that nests a number of

volatility forecasting models and in particular the benchmark realized volatility forecasting

equation below:

RVt+1,t = ψ0 +
τ

∑

j=0

ψj(θ)RV D
t−j + εt+1 (4.4)

The nesting of (4.4) can be seen for k = 1, . . ., when we set ψi,j ≡ ψi ∀ j = 1, . . . , ∆−1, and

NIC(r) ≡ r2 in equation (4.3). This nesting emphasizes the role played by both the news

impact curve NIC and the lag polynomial ψi,j.

The reason it is possible to nest the RV AR structure is due to the multiplicative specification

for ψi,j(θ) ≡ ψD
j (θ) × ψID

i (θ), with the parameter θ containing subvectors that determine

the two polynomials separately. The polynomial ψD
j (θ) is a daily weighting scheme, similar

to ψi(θ) in the regression model appearing in (4.4). The polynomial ψID
i (θ) relates to the

intra-daily pattern. With equal intra-daily weights one has the RV measure when NIC

is quadratic - as is the case in the Symmetric model. Chen and Ghysels (2009) adopt the

following specification for the polynomials:

ψD
j (θ)ψID

i (θ) = Beta(j, τ, θ1, θ2) × Beta(i, 1/m, θ3, θ4) (4.5)

where τ and 1/m are the daily (D) and intradaily (ID) frequencies. The restriction is imposed

that the intra-daily patterns wash out across the entire day, i.e.
∑

i Beta(i, 1/m, θ3, θ4) = 1,

and also impose without loss of generality, a similar restriction on the daily polynomial, in

order to identify a slope coefficient in the regressions.

The multiplicative specification (4.5) has several advantages. First, as noted before, it nests
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the so called flat aggregation scheme, i.e. all intra-daily weights are equal, yields a daily

model with RV when the news impact curve is quadratic. Or more formally, when θ3 =

θ4 = 1, and NIC(r) = r2 one recovers RV -based regression appearing in equation (4.4).

Second, by estimating Beta(i, 1/m, θ3, θ4) one lets the data decide on the proper aggregation

scheme which is a generic issue pertaining in MIDAS regressions as discussed in Andreou,

Ghysels, and Kourtellos (2010a). Obviously, the intra-daily part of the polynomial will pick

up how news fades away throughout the day and this - in part - depends on the well known

intra-daily seasonal pattern.

Finally, the MIDAS-NIC model can also nest existing parametric specifications of news

impact curves adopted in the ARCH literature, namely, the daily symmetric one when

NIC(r) = br2, the asymmetric GJR model when NIC(r) = br2 + (cr2)1r<0 (Glosten,

Jagannathan, and Runkle (1993)) and the asymmetric GARCH model when NIC(r) =

(b(r − c)2) (Engle (1990)).

5 Conclusion

In this chapter we reviewed the use of regression models that involve data sampled at different

frequencies. The research area is still in its infancy as there many topics we did not cover

such multivariate models, Granger causality with mixed frequency data (see however Ghysels,

Sinko, and Valkanov (2009)), nonlinear models, to name a few. Finally, the chapter dealt

almost exclusively with the use of high frequency data to improve forecasts of low frequency

data. In some circumstances the reverse may be of interest. An example is the use of

macroeconomic variables in daily or monthly volatility forecasting - as in for instance Engle,

Ghysels, and Sohn (2008) - or the use of low frequency correlations to improve daily frequency

correlation forecasts, as in Colacito, Engle, and Ghysels (2010).

Last but not least we would like to note the availability of a Matlab Toolbox for MIDAS

regressions, see Sinko, Sockin, and Ghysels (2010).
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