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Abstract

It is well known that the Hotelling-Downs model generically fails to admit an equilibrium when

voting takes place under the plurality rule (Osborne 1993). This paper studies the Hotelling-

Downs model considering that each voter is allowed to vote for up to k candidates and demon-

strates that an equilibrium exists for a non-degenerate class of distributions of voters’ ideal

policies - which includes all log-concave distributions - if and only if k ≥ 2. That is, the plu-

rality rule (k = 1) is shown to be the unique k-vote rule which generically precludes stability

in electoral competition. Regarding the features of k-vote rules’equilibria, first, we show that

there is no convergent equilibrium and, then, we fully characterize all divergent equilibria. We

study comprehensively the simplest kind of divergent equilibria (two-location ones) and we argue

that, apart from existing for quite a general class of distributions when k ≥ 2, they have fur-

ther attractive properties - among others, they are robust to free-entry and to candidates’being

uncertain about voters’preferences.

Keywords: Hotelling-Downs model; equilibrium; multiple votes.
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1 Introduction

Electoral competition consistently attracts the interest both of political scientists and of economists

for a very simple reason: it is relevant for shaping political and economic outcomes in every democracy.

The standard economic model of electoral competition, though, known as the Hotelling-Downs model

of elections (Osborne 1993), provides a negative result: when elections for an offi ce are held under
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the plurality rule among win-motivated candidates, and both candidacy and platform1 selection are

endogenous, an equilibrium fails to exist for almost all distributions of voters’ideal policies. Lack of

existence of an equilibrium gives its place to equilibrium multiplicity once we consider the same model

with runoffvoting (Haan and Volkerink 2001; Brusco et al. 2012; Xefteris 2014). These equilibria have

many positive features (for example, they exist for every distribution of voters’ideal policies) but they

are also characterized by certain negative ones (for example, they are not robust to candidates being

uncertain about voters’preferences).2 That is, electoral competition in the Hotelling-Downs model

under these two popular rules produces extremely unstable outcomes: either no equilibrium exists

(plurality rule) or equilibria exist but only when candidates have amazingly accurate information

regarding voters’preferences (runoff rule).

To our knowledge there are no results regarding electoral competition in the framework of the

Hotelling-Downs model under electoral rules other than the two above. It is, hence, not clear whether

it is the model’s demanding assumptions (namely, the endogeneity of both candidacy and platform

choice) that generate instability or it is just an issue related to the characteristics of these two particular

rules. In this paper we consider a large family of voting rules which we call k-vote rules. If elections

take place under a k-vote rule, each voter is allowed to vote for up to k candidates3 and the candidate

which collects most votes is declared the winner of the elections. These rules take various names in

the literature; Cox (1987) names them multiple votes procedures while others (for example, Dellis

2009) call them k-approval voting rules. Our main finding is that for every k-vote rule, with k ≥ 2,

there exists a non-degenerate class of distributions of voters’ideal policies - which contains every log—

concave4 distribution - for which an equilibrium exists. Hence, the plurality rule is proved to be the

unique k-vote rule which precludes stability in electoral competition.

But why is the plurality rule so different compared to other k-vote rules? When voters are allowed

to vote for only one candidate, we cannot have in equilibrium three (or more) candidates proposing

the same policy. In such a case they would be splitting their constituency (that is, the voters that

rank them first) into three equal shares and hence each of them would have incentives to deviate

marginally to the left or to the right and get the votes of strictly more than a third of these voters.

Moreover, it is impossible that a candidate locates strictly to the left (right) of all other candidates,

because by moving to her right (left) she may strictly improve her electoral performance. That is, in

equilibrium, exactly two candidates should be making the same most leftist (rightist) policy proposal.

If this is the case, though, then the number of their supporters on their left (left semi-constituency)

1In the Hotelling-Downs model: a) the policy space is considered to be unidimensional and, in particular, to coincide
with the unit interval; and b) a candidate prefers to enter the electoral race if and only if she has a strictly positive
probability of being elected (Osborne 1993).

2See Matsushima (2007).
3A voter may use all the k votes that she has at her disposal or only some of them. The only condition that we

impose on voting behavior is that each voter votes for her top-ranked candidate(s); other than that a voter may or may
not vote for candidates ranked in lower positions.

4One is referred to Bagnoli and Bergstrom (2005) for an account of popular functions that satisfy log-concavity.
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should be precisely identical to the number of their supporters on their right (right semi-constituency) -

otherwise one of the candidates would have incentives to deviate towards the larger semi-constituency.

Notice that the unique convergent strategy profile that is compatible with these requirements, is when

exactly two candidates enter the race and both locate at the median voter’s ideal policy. Of course,

this may never be an equilibrium, since any third candidate can get elected with certainty by entering,

for example, marginally to the left of the ideal policy of the median voter. Most importantly, in the

seminal contribution of Osborne (1993) it is shown that, for a generic distribution of voters’ ideal

policies, there is no divergent strategy profile that meets these tight conditions. Hence, there is

generically no equilibrium in elections under the plurality rule.

When voters have k ≥ 2 votes, though, k + 1 candidates may be making the same most leftist

(rightist) policy proposal in a divergent strategy profile and still it could be the case that none of

them has any incentive to move marginally towards the right or towards the left - even if their left

semi-constituency is not precisely identical in size to their right semi-constituency. This is so, because,

when one does not deviate from the common policy proposal, one is voted by k
k+1

of their constituency

(which, for k ≥ 2, is much larger than half of the constituency); while, if their left semi-constituency

is suffi ciently similar (but not necessarily precisely identical) to their right semi-constituency, when

one deviates marginally either to the left or to the right, one is voted by nearly half of their initial

constituency. Indeed, by deviating marginally to the left (right), a candidate ranks strictly below the

other k candidates for all voters with ideal policies to the right (left) of their initial policy proposal and,

hence, suffers a severe drop in support. The transition from requiring that the two semi-constituencies

are "precisely identical" (plurality) to just "suffi ciently similar" (k-vote rules with k ≥ 2), gives an

indication why equilibrium existence is no longer cut-edge when voters are allowed to vote for more

than one candidate.

As far as qualitative features of equilibria are concerned, first, we argue that in equilibrium it is

never the case that all active candidates5 propose the same platform. That is, no k-vote rule admits

a convergent equilibrium for any distribution of voters’preferences. Then we fully characterize all

divergent equilibria of the game6 and we exhaustively analyze the simple class of symmetric two-

location equilibria (equilibria such that half of the active candidates propose policy y1 and the rest

propose policy y2). We demonstrate that these equilibria have certain very attractive properties when

k ≥ 2: a) they are robust to free-entry (some potential candidates strategically decide not to enter the

electoral race), b) the maximum number of active candidates is independent of the cardinality of the

set of potential candidates, c) they are robust to candidates being after multiple offi ces7 and, perhaps

5An active candidate is someone who declared candidacy and joined the electoral race.
6In the paper we focus on a particular case of diverging equilibria. Given that all technical steps that are required

for the characterization of every other equilibrium class are very similar to the ones employed for this particular case,
we characterize all remaining equilibria in the Appendix.

7In M -winner systems (we borrow this terminology from Myerson 1999) each of the M most voted candidates is
assigned an offi ce (or gets elected in a M -member committee). Since k-vote rules are often used in such elections (for

3



more importantly, d) they are robust to candidates’being uncertain about voters’preferences. The

first two properties are important because they guarantee that the number of active candidates is

completely endogenous, the third property extends the scope of the analysis to wider frameworks and

the fourth property ensures that our results are relevant for real world elections - equilibria, which

exist only when information about voters’preferences is perfect, raise obvious plausibility concerns.

We moreover prove that the set of distributions of voters’ideal policies for which such equilibria exist

is expanding in k and, in particular, that this set becomes large enough to contain every log-concave

distribution8 when k becomes equal to two and every symmetric distribution (and every distribution

in a neighborhood of each symmetric distribution) when k becomes equal to three. That is, we prove

that: a) equilibria exist for a very general class of voters’preference profiles when voters are allowed

to vote for more than one candidate and b) by increasing the number of votes that a voter is allowed

to cast, we increase the likelihood that electoral competition will reach stability.

Of course, this is not the first paper which studies such k-vote rules: Cox (1987), Dellis (2009),

Cahan et al. (2011) and Dellis and Oak (2015) are just some examples of papers which look at electoral

competition when voters are allowed to cast more than one vote. In these papers however, either the

set of competing candidates is exogenous and candidates are not win-motivated (it is assumed that

candidates payoffs are smoothly increasing in their vote-shares) or candidacy is endogenous;9 but

the policy platforms of candidates must coincide with their ideal policies (citizen-candidate models).

To the author’s knowledge there is no paper which studies equilibrium existence under k-vote rules

considering that both candidacy and positioning of win-motivated candidates are endogenous. This

is precisely the gap in the literature that this paper aims to fill.

Our analysis can be seen as a case for multiple votes since it demonstrates that, by giving the

voters the opportunity to vote for more than one candidate, one creates the appropriate circumstances

which may lead to stable outcomes. That is, multiple votes procedures are found to be better than the

plurality rule in that respect. One should stress here, that other kinds of cases for multiple votes exist

in the literature. In the literature of information aggregation, for example, Bouton and Castanheira

(2012) recently showed that multiple vote procedures perform better than the plurality rule in that

they admit only effi cient equilibria, while the plurality rule admits both effi cient and ineffi cient ones.

Therefore, our results add to the voices that call for a serious reconsideration of the extent of use of

the plurality rule in collective decision making - especially, in the context of representative democracy.

example, in certain Swiss cantons - including Zurich - voters are allowed to vote for as many candidates as the number
of the seats of the canton’s council), one would care to know whether our stability results apply to cases in which more
than one individual is elected or not. As we will argue in the end of the paper, indeed, the identified equilibria qualify
for any M -winner system with M ≤ k.

8Log-concave distributions of voters’ideal policies are widely used in electoral competition literature (see, for exam-
ple, Caplin and Nalebuff 1991).

9One is referred to Dutta et al. (2001) for a detailed presentation of the reasons why, for every voting rule, the
precise assumption regarding candidacy - endogenous versus exogenous - is a crucial determinant of equilibrium policy
outcomes.
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In the remainder we present our formal setup (Section 2), we prove that a k-vote rule admits an

equilibrium for non-degenerate classes of distributions of voters’ ideal policies if and only if k ≥ 2

and we analyze in depth symmetric two-location equilibria10 (Section 3), and, finally, we demonstrate

that our results are robust to candidates being uncertain about voters’preferences and to candidates

being after multiple offi ces (Section 4).

2 The model

We have a set of win-motivated potential candidates who compete under a k-vote rule for an offi ce.

Formally, the set of potential candidates is N = N+. We also have a unit mass of voters, indexed

by λ ∈ [0, 1], with standard symmetric Euclidean preferences over [0, 1] that are single-peaked. We

denote by w(λ) the ideal policy of voter, λ ∈ [0, 1], where w : [0, 1] → [0, 1] is a strictly increasing

bijection of [0, 1] to itself. Hence, the ideal policies of a unit mass of voters are distributed over [0, 1]

according to a continuous distribution function F = w−1 with a unique median, m ∈ (0, 1), which is

assumed to be common information. Throughout the analysis we use the term admissible to refer to

a distribution function that has these properties.

The potential candidates simultaneously choose their strategies in the first stage of the game from

the set [0, 1] ∪ {Out}. We are interested only in pure strategies and we denote by yi ∈ [0, 1] ∪ {Out}

the choice of candidate i ∈ N and subsequently by Y = (y1, y2, ...), with Y ∈ Y =
+∞∏
i=1

([0, 1] ∪ {Out}),

the potential candidates’strategy profile. We moreover define A = {i ∈ N |yi 6= Out} with a = #A

(that is, a is the cardinality of the set A). If i ∈ A then i is called an active candidate or entrant (not
just a potential candidate). When considering a particular strategy profile Y = (y1, y2, ...) such that

a finite number of potential candidates enters the race, we denote by 0 ≤ y1 < y2 < ... < yr ≤ 1 the r

distinct policy platforms that belong to the strategy profile Y = (y1, y2, ...) and by n(yj) the number

of candidates who choose the policy platform yj. In line with Osborne (1993) we consider that the

left semi-constituency of yj is given by F (yj)− F (y
j+yj−1

2
) for 2 ≤ j ≤ r and by F (yj) for j = 1 and

that the right semi-constituency of yj is defined symmetrically. The constituency of yj is the sum of

its left and its right semi-constituencies.

After Y is determined, every voter is assigned a strict ordering of A, r(A), which will be relevant

only in cases of indifferences. The expression ir(A)j means that, according to the strict ordering

r(A), element i ∈ A ranks higher than j ∈ A and r(A)|X denotes the restriction of r(A) to X ⊆ A.

Considering that R(A) is the set of all strict orderings of the set A ⊆ N and R = ∪Γ⊆NR(Γ), we

assume that: a) if A is finite, then the fraction of the constituency of yj that is assigned r(A) is equal

to the fraction of the constituency of yj that is assigned r′(A), for every r(A), r′(A) ∈ R(A) and every

10In the end of Section 3 we also discuss possibility of other equilibria and in the Appendix we fully characterize all
remaining cases.
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j ∈ {1, 2, ..., r},11 and b) if A is infinite, then the strict ordering assigned to each voter is the one that
is compatible with the natural order of the elements of A.12 All potential candidates know that, after

Y is determined, strict orderings of A will be assigned to voters according to the above essentially

unbiased procedure and, hence, they take this information into account when they make their strategy

choices.

A voter votes for up to k ∈ N+ active candidates according to some voting behavior. A voting

behavior is understood to be a function which maps ideal policies, potential candidates’ strategy

profiles and strict orderings of A into subsets of A with cardinality at most equal to k. That is, if

a voter with ideal policy w follows voting behavior Ξ when potential candidates’strategy profile is

Y and the strict ordering assigned to her is r(A), then the voter will give exactly one vote to each

i ∈ Ξ(w, Y, r(A), k), where Ξ(w, Y, r(A), k) ⊆ A and #Ξ(w, Y, r(A), k) ≤ k, and exactly zero votes to

each i /∈ Ξ(w, Y, r(A), k).

Definition 1 (Voting behavior) A function Ξ : [0, 1] × Y × R × N+ → N , where N is the set of

all subsets of N , is a voting behavior if it satisfies Ξ(w, Y, r(A), k) ⊆ A and #Ξ(w, Y, r(A), k) ≤ k.

We allow each voter to follow any voting behavior, Ξ, as long as it is minimally sincere. A voter

is understood to behave in a minimally sincere way if she votes for her top-ranked candidate(s). This

assumption is quite general as: a) it does not require that all k votes are actually used by a voter

and b) it allows different voters to behave differently. Moreover, this behavior is in line with voters’

behavior in relevant papers, which also study elections in which voters are allowed to vote for more

than one candidate. In particular, sincerity notions developed in Brams and Fishburn (1978), Dellis

and Oak (2006) and Dellis and Oak (2015) are conceptually compatible with (and they are actually

stricter than) minimal sincerity, taking into account of course differences in the contexts of analysis.

We now proceed to introduce formally the notion of minimal sincerity. To do this we first need to

define the set of top-ranked active candidates

Qtop(w, Y ) = {i ∈ A||yi − w| ≤ |yj − w|,∀j ∈ A}

of a voter with ideal policy w ∈ [0, 1], when potential candidates use the strategy profile Y =

(y1, y2, ...).

Definition 2 (Minimal sincerity) A voting behavior, Ξ, satisfies minimal sincerity if: a)Qtop(w, Y ) ⊆
Ξ(w, Y, r(A), k) when #Qtop(w, Y ) ≤ k and b) Ξ(w, Y, r(A), k) is composed of the k top elements of

r(A)|Qtop(w,Y ) when #Qtop(w, Y ) > k, for every admissible w, Y , r(A) and k.

11This assumption only suggests that voters, when indifferent among a number of candidates, split in a fair manner,
and has no other implication on the results.
12The specific assumption about the case of an infinite A is only made for the sake of completeness. It is absolutely

immaterial as far as our formal analysis is concerned. As we will prove, there are no equilibria with an infinite number
of entrants and this result is completely independent of how strict orderings are produced when entrants are infinite.
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It is straightforward that there are many different voting behaviors that satisfy minimal sincerity

ranging from top-voting (a voter votes only for her top-ranked candidates) to full-voting (the voter

votes for all the k candidates she likes most). Therefore, by assuming that each voter is minimally

sincere, we do not impose that all voters will exhibit the same voting behavior.13 This suggests that

the electorate in this model cannot be fully characterized only by the means of a distribution of ideal

policies; one needs a profile of voting behaviors too. Without entering into unnecessary formalities,

a profile of voting behaviors is simply a collection of voting behaviors (one for each voter) and we

consider that it is common information.14

We denote by vi(y1, y2, ...) the vote-mass of potential candidate i ∈ N given a strategy profile

Y = (y1, y2, ...), a distribution of ideal policies and a profile of minimally sincere voting behaviors.

If yi = Out then vi(y1, y2, ...) = 0 independently of what the other players do. The candidate who

receives the largest vote-mass wins. All ties are broken with equiprobable draws. Candidates are

purely win-motivated; they maximize the probability of being elected. They moreover strictly prefer

the pure strategy Out to any pure strategy which gives them zero election probability and they strictly

prefer any strategy which gives them positive election probability to the pure strategy Out.15

Given that the set of instrumental players coincides with the set of potential candidates:16 a)

a Nash equilibrium of the described game may be defined only in terms of potential candidates’

strategies and b) in what follows we use the terms player and potential candidate interchangeably.

Our game sums up to the following:

Stage 1. Players decide simultaneously strategies from [0, 1] ∪ {Out} holding perfect information
regarding the distribution of ideal policies, F , and the profile of minimally sincere voting behaviors.

Stage 2. A strict ordering of A is assigned to each voter according to the essentially unbiased

procedure that we described above.

Stage 3. Each voter votes for up to k active candidates according to a minimally sincere voting

behavior.

Stage 4. Vote-masses are computed and players get their payoffs.

13This is true for every k except for k = 1 (plurality). In that case minimal sincerity coincides with standard sincere
voting - one votes for one’s top-ranked candidate.
14This assumption is without loss of generality because - as it will be clear in the next few paragraphs where we

introduce our equilibrium notion - we are interested only in equilibria that are robust to every possible profile of
minimally sincere voting behaviors. That is, all our equilibrium analysis continues to hold, even if one assumes that
candidates have incomplete information about the profile of minimally sincere voting behaviors.
15Alternatively, one could assume that there is a positive cost in declaring candidacy. As it will be evident during the

formal analysis, each equilibrium of our game survives such a switch in assumptions if the entry cost is suffi ciently small.
Hence, we prefer to stick with the original formulation of Osborne (1993). Moreover, notice that the set of strategies of
each player is not a convex set and hence existence of an equilibrium in pure strategies cannot be established/ruled-out
by the means of standard theorems (for example, Debreu 1952).
16A voter in this model is essentially parametric since, given a potential candidates’strategy profile Y , her behavior

is fully characterized by her ideal policy, a strict ordering of A and a function Ξ.
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We will focus only on Nash equilibria that, given a k-vote rule and a distribution of ideal policies,

F , exist for every possible profile of minimally sincere voting behaviors. That is, we will describe

equilibria whose existence does not hinge on the exact beliefs that candidates hold regarding voters’

behavior. We do that because we consider that equilibria which exist only for some minimally sincere

voting behaviors do not represent a really robust prediction of the model.

Definition 3 (Behaviorally robust equilibrium - BRE) Given a k-vote rule and a distribution

of ideal policies, F , a players’strategy profile is a BRE if for every profile of minimally sincere voting

behaviors no player has incentives to unilaterally change her strategy.

Next, we give a formal description of what we call a non-degenerate set of distribution functions.

We do this because our aim is to prove that for every k ≥ 2 an equilibrium exists for a non-degenerate

class of voters’preference profiles. Since a class of preference profiles coincides in this model with a

set of probability distributions over [0, 1], one needs a proper definition of such a set before stating

the results.

Definition 4 (Non-degenerateness) A set, S, of admissible distribution functions is non-degenerate

if: a) it contains at least two admissible distribution functions, F1 and F2, such that F1(x) < F2(x)

for every x ∈ (0, 1) and b) it contains every admissible distribution function, F , such that F (x) ∈
[F1(x), F2(x)] for every x ∈ [0, 1].

Finally, we comment on why we assume an infinite set of potential candidates. We do that to be

able to state our results only as a function of k. One can instead assume thatN is finite without adding

anything to the intuition that we get from our results. Apart from complicating the conditions, when

N is finite and k ≥ #N
2
, the convergent free-entry equilibria identified by Cox (1987), which are such

that all #N potential candidates enter the race, exist in our game. Obviously, these equilibria raise

serious plausibility issues since the number of active candidates has to coincide with the cardinality of

the set of potential candidates. That is, the number of active candidates in these convergent equilibria

is essentially exogenous. They describe a situation in which an extra candidate would get elected with

positive probability but there simply is no extra potential candidate to enter. Thus, the assumption

N = N+ is actually an equilibrium refinement tool which helps us focus on equilibria which are free

of such concerns.

3 Equilibrium analysis

3.1 Preliminary results

We first present a set of results which describe outcomes that may not be expected in equilibrium. We

show that in equilibrium the set of active candidates may not be infinite, that there are generically
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no equilibria when voting takes place according to the plurality rule and that elections under k-vote

rules never admit convergent equilibria.

Lemma 1 For every k ∈ N+, the set of active candidates, A, cannot be infinite in a BRE.

Proof. This trivially follows from the assumption that each player prefers the pure strategy Out to

any pure strategy which gives her zero election probability. If infinite players enter and each gets a

positive election probability, then it must be the case that vi(y1, y2, ...) = v for every i ∈ A because
candidates who have positive election probability are the ones who tie in the first place. Hence, each

player should enjoy the same election probability p > 0. But
∑
i∈A

p > 1 when p > 0 and A infinite and,

hence, A cannot be infinite in any BRE.

We note that the substantial implication of this result (namely, that in equilibrium we cannot have

an arbitrarily large number of active candidates) is robust to all conceivable voters’behaviors and

it is not specific to the particularities of the current formulation. Independently of how voters vote,

when infinite candidates enter the race, only a subset of them will enjoy an election probability larger

than any fixed c > 0. That is, considering an arbitrarily small entry cost and that candidates enter if

and only if their election probability is larger than this arbitrarily small entry cost, would be enough

to eliminate the possibility of equilibria with arbitrarily many active candidates for every possible set

of assumptions regarding voters’behavior.

Given that our infinite-player game is symmetric, it directly follows that if an equilibrium with

a ∈ N+ active candidates exists, then infinitely many similar equilibria with a ∈ N+ active candidates

should exist too, which would only differ in the identities of the active candidates and not in the

strategies that the active candidates employ. If we assume that in an equilibrium with a ∈ N+ active

candidates we have that 0 ≤ y1 ≤ y2... ≤ ya ≤ 1 and that yi = Out for every i ≥ a + 1 then we

can significantly reduce the complexity of exposition of the results that follow without any loss of

generality.

Proposition 1 If k = 1 then there is no BRE for almost every F (Osborne 1993).

Proof. The proof of this result is a simple combination of our lemma 1 and Osborne (1993).

We now turn attention to k-vote rules with k ≥ 1 and we first investigate possibility of a convergent

equilibrium.

Lemma 2 If k ≥ 1 there is no BRE such that all active candidates offer the same platform.

Proof. By lemma 1 we know that in every BRE a is finite. Consider that (ŷ1, ŷ2, ...ŷa, ŷa+1, ...) is

a BRE such that ŷ1 = ŷ2 = ... = ŷa = ŷ ∈ [0, 1] and ŷa+1 = ŷa+2 = ... = Out. Then if player
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a + 1 deviates from Out to ŷ ∈ [0, 1] she will get an election probability of 1
a+1

> 0. That is,

she is strictly better off by entering at ŷ compared to staying Out and, hence, the strategy profile

(ŷ1, ŷ2, ...ŷa, ŷa+1, ...) cannot be a BRE.

This is a result that we know from Cox (1987); k-vote rules with k ≥ 1 can give convergent

equilibria if and only if the cardinality of the set of potential candidates is small enough compared to

k (the exact condition is k ≥ #N
2
). As it is evident, when the set of potential candidates is infinite no

convergent equilibrium exists for any k-vote rule.

3.2 Symmetric two-location equilibria

In what follows we investigate the possibility of divergent equilibria. In most of our analysis we focus

on symmetric two-location equilibria (half active candidates locate at one point and the other half at

some other point; n(y1) = n(y2) = a
2
) and we prove that every k-vote rule with k ≥ 2 may support

an equilibrium of this sort for a non-degenerate class of voters’preferences. The next lemma provides

an upper and a lower bound for the cardinality of the set of active candidates in such an equilibrium.

Lemma 3 Every symmetric two-location BRE must be such that: a) y
1+y2

2
= m and b) a ∈ [2k+2, 4k].

Proof. The proof of the first part of the lemma is straightforward: if all voters never vote for a

candidate whom they like strictly less than some other (top-voting), then the only way in which a

profile with n(y1) = n(y2) = a
2
may be a Nash equilibrium is when y1+y2

2
= m. Since a BRE is

defined as such only if it is robust to every profile of minimally sincere voting behaviors (including the

one considered here), it follows that in every symmetric two-location BRE it must be the case that
y1+y2

2
= m. As far as the second part of the proposition is concerned: if in a BRE we have a ≥ 2k

and half candidates are located at the same position y1 to the left of the median voter and the other

half are located equidistantly to the right of the median voter, then for every profile of minimally

sincere voting behaviors it is true that the vote-mass of each i ∈ A is identical to k
a
. Hence, it must be

the case that F (y1) ≤ k
a
because if this were not true, a player could deviate from Out to a location

to the left and arbitrarily close to y1, get a vote-mass strictly larger than k
a
and win with certainty.

Moreover, it should hold that 1
2
− F (y1) ≤ k

a
because otherwise a player could deviate from Out to a

location to the right and arbitrarily close to y1 and get a vote-mass strictly larger than k
a
, and hence

win with certainty. Combination of these two inequalities gives a ≤ 4k. Assume now that a = 2k.

Then, if all voters vote for all the k candidates they like best (full-voting), one of the k candidates

located at y1 can deviate to y1 + ε and increase her vote-mass while the vote-mass of each of the k− 1

candidates who remain at y1 is unchanged and the vote-mass of each of k candidates who are located

at 2m− y1 decreases by [F ( ε+2m
2

)− 1
2
]/k > 0. That is, this is a profitable deviation since it leads to a
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certain election. Similar arguments rule out all cases with a ≤ 2k. Hence, in a BRE it should be the

case that a > 2k or else that a ≥ 2k + 2.

The fact that such divergent equilibria allow for at most 4k active candidates is very important

as it establishes not only that such equilibria rule out free-entry but, perhaps more importantly, that

the maximum number of active candidates in such equilibria does not relate to the cardinality of the

set of potential candidates. In contrast, the maximum number of active candidates of the divergent

and no-free-entry equilibria of the standard runoff rule (Brusco et al. 2012) is essentially equal to the

cardinality of the set of potential candidates.

Next, we fully characterize all symmetric two-location equilibria.

Proposition 2 When the ideal policies of the society are distributed according to F and voting takes

place according to a k-vote rule, a symmetric two-location BRE with a
2
active candidates at y1 and a

2

active candidates at y2 exists if and only if: A) y1+y2

2
= m, B) max{F (y1), 1− F (2m− y1)} ≤ k

a
and

C) for every y ∈ (y1, y2) we have 2k + 2 ≤ a <
2kmax{F ( y

1+y
2

),1−F ( 2m−y
1+y

2
)}

F ( 2m−y
1+y

2
)−F ( y

1+y
2

)
.

Proof. We first deal with the if direction; that is, we first show that the above conditions are

suffi cient for the existence of a BRE. To this end we assume that a
2
active candidates locate at y1

and a
2
active candidates locate at y2, and that all three conditions of the above propositions hold. If

a player deviates from Out to y < y1 (or to y > y2) she gets a vote-mass strictly less than F (y1)

(1 − F (2m − y1)) due to minimal sincerity and condition C (2k + 2 ≤ a) and hence she loses with

certainty because each active candidate at y2 (y1) gets a vote-mass at least equal to k
a
due to minimal

sincerity and condition C (2k + 2 ≤ a), which is larger or equal to F (y1) (1 − F (2m − y1)) due

to condition B. If a player deviates from Out to y = y1 (or to y = y2) she gets a vote-mass equal

to k
a+2

due to minimal sincerity and condition C (2k + 2 ≤ a) and hence she loses with certainty

because each active candidate at y2 (y1) gets a vote-mass equal to k
a
due to minimal sincerity and

condition C (2k + 2 ≤ a). If a player deviates from Out to y ∈ (y1, y2), she gets a vote-mass equal to

F (2m−y1+y
2

)−F (y
1+y
2

) due to minimal sincerity and condition C (2k+2 ≤ a) and hence she loses with

certainty because: a) if 1− F (2m−y1+y
2

) ≥ F (y
1+y
2

), then each active candidate at y2 gets a vote-mass

at least equal to [1−F ( 2m−y
1+y

2
)]2k

a
due to minimal sincerity and condition C (2k + 2 ≤ a), which is

strictly larger than F (2m−y1+y
2

) − F (y
1+y
2

) due to condition C and b) if 1 − F (2m−y1+y
2

) < F (y
1+y
2

),

then each active candidate at y1 gets a vote-mass at least equal to F ( y
1+y
2

)2k

a
due to minimal sincerity

and condition C (2k + 2 ≤ a), which is strictly larger than F (2m−y1+y
2

) − F (y
1+y
2

) due to condition

C. Hence, if all the three conditions hold, then nobody has incentives to deviate from Out to any

y ∈ [0, 1]. Similar arguments rule out deviation of any of the a active candidates to other locations:

if an active candidate deviates from y1 (y2) to some other y, her vote-mass will coincide with the

vote-mass of a player who deviates from Out to the same y - which we have already computed - and it

11



can be shown to be strictly smaller than the vote-mass of some other active candidate with arguments

similar to the ones above. Finally, a deviation of an active candidate to Out is straightforwardly

unprofitable since, in every profile that has the described characteristics, every active candidate has

a positive election probability.

We now turn attention to the only if direction; that is, we now aim to establish that the described

three conditions are necessary for a symmetric two-location BRE to exist. From lemma 3 we know

that condition A and the first part of condition C (2k + 2 ≤ a) must hold in every symmetric two-

location BRE and they are hence necessary conditions. Assume that there is a symmetric two-location

BRE such that condition B does not hold - consider, without loss of generality, that F (y1) > k
a
. If

all voters vote for all the k candidates they like best (full-voting), then a player may deviate from

Out to y < y1 but arbitrarily close to it and get a vote-mass strictly larger than k
a
and win with

certainty. This is so because condition A and the first part of condition C (2k + 2 ≤ a) - which are

already proved to be conditions that must hold in a BRE - along with full-voting, suggest that every

other active candidate will get a vote-mass at most as large as k
a
. Hence, if condition B does not hold

then we are not in a BRE and it is therefore a necessary condition too. Finally, consider that there

is a BRE such that the second part of condition C does not hold. That is, there exists y ∈ (y1, y2)

such that either a ≥ 2kF ( y
1+y
2

)

F ( 2m−y
1+y

2
)−F ( y

1+y
2

)
and 1− F (2m−y1+y

2
) < F (y

1+y
2

) or a ≥ 2k[1−F ( 2m−y
1+y

2
)]

F ( 2m−y
1+y

2
)−F ( y

1+y
2

)
and

1 − F (2m−y1+y
2

) ≥ F (y
1+y
2

). In such a case a player may deviate from Out to this y and win with

positive probability. This is so because if, for example, this y is such that a ≥ 2kF ( y
1+y
2

)

F ( 2m−y
1+y

2
)−F ( y

1+y
2

)

and 1 − F (2m−y1+y
2

) < F (y
1+y
2

), then a player who deviates from Out to this y gets a vote-mass

equal to F (2m−y1+y
2

)− F (y
1+y
2

) (due to minimal sincerity and the first part of condition C), while an

active candidate located at y1 gets a vote-mass equal to F ( y
1+y
2

)2k

a
and an active candidate located

at y2 gets a vote-mass equal to [1−F ( 2m−y
1+y

2
)]2k

a
when no voter ever votes for a candidate whom she

likes strictly less than some other (top-voting); each of these vote-masses are at most as large as

F (2m−y1+y
2

)− F (y
1+y
2

) when a ≥ 2kF ( y
1+y
2

)

F ( 2m−y
1+y

2
)−F ( y

1+y
2

)
and 1− F (2m−y1+y

2
) < F (y

1+y
2

). Therefore, if the

second part of condition C does not hold, there exist profiles of minimally sincere voting behaviors

for which a player has incentives to deviate from Out to some y ∈ (y1, y2) and, thus, we cannot be

in a BRE. This proves that the second part of condition C is also necessary for the existence of a

symmetric two-location BRE.

Next we state a direct corollary of the above proposition which will help us with our subsequent

analysis.

Corollary 1 If a symmetric two-location BRE with a
2
active candidates at y1 and a

2
active candidates

at y2 exists then a symmetric two-location BRE with k + 1 active candidates at y1 and k + 1 active

candidates at y2 exists too.
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The proof of this result is trivial and it is hence skipped.17 The implication of this result, though,

is of paramount importance in our quest to characterize the classes of preferences profiles for which

each k-vote rule admits a symmetric two-location equilibrium. It suggests that we can concentrate

our efforts on understanding which F s admit such an equilibrium with 2k + 2 active candidates.

Moreover, we notice that, for a given a, if conditions A and C hold for some pair (y1, y2) =

(y1, 2m− y1) such that max{F (y1), 1− F (2m− y1)} < k
a
then they should also hold for the location

pair (ẏ1, ẏ2) = (ẏ1, 2m− ẏ1) which is such that max{F (ẏ1), 1−F (2m− ẏ1)} = k
a
. These observations

allow us to state the following simplified necessary and suffi cient condition for existence of a symmetric

two-location equilibrium.

Proposition 3 When the ideal policies of the society are distributed according to F and voting takes

place according to a k-vote rule, a symmetric two-location BRE exists if and only if there exists

ŷ < m such that: A) max{F (ŷ), 1 − F (2m − ŷ)} = k
2k+2

and B) for every y ∈ (ŷ, 2m − ŷ) we have

1 + 1
k
<

max{F ( ŷ+y
2

),1−F ( 2m−ŷ+y
2

)}
F ( 2m−ŷ+y

2
)−F ( ŷ+y

2
)

.

Again, a formal proof is not necessary since the above proposition naturally follows if one combines

proposition 2, corollary 1 and the fact that the fraction in the last part of condition C of proposition

2 is strictly increasing in y1 for any fixed y ∈ (y1, 2m− y1).

We notice that k
2k+2

is increasing in k and that 1 + 1
k
is decreasing in k. Moreover, we ob-

serve that max{F (ŷ), 1 − F (2m − ŷ)} is increasing in ŷ ∈ (0,m) and that max{F ( ŷ+y
2

),1−F ( 2m−ŷ+y
2

)}
F ( 2m−ŷ+y

2
)−F ( ŷ+y

2
)

≤
max{F ( ỹ+y

2
),1−F ( 2m−ỹ+y

2
)}

F ( 2m−ỹ+y
2

)−F ( ỹ+y
2

)
when 0 < ŷ < ỹ < y < m. So if, given F , there exists ŷ < m such that the

two conditions of proposition 3 hold when voters have k votes, then there should also exist ỹ ∈ (ŷ, m)

such that the two conditions hold when voters have k + 1 votes. That is, if in society F a symmetric

two-location equilibrium exists when voting takes place under a k-vote rule, then in the same society

F a symmetric two-location equilibrium should also exist if voting took place under a (k + 1)-vote

rule. This brings us to our next result. Before we state it though we need to define Φ as the set of

all admissible distributions on [0, 1] and Φk ⊆ Φ as the set which contains all admissible distributions

for which a symmetric two-location BRE exists under a k-vote rule.

Proposition 4 Φk ⊆ Φk+1 for every k ∈ N+ and limk→+∞Φk = Φ.

Proof. The first part of this proposition has been established by the arguments presented before

its statement. If for some F a symmetric two-location BRE exists under a k̂-vote rule, then a BRE

exists under a k-vote rule too for every k > k̂. Therefore, all F s that belong to Φk must also

17It just hinges on the observation that, for a fixed pair (y1, y2), if conditions B and C hold for some a, then they
also hold for a = 2k + 2.
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belong to Φk+1; Φk ⊆ Φk+1. The proof of the second part of this proposition is as follows. We

notice that limk→+∞
k

2k+2
= 1

2
. Hence: a) for every admissible F there exists ŷ < m such that

max{F (ŷ), 1 − F (2m − ŷ)} = k
2k+2

, when k is suffi ciently large, and b) limk→+∞ ŷ = m. Moreover,

limk→+∞(1 + 1
k
) = 1 and, considering that y ∈ (ŷ, 2m − ŷ), limŷ→m−

max{F ( ŷ+y
2

),1−F ( 2m−ŷ+y
2

)}
F ( 2m−ŷ+y

2
)−F ( ŷ+y

2
)

= +∞.
Therefore, for every F ∈ Φ there exists a large enough k, such that F ∈ Φk. That is, limk→+∞Φk = Φ.

This proposition formally establishes that the set of distributions of voters’ ideal policies, for

which symmetric two-location equilibria exist under a k-vote rule, is expanding in k and in the limit

(k → +∞) it essentially includes all admissible distributions of ideal policies. Given though that for
k = 1 (plurality rule) Osborne (1993) proved that an equilibrium exists for almost no distribution of

voters’ideal policies, what is essential to be answered next, is how large need k be in order for such

equilibria to exist for non-degenerate classes of voters’preferences. What we find is that k may be as

small as two.

Proposition 5 Φk is non-degenerate if and only if k ≥ 2.

Proof. We notice that when k = 1 the existence conditions of proposition 3 suggest that F (ŷ) =

1−F (2m− ŷ) = 1
4
(if, for example, F (ŷ) < 1

4
and 1−F (2m− ŷ) = 1

4
then condition B of proposition

3 is not satisfied for y → ŷ+). Consider that Φ1 is non-degenerate and hence that it contains at least

two admissible distribution functions F1 and F2 such that F1(x) < F2(x) for every x ∈ (0, 1). Then,

we define ŷF1 and mF1 such that F1(ŷF1) = 1
4
⇐⇒ F−1

1 (1
4
) = ŷF1 and F1(mF1) = 1

2
⇐⇒ F−1

1 (1
2
) = mF1 .

Notice that every admissible F (x), such that F (x) ∈ [F1(x), F2(x)] for every x ∈ [0, 1], should also

belong to Φ1. Hence, Φ1 should contain an admissible distribution Ḟ (x) such that: a) Ḟ (x) = F1(x)

for x ∈ [0,mF1 ], b) Ḟ (x) ∈ [F1(x), F2(x)] for every x ∈ (ŷF1 , 2mF1 − ŷF1) and c) Ḟ (x) = F2(x) for

x ∈ [2mF1 − ŷF1 , 1]. If Ḟ admits a BRE under k = 1, then it should be such that two candidates

locate at ŷF1 and two candidates locate at 2mF1 − ŷF1 (because Ḟ (ŷF1) = F1(ŷF1) = 1
4
and Ḟ (mF1) =

F1(mF1) = 1
2
). But if we are in a BRE then it should also be true that 2mF1− ŷF1 ∈ (mF1 , 1) and that

1−Ḟ (2mF1−ŷF1) = 1−F2(2mF1−ŷF1) = 1
4
which may be true only if F1(2mF1−ŷF1) = F2(2mF1−ŷF1),

and that is wrong by assumption. Therefore, our initial assumption is incorrect and hence Φ1 cannot

be non-degenerate.

To establish that Φk is non-degenerate for every k ≥ 2, it is suffi cient to prove that Φ2 is non-

degenerate (proposition 4). We consider that k = 2 and that F (x) ∈ (x− ε, x+ ε) for every x ∈ [0, 1]

and a suffi ciently small but strictly positive ε. We assume that y1 = m − 1
5
, y2 = m + 1

5
and

n(y1) = n(y2) = a
2

= 3 (condition A and the first part of condition C of proposition 2 hold). We

observe that limε→0 max{F (y1), 1 − F (2m − y1)} = 3
10
< 1

3
= k

a
and hence, for suffi ciently small ε,

condition B of proposition 2 holds too. We moreover notice that for every y ∈ (y1, y2) it is true that

14



limε→0[F (2m−y1+y
2

)−F (y
1+y
2

)] = 1
5
and limε→0 max{F (y

1+y
2

)2k
a
, [1−F (2m−y1+y

2
)]2k
a
} ≥ 8

20
× 4

6
= 4

15
> 1

5
.

That is, for suffi ciently small ε, the second part of condition C of proposition 2 also holds.

Since a BRE exists for every admissible F (x) ∈ (x−ε, x+ε) when ε > 0 is positive and suffi ciently

small, it follows that there exists a pair of admissible distribution functions F1 and F2 which are

such that x − ε < F1(x) < F2(x) < x + ε for every x ∈ (0, 1). Obviously, every F̂ such that

F̂ (x) ∈ [F1(x), F2(x)] for every x ∈ [0, 1] also satisfies F̂ (x) ∈ (x − ε, x + ε) and hence Φ2 is non-

degenerate. Since, Φ2 ⊆ Φk for every k ≥ 3 it follows that Φk is non-degenerate if k ≥ 2.

But why is the plurality rule so different compared to every other k-vote rule with k ≥ 2?

The reason why symmetric two-location equilibria almost never exist under the plurality rule, lies

in the following facts: a) a candidate located at y1 must be sharing this location with at least one

other candidate because otherwise she would have incentives to move towards the right and gain votes

and b) a candidate located at y1 must be sharing this location with at most one other candidate. If

n(y1) > 2 candidates share location y1 then each of them is voted by strictly less than half of the

constituency of y1 (each is voted by a fraction 1
n(y1)

of the constituency of y1). If the left (right)

semi-constituency of y1 is larger or equal to the right (left) semi-constituency of y1, then a candidate

by deviating from y1 marginally to the left (right) increases her vote-mass and thus her election

probability. But if exactly two candidates must share location y1, then it should also be the case that

the left semi-constituency of y1 is exactly identical to the right semi-constituency of y1 (otherwise

one of the two candidates would be better off by marginally deviating towards the side of the larger

semi-constituency of y1). This leaves only one possibility for a y1 in a symmetric two-location BRE

- it must be such that F (y1) = 1
4
. Since this first location is uniquely defined for every F and since

the second location, y2, has to satisfy at the same time y2 = 2m − y1 = 2F−1(1
2
) − F−1(1

4
) and

1 − F (y2) = 1
4
⇐⇒ y2 = F−1(3

4
) - which are both satisfied by almost no F - it trivially follows that

such pairs of locations exist for almost no F and subsequently that Φ1 cannot be non-degenerate (a

similar reasoning rules out existence of any kind of equilibria for almost all F s under the plurality

rule).

When voters are allowed to vote for more than one candidate, though, things change dramatically.

Consider, for example, that k = 2 and that three candidates are located at y1 and three at y2 = 2m−y1.

Then each of the candidates located at y1 is voted by a fraction 2
3
of the constituency of y1 (which

is much larger than half of the constituency of y1). This means that in equilibrium the left semi-

constituency of y1 need not be precisely as large as the right semi-constituency of y1; as long as

F (y1) ∈ (1
6
, 1

3
) none of the three candidates located at y1 has any incentives to deviate marginally

to the left or marginally to the right of y1. Since the admissible values for a y1 are infinitely more

compared to the plurality rule, it directly follows that equilibrium possibilities are infinitely more too.

Of course more conditions on top of F (y1) ∈ (1
6
, 1

3
) need to hold in order for the posited profile to

constitute an equilibrium (conditions that guarantee that entry of other candidates and deviations far

15



away from y1 are also unprofitable). But the fact that this first condition specifies a non-degenerate

range of locations that may be part of an equilibrium sums up the intuition why stability in electoral

competition under a k-vote rule with k ≥ 2 may actually be reached.

After having shown that stability in electoral competition is feasible18 for each k-vote rule with

k ≥ 2, one would naturally want to have a better understanding of the sets of distribution functions

that guarantee equilibrium existence. First, we show that every k-vote rule with k ≥ 2 admits a

symmetric two-location BRE when the distribution of voters’ ideal policies is log-concave.19 That

is, existence of such equilibria is quite general since log-concavity is satisfied by many distributions

(including the popular families of unimodal beta, truncated normal, distributions with linear densities

and many other).

Proposition 6 Φk contains all admissible distributions that satisfy log-concavity if and only if k ≥ 2.

Proof. Notice that F (x) = x (uniform distribution) is an admissible distribution that satisfies log-

concavity. When k = 1 condition A of proposition 3 suggests that ŷ = 1
4
. Moreover, m = 1

2
and

2m− ŷ = 3
4
. Hence, condition B of proposition 3 does not hold as max{F ( ŷ+y

2
),1−F ( 2m−ŷ+y

2
)}

F ( 2m−ŷ+y
2

)−F ( ŷ+y
2

)
<

1
2
1
4

= 1 + 1
k

for every y ∈ (ŷ, 2m− ŷ) and k = 1. In other words, Φ1 does not contain all admissible distributions

that satisfy log-concavity.

Now our aim is to show that, for every admissible distribution F with median m (fix, without

loss of generality, m ≤ 1
2
) that satisfies log-concavity and every k ≥ 2, there exists ŷ ∈ (0,m) that

satisfies the two conditions of proposition 3 and hence a symmetric two-location BRE exists. First,

we argue that when an admissible F is log-concave, then indeed there exists ŷ ∈ (0,m) such that

max{F (ŷ), 1 − F (2m − ŷ)} = k
2k+2

(condition A of proposition 3) for every k ≥ 2. Notice that

max{F (x), 1− F (2m− x)} is strictly increasing in x ∈ [0,m] and max{F (m), 1− F (2m−m)} = 1
2
.

That is, the only possibility that there is no ŷ ∈ (0,m), such that max{F (ŷ), 1 − F (2m − ŷ)} =
k

2k+2
> 1

4
, is when max{F (0), 1 − F (2m)} > k

2k+2
. We will show that when an admissible F is log-

concave, then max{F (0), 1 − F (2m)} ≤ 1
4
and, hence, max{F (0), 1 − F (2m)} < k

2k+2
. Assume, on

the contrary, that max{F (0), 1− F (2m)} > 1
4
. Given that F (0) = 0 for every admissible distribution

and that m ≤ 1
2
it follows that: a) m < 1

2
(otherwise - that is, if m = 1

2
- we would have 1 −

F (2m) = 0 ⇒ max{F (0), 1 − F (2m)} = 0 < 1
4
, since every admissible distribution is such that

F (1) = 1), and b) 1 − F (2m) > 1
4
⇔ F (2m) < 3

4
. These two observations suggest that F fails the

18The rules that we consider permit partial abstention (that is, a voter is not compelled to use all the k votes).
Notice, though, that our genericity results directly apply to k-vote rules that do not allow partial abstention. This is
so because not allowing for partial abstention is equivalent to allowing for partial abstention and voters using all their
k votes. Since, in our setup voters may be characterized by any minimally sincere voting behavior, including voting
behaviors which involve the use of all k votes, a BRE of our game remains an equilibrium when partial abstention is
not allowed (that is, when the minimally sincere behaviors are restricted to those which involve the use of all k votes).
19We consider that F is log-concave if ∂

2 lnF (x)
∂x2 < 0 and ∂2 ln[1−F (x)]

∂x2 < 0 for every x ∈ (0, 1). Hence, our definition
of log-concavity implies that F is twice-differentiable as well.
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gradual escalating median (GEM) property that all log-concave distribution functions are guaranteed

to have (see, for example, Haimanko et al. 2005).20 Therefore, our assumption is wrong and hence

max{F (0), 1−F (2m)} ≤ 1
4
< k

2k+2
; condition A of proposition 3 holds when k ≥ 2 for every admissible

F that satisfies log-concavity.

As far as condition B of proposition 3 is concerned, we assume without loss of generality that

F (ŷ) = k
2k+2

and 1 − F (2m − ŷ) ≤ k
2k+2

(now we drop the assumption that m ≤ 1
2
). We notice that

max{F ( ŷ+y
2

),1−F ( 2m−ŷ+y
2

)}
F ( 2m−ŷ+y

2
)−F ( ŷ+y

2
)

≥ F ( ŷ+y
2

)

F ( 2m−ŷ+y
2

)−F ( ŷ+y
2

)
for every y ∈ (ŷ, 2m − ŷ). So if we show that 1 + 1

k
<

F ( ŷ+y
2

)

F ( 2m−ŷ+y
2

)−F ( ŷ+y
2

)
for every y ∈ (ŷ, 2m− ŷ) we are done. We observe that limy→ŷ+

F ( ŷ+y
2

)

F ( 2m−ŷ+y
2

)−F ( ŷ+y
2

)
=

F (ŷ)
1
2
−F (ŷ)

=
k

2k+2
1
2
− k
2k+2

= k > 1+ 1
k
for every k > 1

2
(1+
√

5) ≈ 1.62. Moreover, we have that F ( ŷ+y
2

)

F ( 2m−ŷ+y
2

)−F ( ŷ+y
2

)

is increasing in y ∈ (ŷ, 2m− ŷ) due to log-concavity of F . Hence, F ( ŷ+y
2

)

F ( 2m−ŷ+y
2

)−F ( ŷ+y
2

)
> 1 + 1

k
for every

y ∈ (ŷ, 2m − ŷ) and k ≥ 2; and, thus, when an admissible F is log-concave then both conditions of

proposition 3 hold and a symmetric two-location BRE is guaranteed to exist.

In the next part of our analysis we show that if elections take place under a k-vote rule, an equi-

librium is guaranteed to exist for all distributions that are symmetric about their median (and for all

distributions in the neighborhood of such symmetric distributions) if and only if k ≥ 3. We consider

that this result is of particular interest since: a) symmetric distributions are very popular in political

economics literature (many seminal papers prove their results only by considering perfectly symmetric

distributions - see for example Palfrey 1984) and b) our existence result is not limited to distributions

being absolutely symmetric; it extends to the neighborhood of each symmetric distribution.

Proposition 7 Φk contains all admissible distributions which are symmetric about their median and

all admissible distributions in a neighborhood of such distributions if and only if k ≥ 3.

Proof. We assume that F is symmetric about its median (F (x) = 1− F (1− x) for every x ∈ [0, 1])

and we show that: a) when k = 1 and when k = 2, it is possible that a BRE does not exist, b) when

k = 3, a BRE always exists and c) when k = 3, a symmetric two-location BRE also exists for every

F in a neighborhood of F .

If k = 1, then, according to the proof of proposition 6, there is no symmetric two-location BRE

when F is uniform. But since a uniform distribution is also a symmetric one, we have that there exist

symmetric admissible F s for which a symmetric two-location BRE does not exist when k = 1.

If k = 2, then, according to proposition 3, a symmetric two-location BRE exists only if there exists

ŷ < m such that ŷ = F−1(1
3
) and for every y ∈ (ŷ, 1 − ŷ) we have either 3

2
<

F ( ŷ+y
2

)

F ( 2m−ŷ+y
2

)−F ( ŷ+y
2

)
and

20The GEM property requires that as the subset [t, 1] of our society shrinks (that is, as t increases), its median, mt

(defined by F (mt) = 1+F (t)
2 ), increases slower than t. That is, GEM requires that ∂mt

∂t < 1 (GEM imposes symmetric
restrictions on the median of the subset [0, t] as well).
In our case, if t = 0 then mt = m < 1

2 and if t = m then mt > 2m, because F (2m) < 3
4 . In other words, t increased

by m while mt increased by strictly more than m, which suggests that there exists t for which GEM fails (∂mt

∂t > 1).
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1− F (2m−ŷ+y
2

) < F ( ŷ+y
2

) or 3
2
<

1−F ( 2m−ŷ+y
2

)

F ( 2m−ŷ+y
2

)−F ( ŷ+y
2

)
and 1− F (2m−ŷ+y

2
) ≥ F ( ŷ+y

2
). If F is such that for

some very small ε > 0 we have F (1
2

+ ε)− F (1
2
− ε) = 0.3 and 1

2
− ŷ > 2ε, then for y = 1

2
∈ (ŷ, 1− ŷ)

none of these conditions hold. This is so because, F (
2m−ŷ+ 1

2

2
) − F (

ŷ+ 1
2

2
) ≥ 0.3 and F (

ŷ+ 1
2

2
) ≤ 0.35.

Therefore, when k = 2, it is possible that a symmetric two-location BRE does not exist, even when

F is symmetric about its median.

To show that, if k ≥ 3, a symmetric two-location BRE always exists when F is symmetric about

its median, we first notice that condition B of proposition 3 always holds if F (2m − ŷ) − F (ŷ) <

max{F (ŷ) k
k+1

, [1 − F (2m − ŷ)] k
k+1
} ⇐⇒ F (ŷ) > 1+k

2+3k
.21 Condition A of proposition 3 suggests that

F (ŷ) = k
2k+2

. Hence, ŷ < m which satisfies both conditions is guaranteed to exist if k
2k+2

> 1+k
2+3k

. For

k positive, this last inequality is equivalent to k > 1 +
√

3, which is true for every k ≥ 3.

By the latter, it becomes straightforward that when F is symmetric about its median and k ≥ 3,

one may find ẏ < m such that 1+k
2+3k

< F (ẏ) < k
2k+2

. That is, if F is symmetric about its median,

then there exists a BRE with k + 1 active candidates at ẏ and k + 1 active candidates at 1 − ẏ,

where ẏ < m is such that condition B of proposition 2 holds with a strict inequality. Now consider an

admissible distribution F̃ with median m̃ such that F̃ (x) ∈ (F (x) − ε, F (x) + ε) for every x ∈ (0, 1)

and a suffi ciently small but strictly positive ε (that is, F̃ is a distribution in a neighborhood of this

symmetric F ) and a strategy profile with k + 1 active candidates at m̃ − (1
2
− ẏ) and k + 1 active

candidates at m̃ + (1
2
− ẏ). When ε → 0 we have that F̃ converges to F and that the two locations

of the posited strategy profile converge to (ẏ, 1 − ẏ). That is, for ε suffi ciently small all conditions

of proposition 2 hold and a symmetric two-location BRE is guaranteed to exist for every admissible

distribution in a neighborhood of a symmetric one.

This result distinguishes the one-vote rule (plurality) and the two-vote rule from all k-vote rules

with k ≥ 3 in the sense that the first two are not guaranteed to generate stability in electoral

competition, even when F is symmetric. We have to stress though that the failure of these two rules

is far from being identical in magnitude. Given a symmetric F : a) k = 1 need not admit a BRE when

F is log-concave and, perhaps more importantly, even if it admits an equilibrium for a symmetric

F , this existence does not extend to distributions in the neighborhood of F (see the discussion that

follows the proof of proposition 5), while b) k = 2 admits an equilibrium when F is log-concave

(actually, a BRE fails to exist only in very special cases - namely, when there is at least one region to

each side of the median that: i) has very little mass and ii) is surrounded by regions with very large

masses) and, when it admits an equilibrium for a symmetric F , it generically admits one for every

distribution in its neighborhood too.22

21This is so because condition B of proposition 3 can be written as 1 <
max{F ( ŷ+y2 ) k

k+1 ,[1−F (
2m−ŷ+y

2 )] k
k+1}

F ( 2m−ŷ+y
2 )−F ( ŷ+y2 )

and

because
max{F (ŷ) k

k+1 ,[1−F (2m−ŷ)]
k

k+1}
F (2m−ŷ)−F (ŷ) <

max{F ( ŷ+y2 ) k
k+1 ,[1−F (

2m−ŷ+y
2 )] k

k+1}
F ( 2m−ŷ+y

2 )−F ( ŷ+y2 )
for every y ∈ (ŷ, 2m − ŷ). Hence if 1 <

max{F (ŷ) k
k+1 ,[1−F (2m−ŷ)]

k
k+1}

F (2m−ŷ)−F (ŷ) , then condition B of proposition 3 must hold.
22This can be established by an argument similar to the one in the end of the proof of proposition 7.
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To better demonstrate the difference between the two-vote rule and the plurality rule, we consider

that F is a symmetric beta distribution with shape parameter β > 023 and by applying computational

methods (see figures 1a and 1b) we get that: a) when k = 1 a symmetric two-location BRE exists if

and only if β ∈ (0, β̂) where β̂ ≈ 0.3 (that is, when the society is very polarized) and b) when k = 2

a symmetric two-location BRE exists for every β > 0 (from proposition 7 it is straightforward that

when k ≥ 3 a symmetric two-location BRE exists for every β > 0).

[Insert figure 1 about here]

But how does the maximum number of votes that voters may cast and the distribution of their ideal

policies affect their welfare? Given that we have fully characterized the class of symmetric two-location

equilibria it should be possible to classify them according to some social welfare criterion. If we assume

that social welfare increases when the distance between the implemented policy (the platform of the

winner candidate) and the ideal policy of the median voter decreases,24 then, given our formal results,

a social welfare analysis is quite direct. For easier construction of the following arguments we define

social welfare from an implemented policy x as W (x) where W is strictly decreasing in |m − x| and
we consider that F is symmetric about its median and log-concave. By lemma 3 we know that in

every symmetric two-location equilibrium it is the case that all candidates locate equidistantly away

from the ideal policy of the median voter (half of the active candidates locate at y1 < m and the rest

of them locate at y2 = 2m− y1). Hence, there is no uncertainty about social welfare in each of these

equilibria: the smaller the m− y1, the larger the social welfare W (y1). By corollary 1 it follows that,

if for some k-vote rule an equilibrium with a active candidates exists such that a
2
locate at y1 < m and

the rest of them locate at y2 = 2m− y1, then an equilibrium with 2k+ 2 active candidates exists such

that k+ 1 locate at y1 < m and the rest of them locate at y2 = 2m− y1. Hence, an equilibrium which

delivers social welfare W (y1) exists if and only if: a) y1 ≤ F−1( k
2k+2

) (condition B of proposition 2

simplifies to this expression when F is symmetric and a = 2k + 2) and b) y1 > 2F−1( 1+k
2+3k

) − 1
2
.25

That is, social welfare under a k-vote rule is strictly larger than W (2F−1( 1+k
2+3k

) − 1
2
) and at most

23A shape parameter smaller than one corresponds to a bimodal symmetric beta distribution with modes at zero
and one, a shape parameter equal to one corresponds to a uniform distribution and a shape parameter larger than one
corresponds to a unimodal symmetric beta distribution with a mode at one half. We further note that a symmetric
beta distribution is log-concave if and only if the shape parameter is larger or equal to one (Bagnoli and Bergstrom
2005).
24This is the case, for example, when voters’payoffs are identically and linearly decreasing in the distance between

their ideal policies and the implemented one, and social welfare is defined as the unweighted sum of voters’payoffs.
25When F is symmetric and log-concave, then, for every y1 < m, F ( y

1+y
2 )

F ( 2m−y1+y
2 )−F ( y1+y2 )

is increasing at every y ∈

(y1, 2m− y1) and 1−F ( 2m−y1+y
2 )

F ( 2m−y1+y
2 )−F ( y1+y2 )

is decreasing at every y ∈ (y1, 2m− y1). That is, max{F (
y1+y
2 ),1−F ( 2m−y1+y

2 )}
F ( 2m−y1+y

2 )−F ( y1+y2 )
≥

F (
y1+ 1

2
2 )

1−2F ( y
1+ 1

2
2 )

for every y ∈ (y1, 2m − y1). This suggests that for these distributions and a = 2k + 2, condition C of

proposition 2 simplifies to 1 + 1
k <

F (
y1+ 1

2
2 )

1−2F ( y
1+ 1

2
2 )

, and may be rewritten as y1 > 2F−1( 1+k2+3k )− 1
2 .
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as large as W (F−1( k
2k+2

)). What we actually see is that by increasing k both the lower bound of

equilibrium social welfare decreases (W (2F−1( 1+(k+1)
2+3(k+1)

) − 1
2
) < W (2F−1( 1+k

2+3k
) − 1

2
)) and the upper

bound of equilibrium social welfare increases (W (F−1( (k+1)
2(k+1)+2

)) > W (F−1( k
2k+2

))). Hence, what we

find, is that giving more votes to voters, increases the variability of equilibrium extremism26 and

subsequently the variability of equilibrium social welfare.

Finally, we try to understand how social welfare relates to the distribution of voters’ideal policies

in these equilibria. The shaded areas of figures 2a, 2b and 2c show admissible values of y1 as a function

of the shape parameter, β, of a unimodal symmetric beta distribution for k = 3, k = 5 and k = 10

respectively (the larger the value of β, the larger the density of the distribution about the centre of

the policy space). As we see, societies composed of like-minded voters (β large) enjoy policies that

are on average nearer to the ideal policy of the median voter compared to more polarized societies (β

small) and, hence, social welfare seems to react to changes in the distribution of voters’ideal policies

in an intuitive manner.

[Insert figure 2 about here]

3.3 Other equilibria

We have analyzed in depth symmetric two-location equilibria under every k-vote rule and we have

developed arguments that show that unlike the plurality rule, k-vote rules with k ≥ 2 may lead

to stability in electoral competition for a non-degenerate class of cases. We need now to explore

possibility of other kinds of equilibria, in order to be sure that this identified advantage of k-vote rules

with k ≥ 2 compared to the plurality rule, extends to all possible configurations. One can follow steps

similar to the ones we followed above and fully characterize all symmetric27 r-location equilibria of

the game with r ≥ 3 under any k-vote rule. Actually one can even show that the set of admissible

F s for which a k-vote rule admits a symmetric r-location equilibrium with r ≥ 3 is non-degenerate if

and only if k ≥ 2.

Regarding asymmetric equilibria (equilibria such that there are at least two occupied locations with

unequal number of active candidates), one can trivially adapt arguments presented above and show

that the set of admissible F s for which the plurality rule admits an asymmetric r-location equilibrium,

with r ≥ 2 and a active candidates, cannot be non-degenerate for any r ≥ 2 and a ≥ 1 (Osborne

1993). One can further show that for k-vote rules, with k large, asymmetric two-location equilibria

are guaranteed to exist for non-degenerate sets of voters’distributions.

In the Appendix we provide a complete characterization of all these equilibrium classes (symmetric

equilibria with at least three occupied locations and asymmetric equilibria with at least two occupied
26See Dellis (2009) for a treatment of this question in the framework of the citizen-candidate model.
27Again, symmetric in the sense that n(y1) = n(y2) = ... = n(yr).
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locations) for every k-vote rule, and we provide formal arguments in support of the claims made

above. One needs to stress here though, that despite the possibility of equilibria with many occupied

locations and/or asymmetric number of active candidates in each occupied location, symmetric two-

location equilibria are the ones that face the fewest possible coordination issues28 and the ones which

exist under the simplest possible set of conditions, and under this perspective they represent the most

likely players’behavior.

4 Extensions/Concluding remarks

4.1 Uncertainty about voters’preferences

Let us now extend the model by allowing potential candidates to be uncertain about voters’prefer-

ences. In specific we will assume that potential candidates believe that the real distribution of voters,

F̃ (x), belongs to

S(F1, F2) = {F̄ : [0, 1]→ [0, 1]|F̄ (x) = (1− γ)F1(x) + γF2(x) for γ ∈ [0, 1]} ⊂ Φ

where F1 and F2 are two admissible distributions such that F1(x) < F2(x) for every x ∈ (0, 1).

Each candidate believes that the real distribution, F̃ (x), belongs to S(F1, F2) and it is such that

F̃ (x) ≤ (1 − γ)F1(x) + γF2(x) for every x ∈ [0, 1] and some fixed γ ∈ [0, 1] with probability equal

to G(γ), where G is a continuous and strictly increasing distribution on [0, 1] with G(0) = 0.29 Now

define γm such that G(γm) = 1
2
and m̂ such that (1− γm)F1(m̂) + γmF2(m̂) = 1

2
; the probability with

which the median of the real distribution is to the left (right) of m̂ is equal to 1
2
. Without introducing

unnecessary formalities we note that now candidates are uncertain about their exact vote-masses given

a strategy profile, and hence computation of win probabilities becomes significantly more complex.

Everything else about our model remains unchanged (voters’behavior, candidates’objectives, etc.).

Proposition 8 Consider a k-vote rule with k ≥ 2 and an admissible distribution F with median

m such that, under perfect information, a symmetric two-location BRE exists with 2k + 2 active

candidates and max{F (y1), 1 − F (2m − y1)} < k
2k+2

. Then there exists ε̂ > 0 such that, for every

ε ∈ (0, ε̂), the incomplete information game admits a symmetric two-location BRE for every admissible

S(F1, F2) ⊂ {F̄ : [0, 1]→ [0, 1]|F̄ (x) ∈ (F (x)− ε, F (x) + ε) for every x ∈ (0, 1)} and G(γ).

28The less coordination an equilibrium requires, the more likely it should be that players will play according to it. In
our framework it is straightforward that, from all possible equilibrium configurations, symmetric two-location equilibria
are the least demanding as far as players’coordination is concerned.
29In order to model "continuous" uncertainty we have employed a parametric specification (γ) in line with Roemer

(1994).
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Proof. The assumption with which we open the statement of the proposition just requires that

the existence of a symmetric two-location BRE is not cut-edge for the considered F and k when

the information that potential candidates have about voters’preferences is perfect (obviously, it is

never satisfied when k = 1 for any F , since in a symmetric two-location BRE of the plurality rule

we must have F (y1) = 1
4
). Assume that there is incomplete information about voters’preferences

given by S(F1, F2) ⊂ {F̄ : [0, 1] → [0, 1]|F̄ (x) ∈ (F (x) − ε, F (x) + ε) for every x ∈ (0, 1)} and
G(γ), that k + 1 candidates are located at m̂ − (m − y1) and that k + 1 candidates are located

at m̂ + (m − y1).30 Notice that if ε > 0 is small enough, then the probability with which each

active candidate wins is 1
2k+2

because: a) with probability 1
2
the true median is to the left of m̂ and

hence one of the k + 1 active candidates located at m̂ − (m − y1) will win with probability 1
k+1

and

each of the k + 1 candidates located at m̂ + (m − y1) will win with probability zero and b) with

probability 1
2
the true median is to the right of m̂ and hence one of the k + 1 active candidates

located at m̂ + (m − y1) will win with probability 1
k+1

and each of the k + 1 candidates located at

m̂ − (m − y1) will win with probability zero. Moreover, observe that if ε > 0 is small enough no

player has incentives to deviate from Out: a) to any y ∈ [0, m̂ − (m − y1)) (y ∈ (m̂ + (m − y1), 1])

since her vote-mass will be at most as large as F2(m̂− (m− y1)) (1− F1(m̂− (m− y1))) and hence

strictly smaller than the smallest possible vote-mass of each active candidate located at m̂+ (m− y1)

(m̂ − (m − y1)), because limε→0 F2(m̂ − (m − y1)) = F (y1) < k
2k+2

= limε→0[1 − F2(m̂)] k
k+1
, b)

to any y ∈ (m̂ − (m − y1), m̂ + (m − y1)) as her vote-mass will be with probability one strictly

smaller than the vote-mass either of each active candidate located at m̂+ (m− y1) or of each active

candidate located at m̂−(m−y1) (or both), because 2kmax{limε→0 F1(
m̂−(m−y1)+y

2
),1−limε→0 F2(

m̂+(m−y1)+y
2

)}

limε→0[F2(
m̂+(m−y1)+y

2
)−F1(

m̂−(m−y1)+y
2

)]
=

2kmax{F ( y
1+y
2

),1−F ( 2m−y
1+y

2
)}

F ( 2m−y
1+y

2
)−F ( y

1+y
2

)
> 2k+2 for every y ∈ (m̂−(m−y1), m̂+(m−y1)), and c) to y = m̂−(m−y1)

(y = m̂+(m−y1)) since her vote-mass will be with probability one strictly smaller than the vote-mass

of each active candidate located at m̂+(m−y1) (m̂− (m−y1)). Similar arguments rule out deviation

of any of the 2k + 2 active candidates to other locations when ε > 0 is suffi ciently small. That is,

there exists ε̂ > 0 such that for every ε ∈ (0, ε̂) this incomplete information game admits a symmetric

two-location BRE for every admissible S(F1, F2) ⊂ {F̄ : [0, 1]→ [0, 1]|F̄ (x) ∈ (F (x)− ε, F (x) + ε) for

every x ∈ (0, 1)} and G(γ).

This result has non-negligible implications as far as robustness of the identified equilibria is con-

cerned: unlike runoff rules whose equilibria collapse once we consider such continuous uncertainty

about the exact distribution of voters’preferences (Matsushima 2007; Brusco et al.2012), the equi-

libria of k-vote rules survive in such a more realistic environment. Hence, if existence of equilibria is

desirable and moreover we value equilibria that are robust to noise, then, at least in the framework of

the Hotelling-Downs model, k-vote rules with k ≥ 2 are found to outperform both the plurality and

the runoff rule.
30If ε > 0 is suffi ciently small, then both m̂− (m− y1) and m̂+ (m− y1) are guaranteed to belong to (0, 1).
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4.2 M -winner elections

In reality, most of the times when voters are allowed to vote for more than one candidate, it is the

case that there is more than one offi ce at stake. In the so-called open-list systems with panachage

or a unique candidates’list, voters are allowed to vote for up to k candidates and the M most voted

candidates get elected in a council/parliament. In most of these systems, voters have as many votes

as the offi ces at stake (k = M).31 This observation, naturally, leads to the following question: Is our

analysis relevant to such M -winner elections?

In the symmetric two-location equilibria that we fully characterized in this paper, at least 2k + 2

candidates enter a race for a single offi ce. As we have shown, all individual deviations were unprofitable

for any of our players as: a) players which play Out in an equilibrium strategy profile, when they

deviate to entry at any location, always get a vote-mass strictly smaller than the vote-mass of the

k + 1 most voted candidates; and b) players which play y1 (y2) in an equilibrium strategy profile,

when they deviate to any other strategy, always get a vote-mass strictly smaller than the vote-mass

of the k most voted candidates. That is, any player who deviates finds herself having a vote-mass

strictly smaller than the vote-mass of the k-th most voted candidate. This means that the described

strategy profiles are also equilibria of M -winner elections with M ≤ k.32 So if we considered exactly

the same model with the only difference that the M ≥ 1 most voted candidates get elected and let all

the other assumptions intact (voters’behavior, candidates’preferences etc.), we would get that the

symmetric two-location equilibria of the one-offi ce game that we characterized are equilibria of this

extended game too, as long as M ≤ k.

This observation, arguably, generalizes the empirical relevance of our analysis and offers alternative

readings to our stability results. For instance, one may say that if the electoral rule constrains us to

vote for as many candidates as the number of offi ces at stake (that is, if the constitution establishes

an open-list system), then an increase in the number of offi ces at stake (for example, an increase in

the size of the council/parliament) should also increase the prospects of stable outcomes in electoral

competition (proposition 4). Namely, in the framework of such systems, stable outcomes should

be more frequently encountered when candidates compete for many seats rather than for only a

few. Finally, one could add that systems that permit voters to vote for up to k ≥ M candidates,

endogenously lead to the emergence of candidates’ clusters and hence to endogenous formation of

political parties.

31For example, such rules are used in several Swiss cantons, including Zurich, in Luxemburg and in German local
elections.
32We consider that an active candidate has positive probability of election if and only if the number of candidates

with a vote-mass strictly larger than hers is smaller than M .
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5 Appendix

5.1 Symmetric r-location equilibria

Here we explore the possibility of equilibria such that more than two locations are occupied. We

focus on symmetric r-location equilibria (n(yi) = a
r
for every i ∈ {1, 2, ..., r}) with r ≥ 3. Transition

from two-location strategy profiles to profiles with many occupied locations naturally brings along

complications in many parts of the analysis but, surprisingly, it also simplifies some specific issues.

For example, when we are in a two-location profile and we consider a deviation of a player from Out

to some location in between the two occupied ones, it is obvious that the vote-masses of all active

candidates will be affected. In case we are in an r-location profile, though, with r ≥ 3, a deviation of

a player from Out to any location need not affect the vote-masses of all active candidates. This is so

because when each occupied position is shared by at least k + 1 candidates, each occupied location

acts as a bulkhead which isolates adjacent constituencies: if there are at least k + 1 candidates at

each occupied location and a player enters at y ∈ [yi, yi+1], then it is impossible that this will affect

voting behavior of voters with ideal policies to the right of y
i+1+yi+2

2
(to the left of y

i+yi−1

2
) and, hence,

vote-masses of players located at yi+2 (yi−1) cannot be affected.

First, we will show that like in the two-location equilibria case, the number of active candidates in

an r-location equilibrium is also bounded from above and from below. Then we will fully characterize

the set of symmetric r-location equilibria for every admissible F and every k-vote rule and, finally we

will show that the set admissible distributions for which a k-vote rule with k ≥ 2 admits a symmetric

r-location equilibrium is non-degenerate for every r ≥ 3. Given that to establish these results one
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essentially has to repeat many arguments already presented in the proofs of the two-location case, we

only highlight here the necessary steps that do not directly follow from our previous analysis.

Lemma 4 Every symmetric r-location BRE must be such that: a) yi+yi+1

2
= F−1( i

r
) for every i ∈

{1, 2, ..., r − 1} and b) a ∈ [rk + r, 2rk].

Proof. The argument that supports the second part of this lemma is identical to the argument used

to support its r = 2 version in lemma 3: if n(y1) ≤ k and voters vote for all their n(y1) top-ranked

candidates then a candidate located at y1 strictly increases her vote-mass by moving towards y2 while

at the same time the vote-masses of all other active candidates either decrease or remain unaffected.

Thus, in a symmetric r-location BRE it has to be the case that n(y1) ≥ k+1 =⇒ a ≥ rk+r. Moreover,

if a ≥ rk + r then in every symmetric r-location BRE it has to be the case that each constituency is

equal to 1
r
. That is, we have for example F (y

1+y2

2
) = 1

r
and F (y

2+y3

2
)−F (y

1+y2

2
) = 1

r
=⇒ F (y

2+y3

2
) = 2

r
,

and in general F (y
i+yi+1

2
) = i

r
=⇒ yi+yi+1

2
= F−1( i

r
). Finally, if a ≥ rk + r, then it also has to be the

case that k
a
≥ 1

2
× 1

r
=⇒ a ≤ 2rk. This is so because in a symmetric r-location BRE a non-entrant

can always deviate from Out to a location that gives her a vote-mass arbitrarily close to 1
2
× 1

r
, and

in such a case at least some of the active candidates will continue to receive a vote-mass equal to k
a
.

Hence for such a deviation not to be profitable the presented inequality has to hold.

Proposition 9 When the ideal policies of the society are distributed according to F and voting takes

place according to a k-vote rule, a symmetric r-location BRE with a
r
players located at yi for every

i ∈ {1, 2, ..., r} and r ≥ 3, exists if and only if: A) yi+yi+1

2
= F−1( i

r
) for every i ∈ {1, 2, ..., r − 1},

B) max{F (y1), 1 − F (yr)} ≤ k
a
and C) for every y ∈ (yi, yi+1), where i ∈ {1, 2, ..., r − 1}, we have

rk + r ≤ a < k

F ( y
i+1+y
2

)−F ( y
i+y
2

)
.

Proof. To prove this proposition one can follow very similar steps to the ones in the proof of propo-

sition 2: first, by assuming that players use such a strategy profile, we can show that any deviation

of any player is unprofitable (this establishes that the three conditions of the present proposition are

suffi cient for equilibrium existence) and then, given that condition A and the first part of condition C

have already been proved to be necessary conditions by lemma 4, we can argue that condition B and

the second part of condition C are equivalently necessary for existence of an equilibrium. The only

difference compared to the two-location case is that when players play according to the posited profile

and a player deviates from Out to any y, there is at least one active candidate who receives a vote-mass

equal to k
a
and no active candidate who receives more than that. Hence, the vote-mass of the player

who deviates from Out to any y - which is: a) equal to F (y
i+1+y

2
) − F (y

i+y
2

) for every y ∈ (yi, yi+1),

where i ∈ {1, 2, ..., r − 1}, b) equal to F (y
1+y
2

) for every y ∈ [0, y1), c) equal to 1− F (y
r+y
2

) for every

y ∈ (yr, 1] and d) equal to 1
r
× k

a
r

+1
= k

a+r
for every y ∈ {y1, y2, ..., yr} - must be strictly less than k

a
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for the posited profile to be a BRE and this leads to condition C which is significantly simpler than

the corresponding condition of the two-location case.

For the statement of the next result we need to define Φr
k as the set of admissible distributions for

which a symmetric r-location BRE exists when voting takes place under a k-vote rule.

Proposition 10 Φr
k is non-degenerate if and only if r ≥ 2 and k ≥ 2.

Proof. From proposition 5 we know that Φ2
k is non-degenerate if and only if k ≥ 2. Hence, here we

focus on Φr
k for r ≥ 3. To understand why Φr

1 cannot be non-degenerate for any r ≥ 3 we first note that

in a BRE it has to be the case that a = 2r (by lemma 4) and F (y1) = 1−F (yr) = k
a

= 1
2r
- otherwise

one of the two active candidates at y1 (yr) would have incentives to move marginally to the left or to

the right and win with certainty. Therefore, if Φr
1 is non-degenerate for some r ≥ 3, it should contain at

least two admissible distribution functions F1 and F2 such that F1(x) < F2(x) for every x ∈ (0, 1). We

denote y1,F1 = F−1
1 ( 1

2r
) and yi,F1 = 2F−1

1 ( i−1
r

)−yi−1,F1 for every i ∈ {2, ..., r}, and y1,F2 = F−1
2 ( 1

2r
) and

yi,F2 = 2F−1
2 ( i−1

r
)−yi−1,F2 for every i ∈ {2, ..., r}. Moreover, Φr

1 should contain at least one admissible

distribution, Ḟ , such that Ḟ (x) = F1(x) for every x ∈ [0, y
r,F1+yr−1,F1

2
] and Ḟ (x) = F2(x) for every

x ∈ [yr,F2 , 1].33 But this suggests that y1,Ḟ = Ḟ−1( 1
2r

) = y1,F1 and yi,Ḟ = 2Ḟ−1( i−1
r

)−yi−1,Ḟ = yi,F1 for

every i ∈ {2, ..., r}, and, thus, that 1− Ḟ (yr,Ḟ ) = 1−F2(yr,F1) < 1
2r
. Therefore, there is no symmetric

r-location BRE with r ≥ 3 for such an Ḟ and therefore Φr
1 cannot be non-degenerate.

To show that Φr
k is non-degenerate for any r ≥ 3 and k ≥ 2 we consider that k+1 candidates share

each of the r occupied locations, that y1 = 1
2r
, that yi+1 = 2F−1( i

r
)− yi for every i ∈ {1, 2, ..., r − 1}

and that F (x) ∈ (x − ε, x + ε) for some positive ε. We notice that limε→0 max{F (y1), 1 − F (yr)} =
1
2r
< 2

3r
≤ k

rk+r
when k ≥ 2 and that limε→0[F (y

i+1+y
2

) − F (y
i+y
2

)] = 1
2r
< 2

3r
≤ k

rk+r
when k ≥ 2.

That is, for every k ≥ 2 a symmetric r-location BRE with r ≥ 3 is guaranteed to exist when the

distribution of ideal policies is suffi ciently uniform. The argument that takes us from this observation

to the conclusion that Φr
k is non-degenerate when r ≥ 3 and k ≥ 2 is identical to the one in the proof

of proposition 5.

5.2 Asymmetric equilibria

Finally, we generalize our characterization results in order to take in account asymmetric equilibrium

configurations as well - that is, equilibria such that the number of active candidates in each occupied

location is not necessarily identical. Given that the arguments that support these characterization

results are essentially simple adaptations of arguments presented in propositions 2 and 9, we skip the

33Notice that if Φr1 is non-degenerate for some r ≥ 3 then it should contain F1 and F2 such that F1(x) < F2(x) for

every x ∈ (0, 1) and yr,F1+yr−1,F1

2 < yr,F2 .
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proofs and only discuss some of their features that deserve our attention. We start by describing all

two-location equilibria of the game.

Proposition 11 When the ideal policies of the society are distributed according to F and voting

takes place according to a k-vote rule, a two-location BRE with n(y1) active candidates at y1 and

n(y2) active candidates at y2 (n(y1) + n(y2) = a) exists if and only if: A) y1+y2

2
= F−1(n(y1)

a
) and

min{n(y1), n(y2)} ≥ k + 1, B) max{F (y1), 1 − F (y2)} ≤ k
a
and C) for every y ∈ (y1, y2) we have

F (y
2+y
2

)− F (y
1+y
2

) < max{F (y
1+y
2

) k
n(y1)

, [1− F (y
2+y
2

)] k
n(y2)
}.

For k small, existence of asymmetric two-location equilibria is very hard when distribution of ideal

policies is suffi ciently symmetric. Consider, for example, that F is uniform and that a = n(y1)+n(y2)

players enter the race, with n(y1) < n(y2). If this is a BRE then it should be the case that: a)
y1+y2

2
k

n(y1)
= (1 − y1+y2

2
) k
n(y2)

= k
a
because otherwise not all entrants would have a positive election

probability, b) k
a
≥ max{y1, 1− y2, y

2−y1
2
} because otherwise a player could deviate from Out to some

y ∈ [0, 1] and win with probability one (this is a necessary, not a suffi cient, condition for the posited

profile to be an equilibrium) and c) n(y1) ≥ k + 1 because otherwise (n(y1) ≤ k) if voters use all

the votes in their disposal (full-voting) a player located at y1 could deviate to the right and strictly

increase her vote-mass and win with certainty. These conditions do not hold at the same time, for

example, for k = 2, 3, 4 and, hence, when F is uniform (or nearly uniform) and the number of votes

at voters’disposal is small, no asymmetric two-location equilibrium exists.

When k is large, though, an asymmetric equilibrium is guaranteed to exist for a non-degenerate set

of voters’distributions. Consider, for example, that F is nearly uniform and that 2k + 3 candidates

enter the race (k + 1 locate at y1 = 0.4 and k + 2 locate at y2 with F (y
1+y2

2
) = 1+k

3+2k
). Then if k is

suffi ciently large (in specific, if k ≥ 12): a) each active candidate receives a vote-mass equal to k
2k+3

and, hence, each is elected with equal probability, b) no candidate has incentives to deviate from Out

to any y ∈ [0, 1] and c) no active candidate has any incentive to deviate to any other location.

Finally, we characterize all r-location equilibria for every k-vote rule with k ≥ 2. For economy of

space, one is referred to Osborne (1993) for the k = 1 case.

Proposition 12 When the ideal policies of the society are distributed according to F and voting takes

place according to a k-vote rule with k ≥ 2, an r-location BRE with n(yi) players located at yi, for

i ∈ {1, 2, ..., r} and r ≥ 3 (
∑r

i=1 n(yi) = a), exists if and only if: A) yi+yi+1

2
= F−1(

∑i
k=1 n(yk)

a
) for

every i ∈ {1, 2, ..., r− 1} and min{n(y1), n(y2), ..., n(yr)} ≥ k+ 1, B) max{F (y1), 1−F (yr)} ≤ k
a
and

C) for every y ∈ (yi, yi+1), where i ∈ {1, 2, ..., r − 1}, we have F (y
i+1+y

2
)− F (y

i+y
2

) < k
a
.

Here the only thing that deserves some attention is why n(yi) ≥ k + 1 for every i ∈ {2, ..., r − 1}.
In previous proofs we only needed to show that in a BRE min{n(y1), n(yr)} ≥ k+1 and the argument
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was straightforward. If, for example, n(y1) ≤ k and voters use all their k votes (full-voting) then

an active candidate located at y1 has incentives to move marginally to the right as such a motion

unambiguously increases her vote-mass. But why should it be the case that n(yi) ≥ k + 1 for every

i ∈ {2, ..., r − 1} when k ≥ 2?

As we know in every BRE we must have n(y1) ≥ k+1. Consider that, for some k ≥ 2, there exists

a BRE such that n(y2) ∈ {2, ..., k} and that voters behave in the following way: they always vote for
their top-ranked candidate(s) and, in case they have some spare votes, they vote for the candidate

who offers the third most-leftist platform as long as she is distinctly-positioned (that is, as long as

she does not share her position with anybody else).34 If we are in equilibrium it must be the case

that all candidates get the same vote-mass. If a candidate located at y2 deviates to y3 − ε then: a)
her vote-mass strictly increases (she is voted at least by those voters who were voting for her when

she was at y2 and by the voters with ideal policies between y2+y3

2
and y3 − ε

2
) and b) the vote-mass

of each of the other active candidates either remains unchanged or decreases. This is so, because all

other candidates are voted only by voters who rank them first. That is, there can be no BRE with

n(y2) ∈ {2, ..., k} when k ≥ 2.

Now consider that, for some k ≥ 2, there exists a BRE such that n(y2) = 1 and that voters behave

in the following way: they always vote for their top-ranked candidate(s) and, in case the have some

spare votes, they vote for the candidate who offers the second most-leftist platform as long as she

is distinctly-positioned. Since in a BRE every candidate receives exactly the same vote-mass, these

assumptions suggest that n(yi) ≥ k for every i 6= 2. If this were not true, a candidate located at

yi 6= y2 would be voted only by the constituency of yi while the candidate located at y2 would be

voted both by the constituency of y2 and by the constituency of yi. This suggests that in a BRE with

n(y2) = 1 the candidate located at y2 would be voted only her constituency and, hence, the vote-mass

of each active candidate should be equal to the constituency of y2. But since k ≥ 2, a player could

deviate from Out to y2 and get voted by all the constituency of y2 without affecting the vote-masses

of all other active candidates. That is, a player deviating from Out to y2 would get a positive election

probability and, subsequently, no BRE with n(y2) = 1 may exist when k ≥ 2.

Summing up all the above, we conclude that in a BRE it must be the case that n(y2) ≥ k + 1.

Applying similar arguments we can establish that in a BRE it must be the case that every occupied

location is shared by at least k + 1 candidates.

34This voting behavior might not be the most intuitive one but it is consistent with minimal sincerity.
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a) k=1 

 
b) k=2 

 

Figure 1. Locations for which condition B of proposition 3 holds (shaded area) as a function of the shape 
parameter, β, of a symmetric beta distribution when k=1 and k=2 (the black curves represent 𝑦� and 2𝑚 −
𝑦�). 

 

 

 
a) k=3 

 
b) k=5 

 
c) k=10 

 

Figure 2. Admissible values of 𝑦1 (shaded area) as a function of the shape parameter, β, of a unimodal 
symmetric beta distribution when k=3, k=5 and k=10 respectively. 


	2015-09
	Many2015
	many30102015-revision2
	graphs-many sept 2015


