Electoral Institutions and Intraparty Cohesion

Konstantinos Matakos, Riikka Savolainen, Orestis Troumpounis, Janne Tukiainen and Dimitrios Xefteris
Electoral Institutions and Intraparty Cohesion

Konstantinos Matakos† Riikka Savolainen‡ Orestis Troumpounis§
Janne Tukiainen¶ Dimitrios Xefteris∥

July 10, 2018

Abstract

We study parties’ optimal ideological cohesion across electoral rules, when the following trade-off is present: A more heterogenous set of candidates is electorally appealing (catch-all party), yet, it serves policy-related goals less efficiently. When the rule becomes more disproportional, thus inducing a more favorable seat allocation for the winner, the first effect is amplified, incentivizing parties to be less cohesive. We provide empirical support using a unique data-set that records candidates’ ideological positions in Finnish municipal elections. Exploiting an exogenous change of electoral rule disproportionality at different population thresholds, we identify the causal effect of electoral rules on parties’ cohesion.

Keywords: Electoral systems; ideological heterogeneity; party cohesion; policy-motivated parties; proportional representation; regression discontinuity design

JEL codes: C21; C72; D02; D72

*We are grateful to James Adams, Manuel Bagues, Peter Buisseret, Alessandra Casella, John Duggan, Olle Folke, Alexander Fouirnaies, Anthony Fowler, Bernard Grofman, Tasos Kalandrakis, David Kang, Eva Mörk, Tuomas Pekkarinen, Carlo Prato, Jim Snyder, Stephane Wolton for their constructive comments and suggestions. For valuable feedback we thank participants in the APSA, CRETE, EEA, EPSA, MPSA, PEPS conferences, as well as seminar audiences in Chicago Harris, Columbia, Harvard, HECER, King’s College London, Lancaster, Leicester, LSE, VATT.

†Corresponding author: Department of Political Economy, King’s College London, Strand campus, London, WC2R 2LS, UK; email: konstantinos.matakos@kcl.ac.uk

‡Department of Political Economy, King’s College London, Strand campus, London, WC2R 2LS, UK.
§Department of Economics, University of Padova, via del Santo 33, 35123 Padova, Italy and Department of Economics, Lancaster University, Bailrigg, Lancaster, LA1 4YX, United Kingdom.
¶London School of Economics and Political Science & VATT Institute for Economic Research, P.O. Box 1279 (Arkadiankatu 7), FI-00101 Helsinki, Finland.
∥Department of Economics, University of Cyprus, PO Box 20537, 1678 Nicosia, Cyprus.
1 Introduction

The internal structure of an organization can be an important determinant of performance in competitive environments (Grossman and Hart 1986; Aghion and Tirole 1997; Besley and Persson 2017; Beal, Cohen, Burke, and McLendon 2003). For example, an organization’s cohesion affects knowledge transfer (Morris 2000; Reagans and McEvily 2003; Acemoglu, Ozdaglar, and Yildiz 2011), and increases workers’ marginal products (Levine 1991). In the political arena, cohesive parties tend to vote in a disciplined manner and therefore guarantee the survival of governments and effective policy implementation (Carey 2008; Tsebelis 2002). On the other hand, diversified organizations can facilitate the diffusion of certain technologies (e.g., Reich 2011), and have the ability to address a larger pool of consumers or voters (e.g., Borenstein 1991; Kirchheimer 1990). Therefore, the optimal degree of organizational cohesion is not a trivial decision and, certainly, not one that is typically considered in an institutional vacuum. Indeed, the following question arises: How does the underlying institutional framework determine organizations’ internal structure at the first place?

In this paper, we study how institutions affect organizations’ structure via the channel of recruitment (e.g., Besley, Folke, Persson, and Rickne 2017; Dal Bo, Finan, Folke, Persson, and Rickne 2017; Folke and Rickne 2017). In particular, we focus on political parties and explore, both theoretically and empirically, how electoral institutions shape parties’ strategic incentives at the stage of candidate selection. Surprisingly, while more is known on the effects of intraparty competition on the choice of party governance and structure (Caillaud and Tirole 2002), the institutional determinants of intraparty characteristics remain largely unexplored.¹ Our focus is on the electoral system, a key institutional determinant of political competition, that affects parties’ incentives and, hence, a variety of political and economic outcomes (e.g., polarization (Cox 1990; Matakos, Troumpounis, and Xefteris 2016), turnout (Blais and Carty 1990; Herrera, Morelli, and Palfrey 2014), campaign spending (Iaryczower and Mattezzi 2013), corruption, redistribution, public spending and the provision of public goods (Persson, Tabellini, and Trebbi 2003; Milesi-Ferretti, Perotti, and Rostagno 2002; Persson, Roland, and Tabellini 2007; Lizzeri and Persico 2001)).² The important, yet less explored, question this paper aims to answer is

²The literature on electoral systems is vast and we just refer to some representative examples among many others. See for more references therein as well as Persson and Tabellini (2002, 2005); Lijphart (1995, 1999); Taagepera and Shugart (1989); Grofman (2008).
how electoral systems affect parties’ characteristics and, in particular, their ideological cohesion.

We refer to the electoral system in an easy-fitting manner by focusing on its disproportionality. As well known, electoral rules that are proportional map electoral results to parliamentary power in an accurate manner. On the contrary, disproportional electoral rules favor the election winner (via various specific characteristics, e.g., the electoral formula, the district magnitude, the presence of thresholds for representation or the size of the body to be elected (Herron, Pekkanen, and Shugart 2018; Lijphart 1995)). In our “reduced-form” approach, we simply associate disproportional electoral rules to a favorable distribution of parliamentary power for the election winner. Our results hence have a broad appeal, since they apply across different institutional settings, and do not hinge on particular institutional parameters.

Our analysis of parties’ ideological cohesion refers to the ideological homogeneity of their candidates. We think of parties as a collection of candidates “tethered by a rubber band to the ideology espoused by the parties whose label they run on” (Grofman 2008). By linking the electoral rule disproportionality to parties’ ideological cohesion we are able to determine both theoretically and empirically how elastic this rubber band is, and thus how much candidates’ ideologies deviate from parties’ positions under different levels of disproportionality. Our results suggest that proportional rules are associated with ideologically cohesive parties, while disproportional ones lead to pluralistic parties that embrace a rather heterogeneous set of candidates.

Our main message is that electoral institutions affect the incentives that political organizations face in recruiting their political personnel due to the following key trade-off: wider ideological variety amongst candidates implies more votes. At the same time, it also implies higher costs and lower efficiency -for instance, less cohesive parties are more likely to produce policy outcomes that deviate from those desired by the leadership. Therefore, the gain-loss tradeoff associated to a marginal increase in vote share, determines the optimal variety, and thus, the electoral rule critically drives parties’ behavior. Depending on how the electoral rule transforms votes into seats and political influence, it affects the importance assigned to votes and hence variety. As our theoretical results support, disproportional electoral systems pronounce parties’ incentives to increase their vote share, and this is achieved by proposing a relatively wide-ranging set of candidates. On the contrary, electoral rules that are relatively proportional provide less incentives for an increased vote share and are therefore associated with high levels of intraparty ideological bonds.

We find that the above theoretical arguments are empirically supported by identifying the causal effect of the electoral rule disproportionality on parties’ ideological cohesion.
To obtain data on parties’ ideological cohesion, we leverage on a unique data-set recording the policy positions of individual candidates for the Finnish municipal elections in years 2008 and 2012. These data come from the voting aid application of the Finnish public broadcasting company, YLE, and are further linked to electoral data and other candidate level information. Causal evidence is obtained by focusing on quasi-experimental empirical evidence due to municipalities’ council size being determined solely as a step-function of their population. We use these changes in the council size as a proxy for changes in the rule’s disproportionality facilitating a regression discontinuity design (RDD). As we first theoretically demonstrate, and indeed our RDD results confirm, the electoral rule in municipalities with small-size councils favors the large parties disproportionally (Herron et al. 2018; Benoit 2000). Then our main results show that in elections for those smaller councils, competing lists tend to be less cohesive than in elections for bigger councils. These estimates on the effect of the electoral rule disproportionality (via the council size) on parties’ cohesion constitute a novel finding. More generally, evidence on causal effects of electoral systems on any outcome is scarce. Typically researchers have relied on cross-country or panel variation in electoral systems leaving room to suspect confounding. In contrast, we leverage on plausibly as-good-as-random variation within a country.

Finally, we rule out alternative mechanisms that could explain our empirical results. First, no other policy changes take place at the thresholds that determine councils’ sizes. Second, there is no sorting across the thresholds which is natural as the municipal population is not self-reported. Third, while changes in the council size could have other political consequences besides its impact on proportionality (e.g., affecting the number of parties or candidates), we use our rich data to perform extensive covariate balance tests and show that proportionality is the most likely mechanism for the reported effects. The results are robust to a further battery of robustness and validity checks - here of particular interest is our novel use of placebo cutoff tests to assess the appropriate level of clustering in the optimal bandwidth selection.

In Section 2 we develop our theoretical arguments, in Section 3 we present our empirical evidence and then, in Section 4, we conclude. All proofs, as well as further discussions of our data, theoretical and empirical results (e.g., robustness) are included in the Appendix.

2 Theory

We present a formal model of electoral competition where two parties \(j = L, R \) strategically choose the ideological heterogeneity of a continuum of candidates (\(\text{list} \)) competing in the election under the party’s label.
The policy space is assumed to be continuous, unidimensional, and represented by the interval $X = [0, 1]$. The ideal policies of a unit mass of voters are uniformly distributed on the policy space, with x_i denoting the ideal policy of individual i. Parties have ideal policies, x_L and x_R, that are symmetric around 0.5 (i.e., $x_L + x_R = 1$) with $x_L \in [1/3, 1/2]$ and $x_R \in [1/2, 2/3]$. Each party j strategically chooses an interval $[\bar{x}_j, \bar{x}_j]$ with $0 \leq \bar{x}_L < \bar{x}_L + \bar{x}_R = 1$ and $1/2 \leq \bar{x}_R < \bar{x}_R \leq 1$ where its candidates belong to maximize the party’s payoff.

The game evolves as follows: Parties strategically choose their list of candidates and voters vote for the party that included in its list the ideologically closest candidate to them. Given the electoral rule in place, electoral outcomes translate to a distribution of seats in the parliament assigned to candidates of different ideologies. Since voters behavior is parametric we focus on symmetric Nash Equilibria in pure strategies in the list selection stage. A symmetric equilibrium is essentially a pair of intervals $[\bar{x}_L^*, \bar{x}_L^*]$ and $[\bar{x}_R^*, \bar{x}_R^*]$ such that $\bar{x}_L^* + \bar{x}_R^* = 1$, $\bar{x}_L^* + \bar{x}_R^* = 1$ and none of the two parties has incentives to propose a different list of candidates.

The electoral system: The electoral system in our model translates each party’s vote share v_j into a seat share in the parliament s_j. Let us first describe how v_j is determined given the proposed intervals $[\bar{x}_L, \bar{x}_R]$ and $[\bar{x}_R, \bar{x}_R]$. The indifferent voter is located at $\hat{x} = \bar{x}_L + \bar{x}_R / 2$. All voters to the left (right) of the indifferent voter identify the closest candidate to their ideal policy in the list proposed by the leftist (rightist) party. Given the uniform distribution of voters, parties’ vote shares are:

$$v_L = \frac{\bar{x}_L + \bar{x}_R}{2} \quad \text{and} \quad v_R = 1 - \frac{\bar{x}_L + \bar{x}_R}{2}.$$

To capture the electoral institutions, the crucial element is how a party’s vote share translates to its seat share. In general, the electoral system is a function $G(v_L, v_R)$ that translates vote shares to seat shares, where $s_L = G(v_L, v_R)$ and $s_R = 1 - G(v_L, v_R)$. Notice now, that given that $v_L + v_R = 1$ seat shares can be written as a function of v_L where $s_L = G(v_L)$ and $s_R = 1 - G(v_L)$. Regarding the properties of the electoral institution $G(v_L)$ we assume that $G(v_L) : [0, 1] \to [0, 1]$ is continuous, symmetric around 0.5 (i.e., $G(v_L) = 1 - G(1 - v_L))$, $G(0) = 0$, and log concave wherever it takes interior values (i.e., $\frac{\partial^2 \ln G(v_L)}{\partial v_L^2} < 0$ for all v_L such that $G(v_L) \in (0, 1)$).

Examples: One can think of several examples of $G(v_L)$ that could be part of our

3In the paper we present the simplest version of our model that presents a set of interesting results on intraparty cohesion. After we present our main result, we discuss several ways we could relax some of our assumptions without harming the qualitative features of our equilibrium.

4Assuming that parties propose a non-degenerate interval is purely for expositional reasons. As we actually show in Appendix A, in equilibrium parties would never propose a point on the strategy space.
analysis. **Theil’s rule** (Theil 1969) is a well known method of introducing distortions in favor of the winner across different electoral systems where:

\[
\frac{s_L}{s_R} = \left(\frac{v_L}{v_R} \right)^n \implies s_L = \frac{v_L^n}{v_L^n + (1 - v_L)^n}
\]

and \(n \geq 1 \) (see Matakos et al. (2016); Herrera et al. (2016b,a, 2014); Saporiti (2014); Debowicz et al. (2016) for recent applications). If \(n = 1 \), each party’s vote share is equal to its seat share and seats are allocated to parties proportionally to their vote shares. If \(n > 1 \), the electoral system is allocating disproportionally more seats to the party with the highest vote share. And this advantage for the big party is getting bigger as \(n \) increases.

Figure 1(a) illustrates the case of a pure PR system \((n = 1) \), a relatively disproportional system favoring the first party \((n = 3 \), the so called Cube’s law considered a “standard” approximation of first-past-the-post systems with several districts), and a hypothetical extreme case where the winner is allocated all seats in parliament \((n \rightarrow \infty) \).

Alternatively, as Figure 1(b) illustrates, one could introduce distortions in favor of the winner according to a simple **Threshold rule** where the relationship between seats and votes is linear, but the loser of the election requires to reach a given vote threshold.
\((n - 1)/2n\) to obtain representation. Formally,

\[
s_j = \begin{cases}
0 & \text{if } v_j \leq \frac{n-1}{2n}, \\
\frac{1-n}{2} + nv_j & \text{if } \frac{n-1}{2n} < v_j \leq \frac{1+n}{2n}, \\
1 & \text{if } v_j > \frac{1+n}{2n}.
\end{cases}
\]

where \(n \geq 1\). In the Figure we present the two extreme such institutions in the absence of such threshold leading to a a pure PR system \((n = 1)\) and that of a winner-take-all election \((n \to \infty)\) and an almost 50% threshold). Intermediate cases with a 1/4 \((n = 2)\) and 1/3 \((n = 3)\) thresholds are also presented. Clearly, the larger this threshold (large \(n\)), the more favouring is the system towards the winner of the election.

Given parties seat shares \(s_L\) and \(s_R\) we can now determine the distribution of ideologies of the members of parliament. Formally, the distribution of ideologies will have support on \([\bar{x}_L, \underline{x}_L] \cup [\bar{x}_R, \underline{x}_R]\) (the ideological spectrum chosen by the parties), and ideologies will be uniformly distributed within party with the density given by the following function:

\[
f(x) = \begin{cases}
0 & \text{if } x < \underline{x}_L, \\
s_L/(\bar{x}_L - \underline{x}_L) & \text{if } \underline{x}_L \leq x \leq \bar{x}_L, \\
0 & \text{if } \bar{x}_L < x < \bar{x}_R, \\
s_R/(\bar{x}_R - \underline{x}_R) & \text{if } \underline{x}_R \leq x \leq \bar{x}_R, \\
0 & \text{if } x > \bar{x}_R.
\end{cases}
\]

For an illustration of the above density function and the ideologies represented in parliament for different levels of disproportionality according to Theil’s rule let us refer to Figure 2. Given parties’ policy proposals \([\underline{x}_L, \bar{x}_L] = [0.2, 0.4]\) and \([\underline{x}_R, \bar{x}_R] = [0.8, 0.9]\) the indifferent voter is located at 0.6 and hence \(v_L = 0.6\) and \(v_R = 0.4\). The top panel presents the case of a pure PR system \((n = 1)\) and the lower panel presents the case of a system favoring the winning leftist party \((n = 3.42)\). As it is clear, ideologies included in the list of the leftist party are represented in parliament more when the system is favoring the winner of the election.

Parties’ Payoffs: We assume that parties’ payoffs depend on the distribution of ideologies in the constituted parliament. In particular, let party \(j\) value each seat representing ideology \(t\) by the following expression:

\[u_j(t) = -(x_j - t)^2\]
(a) Using Theil’s rule and $n = 1$ we have that $s_L = 0.6$ and $s_R = 0.4$.

(b) Using Theil’s rule and $n = 3.42$ we have that $s_L = 0.8$ and $s_R = 0.2$.

Figure 2: The distribution of ideologies for $[x_L, \bar{x}_L] = [0.2, 0.4]$ and $[x_R, \bar{x}_R] = [0.8, 0.9]$ and hence $v_L = 0.6$ and $v_R = 0.4$.

Hence, party’s $j \in \{L, R\}$ payoff out of the constituted parliament is given by:

$$U_j([x_L, \bar{x}_L], [x_R, \bar{x}_R]) = \int_0^1 - (x_j - t)^2 f(t) dt$$

or given the properties of the electoral rule and the distribution of ideologies in parliament according to $f(x)$:

$$U_j([x_L, \bar{x}_L], [x_R, \bar{x}_R]) = s_L \int_{\bar{x}_L}^{\bar{x}_L} - (x_j - t)^2 \frac{1}{\bar{x}_L - x_L} dt + s_R \int_{\bar{x}_R}^{\bar{x}_R} - (x_j - t)^2 \frac{1}{\bar{x}_R - x_R} dt$$

where $s_L = G(\frac{x_L + \bar{x}_R}{2})$ and $s_R = 1 - G(\frac{x_L + \bar{x}_R}{2})$.
2.1 Theoretical predictions

In our game parties propose lists to elect a parliament to their liking. The crucial question to understand the equilibrium structure is: what are parties’ incentives to propose more or less cohesive lists of candidates? By enlarging their lists towards moderate grounds (i.e., high \bar{x}_L and low \bar{x}_R respectively) parties move the indifferent voter in their favor and hence obtain a higher vote share since they become more appealing to moderate voters.

Clearly, this effect -and the incentives to obtain a high vote share- increase as the electoral rule favors disproportionally the winner of the election. However, including in the list moderate candidates comes at a cost: the ideologies represented in the parliament may become too centrist and therefore affect negatively parties’ payoffs. Therefore, parties also enlarge their lists towards the extremes (i.e., low \bar{x}_L and high \bar{x}_R), despite not affecting their vote shares since extreme voters were anyway voting for them.

Now that the intuition on parties’ incentives is clear let us present in the following proposition the equilibrium characterization and relevant comparative statics.

Proposition 1. Let $x^* = \frac{x_L + [2 + x_L(6x_L - 7)]G'(0.5)}{1 + (1 - 2x_L)G'(0.5)}$. There exists a unique symmetric equilibrium where:

1. $[\bar{x}_L^*, \bar{x}_R^*] = [(3x_L - \min\{x^*, 0.5\})/2, \min\{x^*, 0.5\}]$
2. $[\bar{x}_R^*, \bar{x}_R^*] = [1 - \min\{x^*, 0.5\}, 1 - (3x_L - \min\{x^*, 0.5\})/2]$
3. In equilibrium, $\frac{\partial(\bar{x}_j^* - \bar{x}_j^*)}{\partial G'(0.5)} \geq 0$, for both $j = L, R$.

In the unique symmetric equilibrium, parties’ optimal levels of intraparty ideological heterogeneity are given by two equal length intervals on the left and on the right of the policy space. Each party $j \in \{L, R\}$ strategically chooses how far from its ideal point its candidates’ list should extend depending on the characteristics of the electoral institution captured by $G'(0.5)$ and its ideal point (x_j). Indeed, larger values of $G'(0.5)$ indicate a more disproportional allocation of seats in favor of the larger party. The crucial comparative static shows that the length of the list is increasing as the rule favors disproportionally the winner of the election (i.e., $\frac{\partial(\bar{x}_j^* - \bar{x}_j^*)}{\partial G'(0.5)} \geq 0$).

To visualize the result, but also understand the equilibrium structure further, let us focus on Figure 3 that presents the result for both examples of electoral institutions previously presented (Theil’s or the Threshold rule lead to the same equilibrium since $G'(0.5) = n$ for both rules, where n measures the electoral rule disproportionality). As the figure shows, the length of both parties’ lists is increasing in the electoral rule disproportionality. That is, our equilibrium results show that disproportional electoral systems
provide incentives to parties to become less cohesive. This is a consequence of the incentives provided by disproportional electoral systems to parties to increase their vote share.

Notice however that as our results indicate, enlargement does not occur in a symmetric manner around the party’s ideal policy. That is, for every unit of enlargement towards the centre so as to search more votes, each party also enlarges towards the extreme by half unit. Enlargement towards the extremes does counterbalance enlargement towards moderate grounds in terms of ideologies represented in the parliament, but in equilibrium enlargement towards the extremes should be smaller than the enlargement towards the centre.

The above arguments are the ones illustrated in Proposition 1 for any electoral institution G described in our model. That is, for every G and x_L there exists a unique value x^* that determines parties’ lists. The \min operator appearing in the formal result simply restricts the equilibrium values $[x_j, \tau_j]$ in the admissible strategy space but does not add any essential dynamics to the presented story. As also illustrated in Figure 3, once the most moderate candidates of the lists hit the 0.5 bound then parties stop including in their list more extreme candidates.

![Figure 3](image_url)

Figure 3: An example of equilibrium intraparty cohesion considering either Theil’s or the threshold rule for different levels of n and ideal policies $(x_L, x_R) = (0.4, 0.6)$. Equilibrium lists coincide for these two rules given that $G'(0.5) = n$ for both.

Discussion of our model and robustness: Having presented our main result we can now discuss the main assumptions concerning voters’ behavior and parties’ preferences. Recall that in our setup, parties propose a set of candidates to maximize their policy related utility out of all elected candidates, while voters vote for the candidate
they like the most (as in our empirical setting). Our assumptions can then be seen as the direct extension of the simplest voting model with sincere voters and two policy motivated parties that propose a unique policy (or candidate) to the multi-candidate setting presented. That is, as in the standard model voters sincerely vote for the candidate they like the most and parties care about the policies represented by all elected candidates.

Importantly, several of our assumptions can be relaxed without changing the nature of our main result. While the equilibrium characterization would vary, the main result showing that as the electoral rule becomes more disproportional parties become less cohesive would survive. For example, our result is robust to parties having preferences over the mean of the parliament instead of every parliament seat, as we consider here, and to voters caring about the aggregate party’s list ideology. Also, one could a) relax the set of admissible strategies, b) permit parties to have any symmetric ideal points, c) allow the society (and members of parliament) to be distributed in a non-uniform manner. With respect to the distribution of voters, our results are qualitatively identical for any distribution of voters $F(x)$ that is symmetric around $1/2$ and $G(F(\hat{x}))$ is a log-concave function. Regarding, parties’ ideologies, currently the restriction is that parties are not too extreme (i.e., $x_L \in [1/3, 1/2]$ and $x_R \in [1/2, 2/3]$). This assumption guarantees that in equilibrium, the extreme bounds of the lists will never hit the extremes of the policy space. This might however happen if parties were permitted to be more extreme. Still, this would not affect the nature of our results and a full characterization of the equilibrium is possible. Finally, although as almost any model of electoral competition, things may get (over)complicated if we were to permit more than two parties, in Appendix A we illustrate how the main trade-off parties face when choosing their lists should also be present in multiparty settings.

3 Empirical Evidence

We first describe the institutional details of the empirical setup and then detail our identification strategy. The same identification strategy is then used: a) to show that indeed our setup provides exogenous variation of the electoral rule disproportionality via changes in the council size, b) to present our main results on the effect of the council size on parties’ cohesion, and c) to rule out alternative mechanisms than the electoral rule disproportionality that could potentially explain the effect in part b). While one may argue that the effect in part a) is theoretically obvious, this step is crucial to demonstrate that this effect is strong enough to show up in our sample for it to be a plausible causal mechanism for any effect in part b). Moreover, when performing the balance tests and as further support to our mechanism, it is useful to see if the cohesion and proportionality
jump patterns are similar.

3.1 Institutional details and link with theory

Although our theoretical model is quite general and does not aim to exactly replicate the voting context of our empirical analysis, it has close parallels on how voting and tallying takes place in Finnish municipal elections that is the focus of our empirical analysis (years 2008 and 2012). In each municipality of council size k, parties (or pre-electoral coalitions of parties) propose a(n) (open) list of up to $1.5 \times k$ candidates and each voter votes for one candidate. Candidates’ votes are then aggregated at the list level and determine the lists’ vote shares.\(^5\) Lists’ vote shares are translated into lists’ seats following the D’Hondt allocation method. Seats are in turn allocated to the candidates with the most votes within the list. Thus, similar to our model, parties propose the set of candidates competing in each list and voters vote for a candidate who belongs to one of the lists. That is, in our empirical setup, parties can be seen as proposing a list of candidates that resembles the concept of the interval of ideological heterogeneity $[\pi_j, \pi_j]$ proposed by each party in our theoretical model. As in our theoretical model, the list composition in reality is also likely to affect council outcomes. Finnish local politics do not have very strong party discipline in place - at least, relative to the parliamentary politics in Finland - and even a single individual councillor can substantially affect economic policy (Hyytinen et al. 2018).

The number of candidates elected in each municipality (i.e., council size) varies between 13 and 85 and is a deterministic step function of the municipalities’ population.\(^6\) Importantly, while the council size varies seats are allocated following the D’Hondt method in all municipalities. This method, although a member of the “proportional” allocation formulas, is known to be one of the most favorable to large parties (Herron et al. 2018; Gallagher 1991). Even more, and crucially for our setup, how big is the advantage that the largest party enjoys (in terms of allocated seats) depends on the council size, which varies with the municipality’s population. As the council size grows, the advantage of the large party becomes smaller and hence the electoral rule less disproportional (Herron et al. 2018; Benoit 2000). In Appendix A we present a formal illustration of the effect of council size on the electoral rule disproportionality and further links between our theory and the actual electoral rule in Finland for the interested reader.

\(^5\)Parties can form pre-election coalitions and propose a joint list of candidates. The allocation of seats then takes place at a coalition list rather than at a party level.
\(^6\)The council sizes for the different population groups are: population less than or equal to 2,000 (council size 13, 15 or 17), 2,001-4,000 (21), 4,001-8,000 (27), 8,001-15,000 (35), 15,001-30,000 (43), 30,001-60,000 (51), 60,001-120,000 (59), 120,001-250,000 (67), 250,001-400,000 (75) and over 400,000 (85).
3.2 Data Sources

We combine data from several sources covering the Finnish municipal elections in 2008 and 2012. First, we use electoral data available from the Ministry of Justice with candidate-level information on candidates’ age, gender, party affiliation, their election outcomes (number of votes and whether elected) and the possible incumbency status. These electoral data are linked to data from Statistics Finland’s on candidates’ education, occupation and socioeconomic status. Moreover, we match the candidate-level data with Statistics Finland’s data on municipal characteristics. We have also collected information on parties pre-electoral coalitions.

Our data on individual candidates’ policy positions originate from the voting aid application of the Finnish public broadcasting company, YLE. The YLE voting aid application is first open only to candidates who may reply to closed-ended questions focusing on current policy issues (see Appendix D). During the response period, each candidate has access only to her own replies, which can be modified during this time but not afterwards. Once the candidates’ response period is over, the voting aid applications become publicly available. A voter can fill in the same questionnaire online and compare her replies to those of the candidates. The application also provides a list of candidates whose replies are closest to the voter’s. The open-list system makes Finland a fertile ground for the use of the voting aid application as voters’ have keen interest on individual politicians policy positions. Using the application is free of charge for both candidates and voters.\footnote{Finland is one of the first countries to introduce a voting aid application. Those have gained popularity (particularly among young voters) with surveys indicating that approximately 40\% of the Finnish electorate used an application prior to the 2007 parliamentary election, with 15\% of the users claiming that they had no favourite candidate and followed the application’s recommendation (see Wagner and Ruusuvirta 2012 and references therein).}

Filling in the voting aid application questionnaire is not obligatory for the candidates. The median response rate by municipality in 2008 was 47.8\% of the candidates and, on average, the candidates who did fill in a voting aid application questionnaire received in total 56.2\% of the votes of the municipality. The equivalent figures for 2012 were 47.2\% of the candidates and 54.3\% of the votes. Generally, the candidates who respond to the vote aid application are politically more successful and experienced, younger and more likely to be women. As we later detail, the response rate is balanced across the cutoffs used in the RDD and hence should not pose any threat to our identification strategy (see Tables 8-10 in Appendix C for these balance tests).

Using the electoral data we construct our main disproportionality measures that we detail in section 3.4. Similarly, using the YLA data we construct the main outcome variables on parties’ cohesion that we also detail in section 3.5. All variables are summarized in Table 12 (Appendix C) and described in the presentation of balance tests (Appendix
3.3 Identification strategy and estimation

The deterministic council size rule allows for a sharp regression discontinuity design (RDD). The idea of our empirical strategy is to compare outcomes in municipalities just below and above the council size cut-off points. The identifying assumption in such RDD is that individuals cannot precisely manipulate the forcing variable (see e.g. Lee and Lemieux 2010). This should be true in our case, because municipalities do not self-report their population. In this case, identification is based on a local randomization at the threshold.

We are interested mainly in two outcomes. First, we show that the council size has the expected effect on the proportionality of the electoral system. Second, as the main empirical contribution, we analyze whether there is an increase in cohesion at the threshold (that is, a discontinuous jump downwards in our within-party heterogeneity indexes), as predicted by our theory. Finally, we rule out other possible mechanisms that could explain the cohesion result.

To achieve this, we estimate regression models of these outcomes on a set of zero-one indicators for being above a cut-off point and include a flexible but smooth function of population as control variables. The population variables hopefully pick up the impact of all determinants of within party cohesion correlated with population, apart from council size. Hence, we will obtain a reliable estimate of the causal effect of council size on party cohesion clean of confounding factors that might otherwise bias our estimates.

As is standard in the literature, we use nonparametric local linear regressions as our main specification. We apply the bias correction and robust inference procedure by Calonico et al. (2014) which we implement using Calonico et al. (2016) rdrobust package in STATA. Based both on the Monte Carlo evidence by Calonico et al. (2014, 2017) and in comparison to an experimental benchmark by Hyytinen et al. (2017), this approach performs best among the standard implementation options (that is, versus conventional

8Regression discontinuity at population thresholds is a common approach to isolate causal effects. See for example Pettersson-Lidbom (2012); Gagliarducci et al. (2011); Eggers (2015); Bordignon et al. (2016); Ferraz and Finan (2009); Brollo et al. (2013); Fujiwara (2011); Egger and Koethenbuerger (2010); Gagliarducci and Nannicini (2013) among others. For a recent literature review and possible issues with the use of RDD at population thresholds see Eggers et al. (2018). We carefully address the concerns they raise. Similar to us, Sanz (2017) and Lyytikäinen and Tukiainen (2016) use population thresholds to study political consequences of electoral systems.

9However, local randomization is not a requirement but rather one possible interpretation of RDD. The sufficient identification assumption that is that the potential outcomes develop smoothly over the threshold. One difference between these two interpretations of the design is that the latter allows there to be trends in the potential confounders. See Cattaneo et al. (2015) and Sekhon and Titiunik (2017) for further discussion.
local linear without the bias-correction and/or robust inference, and parametric polynomial specifications). We use the latest MSE-optimal bandwidth procedure proposed in Calonico et al. (2016) and apply triangular kernel.

We report both classical and clustered inferences. The classical (non-clustered) inference has been standard in RDD for long due the typical optimal bandwidth selection methods not having been optimized for clustering. Due to recent advances Calonico et al. (2016), we can now also optimize the bandwidth selection while clustering. Note that as opposed to the normal (non-RDD) case, now also the coefficient changes with clustering as the bandwidth also changes.

One complication to our analysis is how to deal with multiple thresholds. One option is to calculate the forcing variable as a population distance to the nearest threshold and simply define a single group for being above a threshold. Given the limited amount of observations, we use this pooling option here for the nonparametric analysis. Cattaneo et al. (2016) show that even if the pooling results in a loss of information, it produces meaningful (particularly weighted) treatment effect estimates. We can express this pooling approach as estimating regression functions of the form

\[Y_{it} = \alpha + \delta 1(v_{it} > 0) + f(v_{it}) + 1(v_{it} > 0) f(v_{it}) + e_{it}, \]

where \(Y_{it} \) is the outcome of interest, \(v_{it} \) is the forcing variable measuring the distance from the normalized population cutoffs for each observation \(i \) in election \(t \), \(1(v_{it} > 0) \) is an indicator function for being above the cutoffs and \(\delta \) is the coefficient of interest. If \(f(v_{it}) \) is approximately correctly specified within a bandwidth, and there is no precise manipulation of the forcing variable (i.e., the density is smooth at the threshold), the covariates should evolve smoothly at the boundary, and thus, \(\delta \) will be the causal estimate of interest.\(^{10}\)

However, we also have an interest at the magnitude of the effect at each individual threshold, but not enough data to conduct a very precise nonparametric estimation at each cutoff separately. Therefore, we also report parametric polynomial specifications that need to rely also on data points further away from the thresholds. Such parametric approach is also used to produce meaningful visualizations of the data. In all the analysis, we limit the sample used to municipalities with a population below 22,500 to focus the analysis around the thresholds where the data is denser.

Even if our pooling approach is standard in the literature, it is not entirely unproblematic. The main issue is that one could possibly end up comparing, for example, a

\(^{10}\)In the reported results, the bandwidth is optimized after pooling the data. However, the results are robust to optimizing at each cutoff before pooling, and to controlling for the cutoff fixed effects (not reported).
municipality of a population of 1999 (just below) to a municipality of 8001 population (just above). This is clearly not a valid comparison for causal inference. Therefore a further identifying assumption for this approach, is that the share of identifying observations on both sides of each of the threshold is the same (which would happen in large samples due to local randomization). Therefore, the McCrary (2008) density tests need to be reported separately for each threshold as opposed to the entire pooled sample. We do not observe any jumps neither at any of the individual cut-offs nor at the pooled one (see Figures 8 and 9 in Appendix C).

The standard identifying assumptions of our models imply that other possible determinants of intraparty cohesion should develop smoothly with respect to population and be therefore captured by the \(f \) function. Factors outside the model depending on the same population rule would violate this assumption. Eggers et al. (2018) have raised this concern especially related to the case of analyzing population thresholds, since in many countries, municipalities’ responsibilities, grants, politicians’ salaries and regulation depend also on the same thresholds. In that case, there are simultaneous exogenous treatments and RDD is able to only identify their joint effect. None of these concerns is present in the Finnish system. However, the council size in itself can have different electoral effects, because candidates, parties and voters may respond to it in various ways. To argue that the empirical mechanism is the one proposed by our theory, we rely mainly on covariate balance tests (see Section 3.6 and Appendix C for detailed discussion and results).

3.4 Council Size and Disproportionality

In this section, we analyze how the council size affects proportionality in our data. The unit of observation is a municipality in a given year. If parties have formed a pre-election coalition, and thus, run as a single joint list in the elections, we define that as a single party when calculating the proportionality measures. This is to best reflect the actual election mathematics and is thus the only sensible choice for the proportionality analysis. However, when analyzing party cohesion, both coalition level and party label level analysis would make sense. For consistency we use the same unit (coalition) in both analyses.\(^{11}\)

The early debate on the best way to measure the electoral system disproportionality is still open (e.g., Lijphart 1995). In our analysis, we use one existing measure for proportionality and we introduce another. To calculate these we use 2008 and 2012

\(^{11}\)These coalitions are formed solely for the purpose of election mathematics favoring larger parties, they are not taken into account in the actual policy making in the council. Therefore, the RDD analysis on the party cohesion could as well be conducted at the party label level. While we report the analysis only at the coalition level, the results are similar at party label level. Roughly 15% of the lists are such coalitions.
election data on all the municipalities with population below 22,500. In total we have 505 observations at the municipality year level for which we compute the disproportionality measures as our main dependent variable.

One of the most common ways of measuring distortions created by the electoral system is the Gallagher index (Gallagher 1991). The **Gallagher index** in municipality i in year t is defined as:

$$G_{it} = \frac{1}{2} \times \sum_{j=1}^{p} (s_j - v_j)^2$$

where $j = 1, ..., p$ denotes the p different parties running in municipality i in year t. The difference $s_j - v_j$ represents the distortions created by the electoral system when a party j that obtains vote share v_j is allocated a seat share s_j. In a pure PR system where no distortions are present (in the examples of the Theil or threshold rule, $n = 1$) this difference takes value zero for each party and so is the case for the index. As the distortions start getting larger the value of the index is also increasing.

Despite the attractiveness of the Gallagher index being its intuitive meaning and ease of calculation, Taagepera and Grofman (2003) argued that it fails to satisfy some relevant axiomatic properties that other indexes achieve (e.g., Dalton’s principles of transfers, scale invariance, orthogonality). We therefore use the **Modified Gallagher index**.\(^\text{12}\) The **Modified Gallagher index** in municipality i in year t is defined as:

$$MG_{it} = \frac{1}{2} \times \sum_{j=1}^{p} \left(\frac{s_j}{\sum_{j=1}^{p} (s_j^2)^{1/2}} - \frac{v_j}{\sum_{j=1}^{p} (v_j^2)^{1/2}} \right)^2$$

Again, this index takes value zero in the case of pure PR and higher values in the presence of distortions.

Notice, however, that while the **Modified Gallagher index** (as all others in the literature) represents the level of distortions in the vote to seat share translation, it remains silent on the direction of these distortions. That is, it does not permit us to understand whether such distortions favor the small or big parties, an element crucial in our theory. To be able to capture the direction of such distortion we propose the use of the **Slope index** constructed as follows: For each municipality-year combination observation we regress the difference $s_j - v_j$ on v_j. Then we define as the **Slope index** the slope of the line obtained from such regression. Effectively, it relates the vote share of the parties and their advantage or disadvantage in translating the votes to the seats.

Figure 4 illustrates how the slope of such line captures not only the size of such distortions but also the direction. On the left we depict one municipality-year observation

\(^\text{12}\)Koppel and Diskin (2009) formalized the analysis by Taagepera and Grofman (2003) and actually showed that the modified version of the Gallagher index satisfies all relevant properties.
for which the differences are very small, and the slope of such regression is quite flat (0.011). This flat slope indicates the absence of large distortions (in a pure PR system the slope would be zero). On the right, we depict another observation for which the slope is positive and relatively large (0.27), pointing at the electoral system favoring the larger parties. The slope of the line used as our *Slope index* indicates how systems favor large (positive slope), small parties (negative slope) or do not impose any distortions (flat line). Hence, again, the index for a pure PR system is zero with positive values implying disproportional systems in favor of the big parties.

Figure 4: The *Slope index* as the slope of the regression of \(s_j - v_j \) on \(v_j \). The slope index takes value 0.0113 on the left (Ilmajoki municipality in year 2012 with 5 competing lists and council size 35) and 0.2712 on the right (Utsjoki municipality in year 2008 with 6 competing lists and council size 21).

We begin the RDD analysis by a graphical visualization of the jumps at the cutoff. In Figure 5, we report the results for the two different indexes of disproportionality using a parametric RDD with 3\(^{rd}\) order polynomial of population. These population coefficients are not allowed to change at the cut-offs. Thus, this specification is quite inflexible. Nonetheless, it is informative of the jumps at each individual threshold. The results are very similar for both indexes. Both jump down at each of the threshold with the largest jumps at the second and third thresholds. We report the actual regression results in Tables 4 and 5 in the Appendix B for a wider range of different orders of the polynomials.

In Table 1, we report the nonparametric RDD results on the effect of council size
on proportionality. We report the conventional local linear MSE-optimal coefficient, due to its optimal properties when it comes to point-estimation. However, for statistical inference, we report confidence intervals based on the bias-corrected coefficient and the associated robust inference by Calonico et al. (2014) due to its superior coverage properties. This is somewhat non-standard reporting, as it implies that the reported 95% confidence interval is not centered precisely around the reported coefficient (but rather around the bias-corrected coefficient), but nonetheless well-motivated way to report. We also report both the non-clustered results and those clustered at the municipality level. We use these same choices also in the later section where we report the main results. In line with our theory, the negative coefficients imply that the elections become more proportional as the council size increases. The results are statistically significant at 5% or 10% level, depending on the index.

Table 1: Proportionality and council size, nonparametric RDD

<table>
<thead>
<tr>
<th></th>
<th>Slope index</th>
<th>Modified Gallagher index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional local linear RD coefficient</td>
<td>-0.027</td>
<td>-0.012</td>
</tr>
<tr>
<td>95% Confidence interval with bias-correction and robust inference</td>
<td>[-0.068 ; 0.005]</td>
<td>[-0.022 ; -0.003]</td>
</tr>
<tr>
<td>N within main bandwidth</td>
<td>274</td>
<td>238</td>
</tr>
<tr>
<td>MSE-optimal bandwidths (main/bias)</td>
<td>838/1460</td>
<td>713/1098</td>
</tr>
<tr>
<td>Clustered bandwidths and s.e.’s</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes: Results are generated using rdrobust package in STATA (Calonico et al. 2016).
3.5 Main Results: Council Size and Intraparty heterogeneity

As our main outcome variables, we construct two measures of candidate heterogeneity given the candidates’ responses to the voting aid application. The first is constructed using all available responses (All questions index) to avoid selecting on the questions. The second focuses only on a subset of seemingly important questions (Redistribution index) on economic issues such as taxation and redistribution (see Appendix D for this selection) and serves for robustness purposes. For both indexes, we first compute for each candidate the distance between their own response and the party mean response for each question, and take a square of that. To obtain the index, we aggregate (sum) these squared distances over all questions included in the index and take a root of the sums of those squares. That is, we use simple Euclidean distances as a measure of ideological heterogeneity.\footnote{There are obviously many other ways one could calculate similar indexes. We have the luxury of using this simple and transparent metric as our interest is only in the static relative position of a candidate in relation to its party. Our results are robust also to using either the standardized Euclidean distance or the Mahalanobis distance. These alternative measures account for the differences in the variances across the individual questions.}

If for a candidate the distance is zero, her ideology coincides with the party’s mean. The larger this distance is, the more diverse is this candidate compared to the mean. For the analysis, we include only parties with more than 5 candidates responding to the YLE voting aid application. This leaves us with 14999 candidate-election, 1184 party-election year and 475 municipality-election year observations.\footnote{Note that at the municipal level, we are left with 30 observations less than at the analysis of the disproportionality due to the minimum of five responses we imposed at the YLE data on candidates’ positions.}

Again, we begin the RDD analysis by graphical visualization of the jumps at the cutoff. In Figure 6, we report the results for the two indexes of policy positions using a parametric RDD with 3rd order polynomial of population. The results are very similar in both cases. Both measures jump down at each of the threshold, but none of the jumps are statistically significant. We report the actual regression results in Tables 6 and 7 in the Appendix B for a wider range of different orders of the polynomials.

We present the nonparametric results in Table 2. Overall the evidence is strongly consistent with our theory: Party cohesion increases (that is, our dependent variable measuring distances decreases) as council size increases. The estimate is always negative and statistically highly significant in all cases. We use individual candidate level data in Table 2. Therefore, clustering at the municipality level is the most reliable approach as our treatment has no variation within municipality-year. To confirm that this does not give us excess power, we repeat the analysis at the local party-year and municipality-year level in Table 3. There the outcomes are defined as means over the individual candidate
distances aggregated to the respective level. The results are robust.

Table 2: Policy positions and council size, nonparametric RDD (candidate level)

<table>
<thead>
<tr>
<th></th>
<th>All questions</th>
<th>Redistribution</th>
<th>All questions</th>
<th>Redistribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional local linear RD coefficient</td>
<td>-0.427</td>
<td>-0.592</td>
<td>-0.2824</td>
<td>-0.29632</td>
</tr>
<tr>
<td>95% Confidence interval with bias-correction and robust inference</td>
<td>[-0.597 ; -0.200]</td>
<td>[-1.256 ; -0.128]</td>
<td>[-0.431 ; -0.159]</td>
<td>[-0.621 ; -0.076]</td>
</tr>
<tr>
<td>N within main bandwidth</td>
<td>1466</td>
<td>3115</td>
<td>1865</td>
<td>3112</td>
</tr>
<tr>
<td>MSE-optimal bandwidths (main/bias)</td>
<td>247/480</td>
<td>551/1025</td>
<td>358/529</td>
<td>530/1012</td>
</tr>
<tr>
<td>Clustered bandwidths and s.e.’s</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes: Results are generated using rdrobust package in STATA (Calonico et al. 2016).

Table 3: Policy positions and council size, nonparametric RDD (other levels)

<table>
<thead>
<tr>
<th></th>
<th>All questions</th>
<th>Redistribution</th>
<th>All questions</th>
<th>Redistribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional local linear RD coefficient</td>
<td>-0.302</td>
<td>-0.512</td>
<td>-0.243</td>
<td>-0.267</td>
</tr>
<tr>
<td>95% Confidence interval with bias-correction and robust inference</td>
<td>[-0.803 ; 0.071]</td>
<td>[-1.174 ; -0.084]</td>
<td>[-0.529 ; -0.056]</td>
<td>[-0.587 ; -0.059]</td>
</tr>
<tr>
<td>Unit of observation</td>
<td>Municipality-year</td>
<td>Municipality-year</td>
<td>Party-year</td>
<td>Party-year</td>
</tr>
<tr>
<td>N within main bandwidth</td>
<td>223</td>
<td>300</td>
<td>180</td>
<td>254</td>
</tr>
<tr>
<td>MSE-optimal bandwidths (main/bias)</td>
<td>752/1171</td>
<td>560/987</td>
<td>608/1037</td>
<td>493/931</td>
</tr>
<tr>
<td>Clustered bandwidths and s.e.’s</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes: Results are generated using rdrobust package in STATA (Calonico et al. 2016).

3.6 Robustness, validity and discussion

In Appendix C, we report and discuss in detail the standard validity and robustness checks. The McCrary (2008) test for manipulation shows no evidence on municipalities being able to manipulate their population count at any individual cutoff (Figure 8) nor in the pooled data (Figure 9). This makes perfect sense, because population counts are not self-reported by the municipalities, there are no incentives to manipulate this and no
other policies or municipality responsibilities change at these cutoffs. We also report that the results are robust across a fair range of bandwidths around the optimal ones (Figure 10).

We report the placebo cutoff analysis in Figure 11 in the Appendix C. This analysis is especially useful for understanding whether the applied RDD specification is appropriate (Hyytinen et al. 2017). This analysis further reveals that we should trust the clustered results much more than the non-clustered. This is because there is some within-municipality correlations in the policy positions of the candidates. If the bandwidth calculation does not account for this clustering problem, the optimal bandwidths are too narrow in the sense that the results are derived using only a couple of clusters. This leads to the standard problem that in small samples any result is possible by chance even if the design is as-good-as random. The placebo cutoff for the clustered specification works as it is supposed to giving zero results when using the placebo cutoffs.

Moreover, we conduct covariate balance tests for a rich set of both economic and electoral variables at the municipal, party and individual level using different specifications (Tables 8-10). All expect one variable (incumbency status of individual candidates) are balanced. We could easily think of this one unbalanced variable as a result of multiple testing, but actually it makes sense that this variable is unbalanced by construct. The reason is that larger councils have mechanically more elected candidates, and thus, more incumbents in the next election than in smaller councils. And as the number of candidates does not jump much at the cutoff, also the share of incumbents is higher mechanically. This should not be an issue to us, even if voters on average reward moderate candidates (Meriläinen and Tukiainen 2016), because Savolainen (2016) has shown that getting elected does not change the candidates’ policy positions in Finland. Moreover, the pattern on jumps in the proportionality indexes better match the pattern of jumps in the policy position indexes compared to the jumps in the incumbency status (Table 11). Among the balanced variables, we point out that candidates’ response rate to the YLA application is balanced, and thus, a possible selection bias resulting from the response rate is not present in the RDD estimates, as any possible selection bias seems to be the same across the cutoffs, and is thus differenced out from the RDD estimates. Moreover, the balanced number of candidates and the number of parties imply that voters operate in similar political environments across the cutoffs.

Finally, we report descriptive statistics of our main variables of interest as well as of the variables used in the covariate balance tests in Table 12. This information will help to further understand the magnitudes of the estimated effects. However, regarding our main results, Figures 5 and 6 are the most informative in understanding the magnitudes. Regarding cohesion, the effects of crossing the threshold in Table 2 translate into a de-
crease in the heterogeneity indexes by roughly 15 percent relative to the mean value or half a standard deviation for both cohesion indexes.

4 Conclusions

Our work provides new insights on how electoral institutions -and electoral rules in particular- alter parties’ incentives when recruiting their political personnel (candidates) and contributes to the literature on candidate selection and nomination (e.g., Besley et al. (2017); Dal Bo et al. (2017); Folke and Rickne (2017)). The relationship between electoral rules and intraparty ideological cohesion has been largely “black-boxed” in the literature; our study is one of the first that unpacks this link and the mechanism taking place. In particular, our main result -that more proportional rules generate strong incentives for parties to become more ideologically homogenous and cohesive- arguably carries non-trivial implications for several other closely related questions. For instance, a logical corollary of Carey and Shugart (1995) is the anticipation that, as within-party competition is intensified in open-list PR the larger the district magnitude is, individual legislators may have incentives to diversify from their colleagues in the face of more intense competition (see e.g., Carroll and Nalepa (2017)). This would then result to parties becoming less ideologically cohesive as the district magnitude increases. Our findings and the theoretical mechanism however, allow us to reconcile this expectation with recent findings (Cox et al. 2017), because party leadership in open-list PR systems might be using list selection in order to recruit ideologically more homogenous candidates. Thus, in light of the recent increase in partisanship and polarization -at the party-elite level- in the U.S. and Europe, this paper puts forward a potentially relevant reasoning regarding the drivers of voting cohesion and partisanship in legislatures (e.g., Krehbiel and Peskowitz (2015)) and offers new links that connect inter-party polarization with intraparty structure.

Also, our arguments offer a rational choice explanation behind the finding by Cox et al. (2016) who show that PR systems are linked with a strong voting coherence by parliamentary parties. In fact, our findings may be seen as an “endogenous” justification: if more proportional systems generate incentives for parties to present more ideologically homogenous (and thus less diverse) lists, then it is more likely that like-minded legislators will tend to vote in a more coherent manner. Moreover, as the group of legislators becomes more ideologically homogenous -as our theory predicts- a mechanical reason might kick in: it might be easier for party whips to discipline a more homogenous group. In other words, our findings can supplement Cox et al. (2016) by unpacking one of the mechanisms justifying such coherence in legislative voting.
Finally, we contribute to the large literature on the electoral rule choice and the trade-off between representation and accountability (e.g. Carey and Hix 2011). Majoritarian rules are considered to favour accountability at the expense of representation, while more proportional rules guarantee better representation (of different voices in parliament) but at the same time make accountability murkier. Our work adds a note of caution to this trade-off. As our model and our empirical results have demonstrated, by generating incentives for more diverse and less homogenous party-lists, majoritarian systems might only be offering nominal accountability: while it is true that a single political actor (party) is accountable, the wide variance in possible policy outcomes does not really guarantee that citizens get what they voted for. On the other hand, an analogous caveat is true as far as more proportional systems are concerned. While proportional systems generate incentives for more cohesive and homogenous parties, thus ensuring that voters get what they voted for, the arguments in favour of them being more representative might have some limits: as the “rubber band” of the list becomes more tight, any gains in representation can only come through the effect of the rule on the number of competing parties (Duverger 1954). Overall, our work demonstrates that the debate on the optimal choice of electoral rules in light of the accountability-representation trade-off may gain additional insights by focusing on within party dynamics. Obviously, our paper does not intent to yield a conclusive verdict on this respect but merely points at an interesting new direction.
5 Appendix

5.1 Appendix A: Theory

5.1.1 Proofs

Proof of Proposition 1 To provide a unified analysis without repeating the arguments for a number of corner scenarios, throughout this proof we assume that parties can even propose degenerate intervals (we will establish that this never happens in equilibrium) and slightly abuse notation by considering that \[\int_a^b \frac{1}{x-a} \, dt = \lim_{\epsilon \to 0^+} \int_a^{a+\epsilon} \frac{1}{x-a} \, dt = -(x - a)^2. \] Hence, for every admissible strategy pair the utility of party L is given by:

\[
U_L([x_L, \bar{x}_L], [x_R, \bar{x}_R]) = G\left(\frac{\bar{x}_L + x_R}{2}\right) \int_{x_L}^{\bar{x}_L} -(x_L - t)^2 \frac{1}{x_L - x} \, dt + \left[1 - G\left(\frac{\bar{x}_L + x_R}{2}\right)\right] \int_{x_R}^{\bar{x}_R} -(x_L - t)^2 \frac{1}{x_R - x} \, dt.
\]

Notice that for every \(\bar{x}_L \) and \(x_R \) such that \(G\left(\frac{\bar{x}_L + x_R}{2}\right) > 0 \), we have \(\frac{\partial^2 U_L([x_L, \bar{x}_L], [x_R, \bar{x}_R])}{\partial x_L^2} = -\frac{2}{3} G\left(\frac{\bar{x}_L + x_R}{2}\right) < 0 \) and \(\frac{\partial^2 U_L([x_L, \bar{x}_L], [x_R, \bar{x}_R])}{\partial x_L} = \frac{1}{3} G\left(\frac{\bar{x}_L + x_R}{2}\right) (3x_L - 2\bar{x}_L - \bar{x}_L) \). Notice that the sign of this derivative is independent of the strategy of \(R \) and only depends on the strategy of \(L \) and hence the unique \(x_L \) that maximizes the utility of \(L \) is a function of \(\bar{x}_L \), which we denote by \(x_L^* (\bar{x}_L) \). Moreover, when \(\bar{x}_L \) and \(x_R \) are such that \(G\left(\frac{\bar{x}_L + x_R}{2}\right) = 0 \), then, trivially, \(x_L^* (\bar{x}_L) \) still maximizes the utility of \(L \). So for every fixed strategy of \(R \) the problem of \(L \) reduces to just selecting the \(\bar{x}_L \) that maximizes \(U_L([x_L^*(\bar{x}_L), \bar{x}_L], [x_R, \bar{x}_R]) \). By symmetric arguments, we have that the \(\bar{x}_R \) that maximizes the utility of \(R \) for a fixed triplet \(x_L, \bar{x}_L, \) and \(x_R \) is a function only of \(x_R \), which we denote by \(\bar{x}_R^* (x_R) \).

It is easy to see that for every admissible strategy of \(R \) the \(\bar{x}_L \) that maximizes \(U_L([x_L^*(\bar{x}_L), \bar{x}_L], [x_R, \bar{x}_R]) \) must be at least as large as \(x_L \). To see this consider on the contrary that \(U_L([x_L^*(\bar{x}_L), \bar{x}_L], [x_R, \bar{x}_R]) \) is maximized at some \(\bar{x}_L' < x_L \). Obviously, \(\bar{x}_L' \) must be such that \(G\left(\frac{\bar{x}_L' + x_R}{2}\right) > 0 \). Indeed, \(U_L([x_L, \frac{1}{2}], [x_R, \bar{x}_R]) \), for example, induces \(G\left(\frac{\bar{x}_L' + x_R}{2}\right) > 0 \) and it is strictly larger than \(\int_{x_R}^{\bar{x}_R} -(x_L - t)^2 \frac{1}{x_R - x} \, dt \). Hence \(\bar{x}_L' \) cannot be such that \(L \) does not elect representatives in the parliament. If \(L \) deviates to proposing only candidates with ideal policy almost identical to \(x_L \) (that is to \([x_L - \epsilon, x_L + \epsilon] \)) for any arbitrarily small \(\epsilon \in (0, x_L - \bar{x}_L) \), then \(L \) is strictly better off since it elects more members in the parliament (because \(G\left(\frac{\bar{x}_L' + x_R}{2}\right) < G\left(\frac{\bar{x}_L + x_R}{2}\right) \)) and all the parliament members that it elects are better according to her policy preferences. This means that we can focus

\(^{15}\)The fact that there might be many admissible values of \(x_L \) that minimize \(U_L([x_L, \bar{x}_L], [x_R, \bar{x}_R]) \) when \(G\left(\frac{\bar{x}_L + x_R}{2}\right) = 0 \) does not pose any threat to our equilibrium’ uniqueness arguments, since in a symmetric equilibrium \(G\left(\frac{\bar{x}_L + x_R}{2}\right) = \frac{1}{2} \).
attention on the restriction of the game in which players just select their most moderate end of their list from policies at most as extreme as their ideal policies.

When \(\bar{x}_L \geq x_L \), we have that \(x_L^*(\bar{x}_L) = \frac{3}{2}(x_L - \bar{x}_L) \in (0, x_L) \) and, similarly, when \(x_R \leq x_R \), we have that \(x_R^*(x_R) = \frac{3}{2}(1 - x_L - \frac{x_R}{3}) \in (1 - x_L, 1) \), which implies that

\[
\int_{\bar{x}_L}^{x_L} -(x_L - t)^2 \frac{1}{x_L - \bar{x}_L(x_L)} dt = -\frac{1}{4}(x_L - \bar{x}_L)^2
\]

and that

\[
\int_{x_R}^{x_R^*(x_R)} -(x_L - t)^2 \frac{1}{x_R - x_R(x_R)} dt = \frac{1}{4}[-3 - 13x_L^2 - x_R^2 + 2x_L(6 + x_R)].
\]

Hence,

\[
U_L([x_L^*(\bar{x}_L), \bar{x}_L], [x_R, \bar{x}_R^*(x_R)]) = G(\frac{x_L + x_R}{2})(-\frac{1}{4}(x_L - \bar{x}_L)^2) + [1 - G(\frac{x_L + x_R}{2})]^{\frac{1}{3}}[-3 - 13x_L^2 - x_R^2 + 2x_L(6 + x_R)].
\]

By log-concavity of \(G \) when it takes values in \((0, 1)\), it follows that \(U_L([x_L^*(\bar{x}_L), \bar{x}_L], [x_R, \bar{x}_R^*(x_R)]) \) is quasiconcave in \(\bar{x}_L \) for any \(x_R \in [\frac{1}{2}, x_R] \), and hence by Debreu (1952) this game has a pure strategy equilibrium. Moreover, if

\[
\frac{\partial U_L([x_L^*(\bar{x}_L), \bar{x}_L], [x_R, \bar{x}_R^*(x_R)])}{\partial x_L}|_{\bar{x}_L = \bar{x}_L', x_R = x_R'} = 0
\]

and

\[
\frac{\partial U_R([x_L^*(\bar{x}_L), \bar{x}_L], [x_R, \bar{x}_R^*(x_R)])}{\partial x_R}|_{\bar{x}_L = \bar{x}_L', x_R = x_R'} = 0
\]

we have an interior equilibrium at \((\bar{x}_L', \bar{x}_R')\). We notice that

\[
\frac{\partial U_L([x_L^*(\bar{x}_L), \bar{x}_L], [x_R, \bar{x}_R^*(x_R)])}{\partial x_L}|_{\bar{x}_L = \bar{x}_L', x_R = 1 - \bar{x}_L'} = 0 \Rightarrow \bar{x}_L = \frac{-x_L - 2G'(1/2) + 7x_L G'(1/2) - 6x_L^2 G'(1/2)}{-1 - G'(1/2) + 2x_L G'(1/2)}.
\]

Since, \(\frac{-x_L - 2G'(1/2) + 7x_L G'(1/2) - 6x_L^2 G'(1/2)}{-1 - G'(1/2) + 2x_L G'(1/2)} < \frac{1}{2} \) if and only if \(G'(1/2) \in [1, \frac{1}{3 - 6x_L}] \), we conclude that there is a unique symmetric equilibrium, \(([x_L^*, \bar{x}_L^*], [x_R^*, \bar{x}_R^*]) = ([x_L^*, \bar{x}_L^*], [1 - \bar{x}_L^*, 1 - \bar{x}_L^*])\), such that \(\bar{x}_L^* = \frac{-x_L - 2G'(1/2) + 7x_L G'(1/2) - 6x_L^2 G'(1/2)}{-1 - G'(1/2) + 2x_L G'(1/2)} \) if \(G'(1/2) \in [1, \frac{1}{3 - 6x_L}] \) and such that \(\bar{x}_L^* = \frac{1}{2} \) if \(G'(1/2) > \frac{1}{3 - 6x_L} \); and \(x_L^* = x_L^*(\bar{x}_L^*) \).
5.1.2 Robustness

While a full equilibrium analysis of a multiparty scenario is intractable without large-scale (over-)simplifications in the model’s assumptions, it is quite evident that the trade-offs that drive the comparative results do not hinge on the exact number of parties involved in electoral competition: If a more inclusive party list increases the electoral performance of a party but it is unappealing policy-wise, then when the electoral rule rewards more an increase in vote-share, a party should expand its list, independently of how many competitors it faces. To see this consider, for instance, a set of three parties, \(M = \{1, 2, 3\} \), and define by \(G_i(v) \) the seat share of party \(i \in M \) when the distribution of vote-shares is given by \(v = (v_1, v_2, v_3) \). Then, the utility of party \(i \) when each party \(j \in M \) proposes a list \([a_j, b_j]\) is given by:

\[
\sum_{j \in M} G_j(v) \int_{a_j}^{b_j} \frac{1}{b_j-a_j} (x_i - t)^2 \, dt
\]

where \(x_i \) is simply the ideal policy of party \(i \). If \(x_2 = 1/2 \) and we are in a symmetric situation (i.e. \(v_1 = v_2 = v_3 \)), with \([a_2, b_2] = [1/2 - d, 1/2 + d] \), \([a_1, b_1] = [1 - b_3, 1 - a_3] \) and non-overlapping lists, then, the marginal gain of the moderate party from expanding its list (i.e. from increasing \(d \)) is equal to:

\[
\sum_{j \in M} \frac{\partial G_j(v)}{\partial d} \int_{a_j}^{b_j} \frac{1}{b_j-a_j} (x_i - t)^2 \, dt - \frac{2}{3} d G_2(v).
\]

Considering that the electoral rule is anonymous, we must have \(G_j(v) = \frac{1}{3} \) for every \(j \in M \), \(\sum_{j \in M} \frac{\partial G_j(v)}{\partial d} = 0 \) and \(2 \frac{\partial G_1(v)}{\partial d} = 2 \frac{\partial G_3(v)}{\partial d} = -\frac{\partial G_2(v)}{\partial d} < 0 \). If the rule changes from \(G \) to some other anonymous rule, \(\hat{G} \), with \(\frac{\partial \hat{G}_2(v)}{\partial d} > \frac{\partial G_2(v)}{\partial d} \) (i.e. if the rule now rewards more an increase in vote-shares compared to the old one), the marginal gain of the moderate party from expanding its list becomes unambiguously larger and, therefore, a more inclusive list becomes more appealing than before. Indeed, similar arguments hold true for the extremist parties as well and, hence, the intuition of the detailed equilibrium analysis provided in the paper qualifies to more general setups.

5.1.3 Council size and electoral rule disproportionality

Focusing on the mechanics of the electoral rule of our empirical setting (D’Hondt method), Figure 7 illustrates for a two party scenario: a) why under this method the advantage of the large party gets smaller as the council size grows (main element for our identification), and b) how the threshold rule presented in our theoretical model links with our empirical analysis. On the left we present the seat allocation according to the D’Hondt formula in a council of size 3 and on the right in a council of size 7. In both panels, the step function represents the actual seat share obtained by each party in the council according
Figure 7: D’Hondt allocation method (steps) in a council of size k and its continuous approximation using the threshold method (solid line) where the first seat is obtained when $v_L > 1/2(k + 1)$ and $G(v_L) = -\frac{1}{2k} + (1 + \frac{1}{k})v_L$ (for the increasing part). Dotted line is the 45 degrees (i.e., pure PR: $n = 1$ or $k \rightarrow \infty$).

What one can also observe is that in both panels, the party that wins the election (i.e., obtains at least 50% of the vote share) tends to be favoured by the electoral system. As both panels show, for $v_j > 50\%$, the solid line lies above the dashed line meaning that the winner tends to be favored regardless of the council size. Note however, that the the solid line becomes flatter as the council size increases. Hence, the winner of the election is favored more in smaller-size municipalities implying that using the same allocation method in smaller councils tends to be more disproportional than in bigger ones. That is, council size k is the mirror image of our the threshold rule parameter n: as k grows, disproportionality n decreases and the allocation of seats is less favorable for the large party.

The above arguments illustrate how in a two party scenario our choice of modeling the electoral rule disproportionality through the threshold rule serves as a continuous approximation of the D’Hondt method. In reality, however Finland has a multi-party system, and as well known, the number of parties is an essential feature of different electoral systems (Duverger 1954).16 Importantly, the arguments made regarding the

16Currently, there are eight parties in the Finnish parliament and these same parties also dominate
D’Hondt method favouring the big party are also valid in a multiparty context (Herron et al. 2018; Gallagher 1991). As we actually show in Section 3.3, our data support these arguments and big parties are favored disproportionately as the council size gets smaller. Also recall that in Appendix A, we illustrate why the main dynamics presented in our main theoretical result are still present in multiparty elections.

5.2 Appendix B: Parametric RDD results

In this section, we report the results using the parametric RDD. In the case of the proportionality indexes, we estimate by OLS the following equation

\[y_{it} = \beta_1 + \beta_2 \text{Group}_2_{it} + \beta_3 \text{Group}_3_{it} + \beta_4 \text{Group}_4_{it} + \beta_5 \text{Group}_5_{it} + f(\text{Pop}_{it}) + e_{it}. \]

The dependent variable is the respective index in municipality \(i \) in election year \(t \). Function \(f \) is a polynomial of population. We use 1st – 7th order polynomials. The explanatory variables of interest are overlapping dummies \(\text{Group}_2, \text{Group}_3, \text{Group}_4, \text{Group}_5 \), indicating all municipalities above a certain threshold. For example, \(\text{Group}_2 \) includes all the municipalities with a population of more than 2000. Our estimating sample contains data from the first five groups, because we limit the analysis to municipalities with a population of less than 22500 to keep the data dense. The respective group coefficients \(\beta_2, \beta_3, \beta_4, \beta_5 \) give direct estimates of the effect on the index of increasing council size by one step. The group dummies can be interpreted as individual treatment variables, with the previous group as the control group. Therefore, this specification allows for a different effect at each threshold. Main drawback of this model is that it uses data far from the cut-offs to estimate the value of the polynomial at the cut-off. The average effect is calculated as a weighted (by number of observations around each cut-off) average of the individual jumps. We find that the negative average effect is fairly consistent across specifications and significant at 5% level or 1% level. The overall effects seems driven by the individual jumps at the second and third threshold.

Next, we report the results from a parametric RDD for the two policy position indexes. Note that here the unit of observation is a individual candidate in a given election year.

17The interested reader can refer to Herron et al. (2018) for illustration of these arguments for multiparty elections. What is crucial to note, is that while indeed the divisibility of seats affects the proportionality (in the extreme case where the council size is one we are in a first-past-the-post system), different allocation formulas tend to be “less” or “more” proportional. Indeed, the D’Hondt method is known to favor the large parties as opposed to the largest remainder method for example.
Table 4: Proportionality and council size, parametric RDD for *Slope index*

<table>
<thead>
<tr>
<th>Threshold</th>
<th>1<sup>st</sup></th>
<th>2<sup>nd</sup></th>
<th>3<sup>rd</sup></th>
<th>4<sup>th</sup></th>
<th>5<sup>th</sup></th>
<th>6<sup>th</sup></th>
<th>7<sup>th</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>pop > 2k</td>
<td>0.015</td>
<td>0.014</td>
<td>0.008</td>
<td>0.012</td>
<td>0.019</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>[0.0112]</td>
<td>[0.0122]</td>
<td>[0.0143]</td>
<td>[0.0171]</td>
<td>[0.0187]</td>
<td>[0.0193]</td>
<td>[0.0192]</td>
</tr>
<tr>
<td>pop > 4k</td>
<td>-0.0312***</td>
<td>-0.0329***</td>
<td>-0.0379***</td>
<td>-0.0379***</td>
<td>-0.0427***</td>
<td>-0.0441***</td>
<td>-0.0469***</td>
</tr>
<tr>
<td></td>
<td>[0.0071]</td>
<td>[0.0098]</td>
<td>[0.0119]</td>
<td>[0.0119]</td>
<td>[0.0117]</td>
<td>[0.0122]</td>
<td>[0.0129]</td>
</tr>
<tr>
<td>pop > 8k</td>
<td>-0.0245***</td>
<td>-0.0259***</td>
<td>-0.0225***</td>
<td>-0.0260*</td>
<td>-0.0263*</td>
<td>-0.024</td>
<td>-0.023</td>
</tr>
<tr>
<td></td>
<td>[0.0091]</td>
<td>[0.0117]</td>
<td>[0.0112]</td>
<td>[0.0138]</td>
<td>[0.0140]</td>
<td>[0.0159]</td>
<td>[0.0163]</td>
</tr>
<tr>
<td>pop > 15k</td>
<td>-0.017</td>
<td>-0.015</td>
<td>-0.007</td>
<td>0.001</td>
<td>-0.007</td>
<td>-0.010</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>[0.0150]</td>
<td>[0.0132]</td>
<td>[0.0162]</td>
<td>[0.0182]</td>
<td>[0.0161]</td>
<td>[0.0202]</td>
<td>[0.0188]</td>
</tr>
<tr>
<td>Avg. effect</td>
<td>-0.015**</td>
<td>-0.016**</td>
<td>-0.017**</td>
<td>-0.016**</td>
<td>-0.017**</td>
<td>-0.017**</td>
<td>-0.016**</td>
</tr>
<tr>
<td></td>
<td>[0.0058]</td>
<td>[0.0075]</td>
<td>[0.0077]</td>
<td>[0.0080]</td>
<td>[0.0078]</td>
<td>[0.0077]</td>
<td>[0.0078]</td>
</tr>
<tr>
<td>N</td>
<td>505</td>
<td>505</td>
<td>505</td>
<td>505</td>
<td>505</td>
<td>505</td>
<td>505</td>
</tr>
<tr>
<td>adj. R-sq</td>
<td>0.092</td>
<td>0.09</td>
<td>0.098</td>
<td>0.088</td>
<td>0.091</td>
<td>0.089</td>
<td>0.088</td>
</tr>
</tbody>
</table>

Notes: Average effect is calculated as the weighted average of the individual jumps where the weights are based on the number of observations around each cutoff. Standard errors are clustered at the municipality level. *** denotes statistical significance at 1% level, ** denotes statistical significance at 5% level and * denotes statistical significance at 10% level.

Table 5: Proportionality and council size, parametric RDD for modified *Gallagher index*

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Order of polynomial of pop</th>
<th>1<sup>st</sup></th>
<th>2<sup>nd</sup></th>
<th>3<sup>rd</sup></th>
<th>4<sup>th</sup></th>
<th>5<sup>th</sup></th>
<th>6<sup>th</sup></th>
<th>7<sup>th</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>pop > 2k</td>
<td></td>
<td>-0.003</td>
<td>-0.004</td>
<td>-0.006</td>
<td>-0.005</td>
<td>-0.003</td>
<td>-0.002</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.0036]</td>
<td>[0.0038]</td>
<td>[0.0044]</td>
<td>[0.0051]</td>
<td>[0.0051]</td>
<td>[0.0055]</td>
<td>[0.0056]</td>
</tr>
<tr>
<td>pop > 4k</td>
<td></td>
<td>-0.0101***</td>
<td>-0.0107***</td>
<td>-0.0123***</td>
<td>-0.0123***</td>
<td>-0.0134***</td>
<td>-0.0144***</td>
<td>-0.0161***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.0022]</td>
<td>[0.0029]</td>
<td>[0.0035]</td>
<td>[0.0035]</td>
<td>[0.0035]</td>
<td>[0.0036]</td>
<td>[0.0037]</td>
</tr>
<tr>
<td>pop > 8k</td>
<td></td>
<td>-0.0118***</td>
<td>-0.0122***</td>
<td>-0.0111***</td>
<td>-0.0120***</td>
<td>-0.0121***</td>
<td>-0.0108**</td>
<td>-0.0101**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.0029]</td>
<td>[0.0037]</td>
<td>[0.0035]</td>
<td>[0.0043]</td>
<td>[0.0043]</td>
<td>[0.0049]</td>
<td>[0.0050]</td>
</tr>
<tr>
<td>pop > 15k</td>
<td></td>
<td>-0.0089**</td>
<td>-0.0082**</td>
<td>-0.006</td>
<td>-0.004</td>
<td>-0.006</td>
<td>-0.008</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.0045]</td>
<td>[0.0039]</td>
<td>[0.0047]</td>
<td>[0.0052]</td>
<td>[0.0048]</td>
<td>[0.0060]</td>
<td>[0.0056]</td>
</tr>
<tr>
<td>Avg. effect</td>
<td>-0.0083***</td>
<td>-0.0086***</td>
<td>-0.0088***</td>
<td>-0.0086***</td>
<td>-0.0088***</td>
<td>-0.0090***</td>
<td>-0.0083***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.0018]</td>
<td>[0.0023]</td>
<td>[0.0023]</td>
<td>[0.0024]</td>
<td>[0.0023]</td>
<td>[0.0023]</td>
<td>[0.0023]</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>505</td>
<td>505</td>
<td>505</td>
<td>505</td>
<td>505</td>
<td>505</td>
<td>505</td>
<td></td>
</tr>
<tr>
<td>adj. R-sq</td>
<td>0.15</td>
<td>0.149</td>
<td>0.148</td>
<td>0.147</td>
<td>0.148</td>
<td>0.147</td>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Average effect is calculated as the weighted average of the individual jumps where the weights are based on the number of observations around each cutoff. Standard errors are clustered at the municipality level. *** denotes statistical significance at 1% level, ** denotes statistical significance at 5% level and * denotes statistical significance at 10% level.
The results are very similar for both indexes. We find that the average (negative) effect is consistent across specifications. Moreover, all the individual jumps are negative in all 28 cases reported for both indexes. While the results are not statistically significant, the overall pattern is suggestive of a negative jump consistent with our theory.

Table 6: Parametric RDD results, all questions index

<table>
<thead>
<tr>
<th>Threshold</th>
<th>1<sup>st</sup></th>
<th>2<sup>nd</sup></th>
<th>3<sup>rd</sup></th>
<th>4<sup>th</sup></th>
<th>5<sup>th</sup></th>
<th>6<sup>th</sup></th>
<th>7<sup>th</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>pop > 2k</td>
<td>-0.213*</td>
<td>-0.215*</td>
<td>-0.306*</td>
<td>-0.363*</td>
<td>-0.352*</td>
<td>-0.307</td>
<td>-0.340</td>
</tr>
<tr>
<td></td>
<td>[0.118]</td>
<td>[0.128]</td>
<td>[0.156]</td>
<td>[0.200]</td>
<td>[0.209]</td>
<td>[0.219]</td>
<td>[0.211]</td>
</tr>
<tr>
<td>pop > 4k</td>
<td>-0.067</td>
<td>-0.070</td>
<td>-0.161</td>
<td>-0.181</td>
<td>-0.181</td>
<td>-0.214</td>
<td>-0.168</td>
</tr>
<tr>
<td></td>
<td>[0.086]</td>
<td>[0.115]</td>
<td>[0.150]</td>
<td>[0.150]</td>
<td>[0.150]</td>
<td>[0.169]</td>
<td>[0.185]</td>
</tr>
<tr>
<td>pop > 8k</td>
<td>-0.096</td>
<td>-0.099</td>
<td>-0.103</td>
<td>-0.077</td>
<td>-0.080</td>
<td>-0.047</td>
<td>-0.082</td>
</tr>
<tr>
<td></td>
<td>[0.097]</td>
<td>[0.110]</td>
<td>[0.109]</td>
<td>[0.133]</td>
<td>[0.133]</td>
<td>[0.162]</td>
<td>[0.161]</td>
</tr>
<tr>
<td>pop > 15k</td>
<td>-0.178</td>
<td>-0.177</td>
<td>-0.097</td>
<td>-0.140</td>
<td>-0.140</td>
<td>-0.210</td>
<td>-0.242</td>
</tr>
<tr>
<td></td>
<td>[0.152]</td>
<td>[0.159]</td>
<td>[0.169]</td>
<td>[0.218]</td>
<td>[0.216]</td>
<td>[0.277]</td>
<td>[0.312]</td>
</tr>
<tr>
<td>Avg. effect</td>
<td>-0.110</td>
<td>-0.112</td>
<td>-0.117</td>
<td>-0.131</td>
<td>-0.131</td>
<td>-0.144</td>
<td>-0.156</td>
</tr>
<tr>
<td></td>
<td>[0.076]</td>
<td>[0.076]</td>
<td>[0.076]</td>
<td>[0.083]</td>
<td>[0.083]</td>
<td>[0.090]</td>
<td>[0.100]</td>
</tr>
</tbody>
</table>

Notes: Average effect is calculated as the weighted average of the individual jumps where the weights are based on the number of observations around each cutoff. Standard errors are clustered at the municipality level. *** denotes statistical significance at 1% level, ** denotes statistical significance at 5% level and * denotes statistical significance at 10% level.
Table 7: Parametric RDD results, redistribution index

<table>
<thead>
<tr>
<th>Threshold</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
<th>7th</th>
</tr>
</thead>
<tbody>
<tr>
<td>pop > 2k</td>
<td>-0.102*</td>
<td>-0.104</td>
<td>-0.128</td>
<td>-0.161*</td>
<td>-0.138</td>
<td>-0.136</td>
<td>-0.139</td>
</tr>
<tr>
<td></td>
<td>[0.061]</td>
<td>[0.066]</td>
<td>[0.078]</td>
<td>[0.096]</td>
<td>[0.103]</td>
<td>[0.106]</td>
<td>[0.105]</td>
</tr>
<tr>
<td>pop > 4k</td>
<td>-0.073*</td>
<td>-0.075</td>
<td>-0.100</td>
<td>-0.111</td>
<td>-0.111</td>
<td>-0.113</td>
<td>-0.108</td>
</tr>
<tr>
<td></td>
<td>[0.042]</td>
<td>[0.055]</td>
<td>[0.070]</td>
<td>[0.070]</td>
<td>[0.070]</td>
<td>[0.079]</td>
<td>[0.087]</td>
</tr>
<tr>
<td>pop > 8k</td>
<td>-0.037</td>
<td>-0.039</td>
<td>-0.040</td>
<td>-0.025</td>
<td>-0.032</td>
<td>-0.030</td>
<td>-0.034</td>
</tr>
<tr>
<td></td>
<td>[0.050]</td>
<td>[0.056]</td>
<td>[0.056]</td>
<td>[0.067]</td>
<td>[0.067]</td>
<td>[0.079]</td>
<td>[0.080]</td>
</tr>
<tr>
<td>pop > 15k</td>
<td>-0.058</td>
<td>-0.058</td>
<td>-0.036</td>
<td>-0.061</td>
<td>-0.060</td>
<td>-0.064</td>
<td>-0.067</td>
</tr>
<tr>
<td></td>
<td>[0.076]</td>
<td>[0.079]</td>
<td>[0.088]</td>
<td>[0.109]</td>
<td>[0.108]</td>
<td>[0.140]</td>
<td>[0.155]</td>
</tr>
<tr>
<td>Avg. effect</td>
<td>-0.051</td>
<td>-0.052</td>
<td>-0.054</td>
<td>-0.061</td>
<td>-0.061</td>
<td>-0.062</td>
<td>-0.063</td>
</tr>
<tr>
<td></td>
<td>[0.038]</td>
<td>[0.038]</td>
<td>[0.038]</td>
<td>[0.042]</td>
<td>[0.041]</td>
<td>[0.045]</td>
<td>[0.049]</td>
</tr>
</tbody>
</table>

| N | 14496 | 14496 | 14496 | 14496 | 14496 | 14496 | 14496 |
| adj. R-sq | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |

Notes: Average effect is calculated as the weighted average of the individual jumps where the weights are based on the number of observations around each cutoff. Standard errors are clustered at the municipality level. *** denotes statistical significance at 1% level, ** denotes statistical significance at 5% level and * denotes statistical significance at 10% level.
5.3 Appendix C: Robustness and validity checks

First, we report here the McCrary (2008) test for manipulation separately for each threshold as well as for the pooled data. There is no indication of municipalities sorting across the cutoffs.

Second, we also report analysis of the robustness of the nonparametric main results with respect to the bandwidth choice. We report both the clustered and non-clustered results for both the policy position indexes. The results are robust across a fair range of bandwidths.

Third, we also conduct placebo cutoff analysis. Here we artificially move the cutoffs away from their real location. The x-axis shows how many percentages we move them away from the original location. Each cutoff is moved by the same relative amount to the same direction at the same time. The real estimate is located at zero in the x-axis. The y-axis reports the bias-corrected coefficient and the respective robust 95 percent confidence interval. If the design is valid and the specification appropriate, we
should observe that the placebo coefficients are not statistically different from zero. This
analysis is especially useful for understanding whether applying the RDD specification is
appropriate (Hyytinen et al. 2017).

We observe that the non-clustered results show a lot of significant positive and negative
coefficients. This analysis reveals that we should not trust the non-clustered results. This
is because there is some within-municipality correlations in the policy positions of the
candidates. If the bandwidth calculation does not account for this clustering problem,
the optimal bandwidths are too narrow in the sense that the results are derived using
only a couple of clusters. This leads to the standard problem that in small samples any
result is possible by chance even if the design is as-good-as random.

The placebo cutoff analysis for the clustered specification works as it is supposed to,
as we have non-significant placebo results. There is one exception, but that is natural
due to multiple testing. Therefore, we feel confident in trusting the clustered results.

Finally, we test for covariate balance using municipal, party and individual candidate
level characteristics. For municipal economic and demographic characteristics we report
municipal personnel per thousand inhabitants (Personnel), municipal income tax rate
(Taxes), share of citizens over the age of 65 (Over 65yo), central government transfers in
1000€ per capita (Grants), expenditures in € per capita (Expen) and the unemployment
rate (Unemp). For political characteristics of the municipalities we report council size, the
total number of candidates (Candidates), the number of parties (lists) (Numb parties), the
effective number of parties (lists), that is, the inverted Herfindahl index of party lists’ vote
shares (Eff numb parties) and turnout. For party characteristics we report the vote share
and seat share, the number of respondents to the election aid survey (Respondents), the
number of candidates (Candidates) and the pivotal probability between parties (Pivotal
Figure 10: Robustness of the results for alternative bandwidths.

\[prob \). The latter is calculated using bootstrap election simulations that take note of the share of pivotal incidences (draw or one vote difference deciding a seat) between parties in the simulation rounds (see Lyytikäinen and Tukiainen (2016) for details). For individual candidate characteristics, we also report the pivotal probability (\textit{Pivotal prob}), but now calculated in the within party dimension between candidates competing for the last seat allocated to the party. We also report unemployment status, dummy for university education, a dummy for being male, a dummy for being 65 years old or older and the incumbency status.

The balance tests are reported in the tables below. We report here the parametric results, and both the clustered and non-clustered nonparametric results. To maintain comparison with the parametric results we only report the bias-corrected point estimate and robust standard error in the nonparametric results. For balance test purposes we hope to see non-significant coefficients. However, the tables also include one sanity check
which is that the design and the specifications are powerful enough to show that council size itself jumps at the thresholds determining it. That is indeed the case.

To test for alternative explanations and the validity of the design, we study many economic and political covariates. We include especially those that Lyytikäinen and Tukiainen (2016) analyze using larger data (more election years and more cutoffs), including turnout, pivotal probabilities and the number of candidates. Only one variable is unbalanced. It is particularly interesting that the number of candidates does not jump despite the maximum allowed list size increasing with the councils size. That is because the list size rule becomes binding for a substantial amount of parties only in larger municipalities than analyzed here. It also interesting and important that the number of parties does not jump at cutoff. While the number of parties is positively correlated with the population size, the council size changes at the threshold seem not to be large enough to attract new parties.
Table 8: Covariate balance tests, parametric RDD

Panel A: Economic and population characteristics of the municipalities

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Personnel</th>
<th>Taxes</th>
<th>Over 65yo</th>
<th>Grants</th>
<th>Expen</th>
<th>Unemp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. effect</td>
<td>46.7</td>
<td>0.0304</td>
<td>-0.00633</td>
<td>-0.0826</td>
<td>-141</td>
<td>-0.197</td>
</tr>
<tr>
<td>s.e.</td>
<td>135</td>
<td>0.0795</td>
<td>0.0085</td>
<td>0.135</td>
<td>196</td>
<td>0.718</td>
</tr>
<tr>
<td>N</td>
<td>475</td>
<td>475</td>
<td>475</td>
<td>475</td>
<td>475</td>
<td>475</td>
</tr>
</tbody>
</table>

Panel B: Political characteristics of the municipalities

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Council size</th>
<th>Candidates</th>
<th>Numb parties</th>
<th>Eff numb par</th>
<th>Turnout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. effect</td>
<td>6.17***</td>
<td>2.98</td>
<td>0.0653</td>
<td>-0.0332</td>
<td>0.00108</td>
</tr>
<tr>
<td>s.e.</td>
<td>0.0282</td>
<td>3.31</td>
<td>0.2</td>
<td>0.143</td>
<td>0.00881</td>
</tr>
<tr>
<td>N</td>
<td>475</td>
<td>475</td>
<td>475</td>
<td>475</td>
<td>475</td>
</tr>
</tbody>
</table>

Panel C: Party level characteristics

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Vote share</th>
<th>Seat share</th>
<th>Respondents</th>
<th>Candidates</th>
<th>Pivotal prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. effect</td>
<td>-0.00497</td>
<td>-0.00805</td>
<td>0.725</td>
<td>-0.117</td>
<td>0.000304</td>
</tr>
<tr>
<td>s.e.</td>
<td>0.0123</td>
<td>0.0131</td>
<td>0.569</td>
<td>2.12</td>
<td>0.00192</td>
</tr>
<tr>
<td>N</td>
<td>1184</td>
<td>1184</td>
<td>1184</td>
<td>1184</td>
<td>1184</td>
</tr>
</tbody>
</table>

Panel D: Candidate level characteristics

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Pivotal prob</th>
<th>Unemployed</th>
<th>University</th>
<th>Male</th>
<th>Old</th>
<th>Incumbent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. effect</td>
<td>0.000565</td>
<td>-0.01</td>
<td>0.0159</td>
<td>-0.00987</td>
<td>-0.00592</td>
<td>0.0283**</td>
</tr>
<tr>
<td>s.e.</td>
<td>0.000588</td>
<td>0.00602</td>
<td>0.0151</td>
<td>0.0119</td>
<td>0.0127</td>
<td>0.0119</td>
</tr>
<tr>
<td>N</td>
<td>14999</td>
<td>14999</td>
<td>14999</td>
<td>14999</td>
<td>14999</td>
<td>14999</td>
</tr>
</tbody>
</table>

Notes: Results are from a parametric RDD using 3rd order polynomial specification. Average effect is calculated as the weighted average of the individual jumps where the weights are based on the number of observations around each cutoff. Standard errors are clustered at the municipality level. *** denotes statistical significance at 1% level, ** denotes statistical significance at 5% level and * denotes statistical significance at 10% level.

Table 9: Covariate balance tests, CTT

Panel A: Economic and population characteristics of the municipalities

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Personnel</th>
<th>Taxes</th>
<th>Over 65yo</th>
<th>Grants</th>
<th>Expen</th>
<th>Unemp</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD coefficient</td>
<td>-345</td>
<td>-0.069</td>
<td>0.006</td>
<td>-0.260</td>
<td>-428</td>
<td>-1.249</td>
</tr>
<tr>
<td>s.e.</td>
<td>269</td>
<td>0.093</td>
<td>0.013</td>
<td>0.218</td>
<td>360</td>
<td>1.229</td>
</tr>
<tr>
<td>N within main bandwidth</td>
<td>210</td>
<td>207</td>
<td>314</td>
<td>221</td>
<td>298</td>
<td>243</td>
</tr>
</tbody>
</table>

Panel B: Political characteristics of the municipalities

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Council size</th>
<th>Candidates</th>
<th>Numb parties</th>
<th>Eff numb par</th>
<th>Turnout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. effect</td>
<td>6.28***</td>
<td>6.23</td>
<td>.282</td>
<td>0.014</td>
<td>-.014</td>
</tr>
<tr>
<td>s.e.</td>
<td>1.60</td>
<td>6.54</td>
<td>.362</td>
<td>0.251</td>
<td>.016</td>
</tr>
<tr>
<td>N</td>
<td>230</td>
<td>305</td>
<td>234</td>
<td>252</td>
<td>124</td>
</tr>
</tbody>
</table>

Panel C: Party level characteristics

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Vote share</th>
<th>Seat share</th>
<th>Respondents</th>
<th>Candidates</th>
<th>Pivotal prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. effect</td>
<td>0.003</td>
<td>-0.0008</td>
<td>0.725</td>
<td>2.776</td>
<td>-0.006</td>
</tr>
<tr>
<td>s.e.</td>
<td>0.035</td>
<td>.0392</td>
<td>1.057</td>
<td>1.878</td>
<td>0.005</td>
</tr>
<tr>
<td>N</td>
<td>450</td>
<td>450</td>
<td>572</td>
<td>441</td>
<td>450</td>
</tr>
</tbody>
</table>

Panel D: Candidate level characteristics

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Pivotal prob</th>
<th>Unemployed</th>
<th>University</th>
<th>Male</th>
<th>Old</th>
<th>Incumbent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. effect</td>
<td>0.00006*</td>
<td>0.004</td>
<td>-0.005</td>
<td>-0.012</td>
<td>-0.038</td>
<td>-0.060**</td>
</tr>
<tr>
<td>s.e.</td>
<td>0.0004</td>
<td>0.013</td>
<td>0.027</td>
<td>0.034</td>
<td>0.023</td>
<td>0.030</td>
</tr>
<tr>
<td>N</td>
<td>4538</td>
<td>6836</td>
<td>4418</td>
<td>5874</td>
<td>6616</td>
<td>6189</td>
</tr>
</tbody>
</table>

Notes: Results are generated using rdrobust package in STATA (Calonico et al. 2016) using MSE-optimal bandwidth (optimized for each outcome separately) and triangular kernel. Standard errors (and bandwidths) are classical. *** denotes statistical significance at 1% level, ** denotes statistical significance at 5% level and * denotes statistical significance at 10% level.
Table 10: Covariate balance tests, CTT, clustered

Panel A: Economic and population characteristics of the municipalities

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Personnel</th>
<th>Taxes</th>
<th>Over 65yo</th>
<th>Grants</th>
<th>Expen</th>
<th>Unemp</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD coefficient</td>
<td>-345</td>
<td>-0.069</td>
<td>0.006</td>
<td>-0.260</td>
<td>-425</td>
<td>-1.249</td>
</tr>
<tr>
<td>s.e.</td>
<td>260</td>
<td>0.093</td>
<td>0.013</td>
<td>0.218</td>
<td>360</td>
<td>1.229</td>
</tr>
<tr>
<td>N within main bandwidth</td>
<td>210</td>
<td>207</td>
<td>314</td>
<td>221</td>
<td>298</td>
<td>243</td>
</tr>
</tbody>
</table>

Panel B: Political characteristics of the municipalities

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Council size</th>
<th>Candidates</th>
<th>Numb parties</th>
<th>Eff numb par</th>
<th>Turnout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. effect</td>
<td>6.28***</td>
<td>6.23</td>
<td>.282</td>
<td>0.014</td>
<td>-.014</td>
</tr>
<tr>
<td>s.e.</td>
<td>1.60</td>
<td>6.54</td>
<td>.362</td>
<td>0.251</td>
<td>.016</td>
</tr>
<tr>
<td>N</td>
<td>230</td>
<td>305</td>
<td>234</td>
<td>252</td>
<td>124</td>
</tr>
</tbody>
</table>

Panel C: Party level characteristics

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Vote share</th>
<th>Seat share</th>
<th>Respondents</th>
<th>Candidates</th>
<th>Pivotal prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. effect</td>
<td>0.003</td>
<td>-0.0008</td>
<td>0.725</td>
<td>2.776</td>
<td>-0.006</td>
</tr>
<tr>
<td>s.e.</td>
<td>0.035</td>
<td>0.0392</td>
<td>1.057</td>
<td>1.878</td>
<td>0.005</td>
</tr>
<tr>
<td>N</td>
<td>450</td>
<td>450</td>
<td>572</td>
<td>441</td>
<td>450</td>
</tr>
</tbody>
</table>

Panel D: Candidate level characteristics

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Pivotal prob</th>
<th>Unemployed</th>
<th>University</th>
<th>Male</th>
<th>Old</th>
<th>Incumbent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. effect</td>
<td>0.0006*</td>
<td>0.004</td>
<td>-0.005</td>
<td>-0.012</td>
<td>-0.038</td>
<td>-0.060**</td>
</tr>
<tr>
<td>s.e.</td>
<td>0.0004</td>
<td>0.013</td>
<td>0.027</td>
<td>0.034</td>
<td>0.023</td>
<td>0.030</td>
</tr>
<tr>
<td>N</td>
<td>4538</td>
<td>6836</td>
<td>4418</td>
<td>5874</td>
<td>6616</td>
<td>6189</td>
</tr>
</tbody>
</table>

Notes: Results are generated using rdrobust package in STATA (Calonico et al. 2016) using MSE-optimal bandwidth (optimized for each outcome separately) and triangular kernel. Standard errors (and bandwidths) are clustered at the municipality level. *** denotes statistical significance at 1% level, ** denotes statistical significance at 5% level and * denotes statistical significance at 10% level.

The sole unbalanced variable is the individual level incumbency status. More incumbents run as council size increases. This is potentially a concern as incumbency status is also positively correlated with having preferences closer to the party mean (not reported). However this seems to be simply more due to moderate candidates getting more votes (Meriläinen and Tukiainen 2016) as getting elected does not seem to change policy positions in Finland (Savolainen 2016). Moreover, having more incumbents is simply mechanical: There are more incumbents in larger councils by construct. Thus, it does not seem that candidates of different competence are selected to the lists across the cutoffs (see also that the other candidate characteristics balance). Therefore, incumbency unbalance is very unlikely to be driving our cohesion results. However, to argue further that this is the case, we show in next table that incumbency jumps in different ways at small and large thresholds, whereas cohesion and proportionality operate at all the thresholds to the same direction. Overall, the evidence strongly points towards proportionality being behind the cohesion response.
Table 11: Mechanisms

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pop > 2k</td>
<td>-0.006</td>
<td>0.0044</td>
<td>-0.306*</td>
<td>0.156</td>
<td>-0.128</td>
<td>0.078</td>
<td>-0.017</td>
<td>0.028</td>
</tr>
<tr>
<td>pop > 4k</td>
<td>-0.0123***</td>
<td>0.0035</td>
<td>-0.161</td>
<td>0.150</td>
<td>-0.100</td>
<td>0.070</td>
<td>-0.019</td>
<td>0.028</td>
</tr>
<tr>
<td>pop > 8k</td>
<td>-0.0111***</td>
<td>0.0035</td>
<td>-0.103</td>
<td>0.109</td>
<td>-0.040</td>
<td>0.056</td>
<td>0.047**</td>
<td>0.018</td>
</tr>
<tr>
<td>pop > 15k</td>
<td>-0.006</td>
<td>0.0047</td>
<td>-0.097</td>
<td>0.169</td>
<td>-0.036</td>
<td>0.088</td>
<td>0.071***</td>
<td>0.021</td>
</tr>
</tbody>
</table>

Notes: Results are from a parametric RDD using 3rd order polynomial specification. Standard errors are clustered at the municipality level. *** denotes statistical significance at 1% level, ** denotes statistical significance at 5% level and * denotes statistical significance at 10% level.

Table 12: Descriptive statistics

Panel A: Economic and population characteristics of the municipalities

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Taxes</th>
<th>Over 65yo</th>
<th>Grants</th>
<th>Expen</th>
<th>Unemp</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>2271</td>
<td>2.8</td>
<td>0.22</td>
<td>2.3</td>
<td>6300</td>
<td>11.9</td>
</tr>
<tr>
<td>s.d.</td>
<td>774</td>
<td>0.5</td>
<td>0.05</td>
<td>0.8</td>
<td>1094</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Panel B: Political characteristics of the municipalities

<table>
<thead>
<tr>
<th>Council size</th>
<th>Candidates</th>
<th>Numb parties</th>
<th>Eff numb par</th>
<th>Turnout</th>
<th>Redistribution</th>
<th>All questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>27.6</td>
<td>81.0</td>
<td>5.91</td>
<td>3.49</td>
<td>0.65</td>
<td>1.85</td>
</tr>
<tr>
<td>s.d.</td>
<td>7.7</td>
<td>38.5</td>
<td>1.44</td>
<td>0.92</td>
<td>0.05</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Panel C: Party level characteristics

<table>
<thead>
<tr>
<th>Vote share</th>
<th>Seat share</th>
<th>Respondents</th>
<th>Candidates</th>
<th>Pivotal prob</th>
<th>Redistribution</th>
<th>All questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>0.28</td>
<td>0.29</td>
<td>12.7</td>
<td>14.9</td>
<td>0.017</td>
<td>1.87</td>
</tr>
<tr>
<td>s.d.</td>
<td>0.16</td>
<td>0.18</td>
<td>6.5</td>
<td>12.0</td>
<td>0.017</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Panel D: Candidate level characteristics

<table>
<thead>
<tr>
<th>Pivotal prob</th>
<th>Unemployed</th>
<th>University</th>
<th>Male</th>
<th>Old</th>
<th>Incumbent</th>
<th>Redistribution</th>
<th>All questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>0.0034</td>
<td>0.04</td>
<td>0.19</td>
<td>0.58</td>
<td>0.16</td>
<td>0.28</td>
<td>1.99</td>
</tr>
<tr>
<td>s.d.</td>
<td>0.006</td>
<td>0.19</td>
<td>0.40</td>
<td>0.49</td>
<td>0.36</td>
<td>0.45</td>
<td>0.72</td>
</tr>
</tbody>
</table>
5.4 Appendix D: Policy position indexes

YLE voting aid application questions in 2008

- In order to provide our municipality with more revenue, we should [choose two]:
 - increase the property tax rate for residential buildings. (Redistribution index)
 - increase the property tax rate for holiday houses. (Redistribution index)
 - increase user fees. (Redistribution index)
 - introduce new user fees. (Redistribution index)
 - sell off municipal property.
 - consider a municipality merger.
 - attract business with favorable conditions or financial support.
 - attract new well-off taxpayers by offering them building plots.
 - request for more state subsidies.

- Which of the following services should we privatize [choose as many as you like but at least one of the following]:
 - comprehensive school.
 - health center.
 - eldercare.
 - day care.
 - municipal engineering.
 - social welfare.
 - substance abuse treatment and rehabilitation.
 - fire and rescue services.
 - zoning.
 - special health care.
 - water utility.
 - none of the above.

- The following questions have a four-step scaling: 0 = completely disagree, 1 = somewhat disagree, 2 = empty, 3 = somewhat agree, 4 = completely agree
 - It is nowadays too easy to be admitted to social welfare. (Redistribution index)
 - The municipal user fees should be made more progressive in income. (Redistribution index)
 - If there is no other option, we should raise the municipal tax rate rather than cut from the municipal services.
 - If one of the parents is at home, we should limit the right of the family to have their child placed in daycare.
 - We should downsize the number of employees in my municipality because there are too many of them.
YLE voting aid application questions in 2012

• Which of the following options should be mainly used in order to balance the municipal budget in your municipality? Choose two of the following options:
 – Issuing more debt. (Redistribution index)
 – Increasing user fees or introduction of new ones. (Redistribution index)
 – Raising taxes. (Redistribution index)
 – Cutting down services.
 – Selling off municipal property.
 – Developing the business in the municipality.

• Lets assume that your municipality is financially troubled. You must save and there is a trade-off between the services for the elderly and the children. What will you do?
 – We should save but I still propose issuing more debt. (Redistribution index)
 – I cut from the services for the elderly.
 – I cut from the services for the children.
 – I try to cut even-handedly from both kinds of services.

• The following questions have a four-step scaling: 0 = completely disagree, 1 = somewhat disagree, 2 = empty, 3 = somewhat agree, 4 = completely agree
 – We should increase the health care user fees in my municipality. (Redistribution index)
 – It is nowadays too easy to be admitted to social welfare. (Redistribution index)
 – We should raise the property tax rate in my municipality. (Redistribution index)
 – The municipal user fees should be made more progressive in income. (Redistribution index)
 – The old should have a universal right to a retirement home similar to one enjoyed now by children and daycare.
 – Privatization of municipal health care would increase efficiency and lower the costs.
 – If one of the parents is at home, we should limit the right of the family to have their child placed in daycare.
 – The five-year long dismissal period for the municipal employees in conjunction with a municipality mergers is too long.
 – Municipal employees should not be nominated as municipal board members.
References

44

