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estimate and price credit risk. The focus of the paper is on a neglected issue pertaining to
fundamental shifts in the structural parameters governing default. We propose formal quality
control procedures that allow risk managers to monitor fundamental shifts in the structural
parameters of credit risk models. The procedures are sequential - hence apply in real time. The
basic ingredients are the key processes used in credit risk analysis, such as most prominently
the Merton distance to default process as well as financial returns. Moreover, while we propose
different monitoring processes, we also show that one particular process is optimal in terms
of minimal detection time of a break in the drift process and relates to the Radon-Nikodym

derivative for a change of measure.
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1 Introduction

One of the many areas Charles Nelson’s research touched is that on structural change, including

the recent paper on structural breaks in the equity premium (Chang-Jin et al., 2005). This paper

indirectly relates to this topic, in as far as expected returns (and potential breaks) are an input to

structural credit risk models. Over the last four decades, a large number of structural models have

been developed to estimate and price credit risk.1 The accuracy of credit risk models is essential for

sound risk management and for supervisory evaluation of the vulnerability of lender institutions.

In particular, the new capital adequacy framework (Basel II) encourages the active involvement of

banks in measuring the likelihood of defaults.

The focus of the paper is on structural models of credit risk and the study of a neglected issue of

structural breaks pertaining to such models. To set the stage, let us first review the key ingredients.

The main ideas underlying many of the models go back to Black-Scholes (1973) and Merton (1974).

Corporate liabilities (equity and debt) are viewed as contingent claims on the assets of the firms. A

firm’s fixed liabilities constitute a barrier for the value of its assets. Then default is characterized

as a boundary crossing problem. Namely, if assets drop below that barrier, the firm is unable to

support its debt and therefore defaults.2 While conceptually simple, there are a lot of variations

practitioners often use on the basic framework of Merton (1974) to assess credit risk. There are five

basic inputs: (1) a fundamental state variable, typically the market value of firm’s assets which is

assumed to move randomly through time with a specified expected return and volatility, (2) debt,

(3) interest rates, (4) a default boundary beneath and (5) a recovery ratio which postulates what

debt holders receive in the event of default. Hence, to make the model operational we have to

pick certain parameters, namely expected return - or drift in a diffusion setting - and volatility -

presumed constant in the Black-Scholes (BS) environment. The model produces a very commonly

used measure, called distance to default (and an associated default probability).

It is a simplification to assume that structural parameters remain fixed. In fact, the expected

return on assets clearly depend on the financial health of a firm. Moreover, while there is no

obvious corporate finance theory underlying the Black-Scholes-Merton (BSM) type models it is

clear from the few continuous time corporate finance models that managers ‘control’ the drift of

asset returns, see e.g. Ou-Yang (2003) for a recent outstanding example. Structural shifts affect

credit risk and this is the topic of our paper. When one examines distance to default in a BSM type

model one realizes that there are two sources of variation in distance to default: (1) the random

1 For a review of structural credit risk models see for instance, Duffie and Singleton (2003), Eom, Helwege and
Huang (2004), among others.

2There are some nuances on this. For example in Merton’s model, a firm defaults if, at the time of servicing the
debt, its assets are below its outstanding debt. A second approach, within the structural framework, was introduced
by Black and Cox (1976). In this approach defaults occur as soon as firm’s asset value falls below a certain threshold.
In contrast to the Merton approach, default can occur at any time.
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movements of the asset value, and (2) the potential shifts in the structural parameters. If one

ignores parameter shifts then this may lead to biased inferences on credit default and investment

misallocation decisions. It is the purpose of our analysis to design tests that monitor structural

parameter variation.

To the best of our knowledge there are no formal procedures that allow risk managers to monitor

for fundamental shifts in the structural parameters of credit risk models. Empirical evidence shows

that there are structural breaks in financial markets which affect fundamental financial indicators

such as, for instance, financial returns and volatility (e.g. Lamourex and Lastrapes, 1990, Andreou

and Ghysels, 2006, Horvath et al., 2006), the shape of the option smile (Bates, 2000) and the

equity premium (Pastor and Stambaugh, 2001, Chang-Jin et al., 2005). Our aim is to propose

sequential methods for testing structural stability in credit risk models and default measures. This

can be especially useful to risk managers and investment analysts in periods of financial distress for

monitoring in real-time the stability of corporations. The basic ingredients are the key processes

used in credit risk analysis, such as most prominently the Merton distance to default process

and obviously financial returns. In addition, the procedures we propose are easy to compute and

therefore can be implemented on-line for potentially a large class of assets. Moreover, while we

propose different monitoring processes, we also show that one particular process is ‘optimal’, using

results of Moustakides (2004), where optimal refers to the minimal detection time of a break in

the drift process. The optimal process relates to the Radon-Nikodym derivative for a change of

measure. The optimality of the Radon-Nikodym derivative is rather fortunate, since it is a quantity

very much familiar to risk managers, as it is so prominent in the option pricing literature - although

its application will be in a new and different context here. Besides proposing various monitoring

procedures and studying their theoretical properties, we also show via simulation that the proposed

procedures have good finite sample behavior which can be used for the quality control of credit

risk models. This is related to the broader issue of quality control in financial risk management

(Andreou and Ghysels, 2006).

The rest of the paper is organized as follows. In section 2 we present BSM type structural models

of credit risk and several extensions. In section 3 we introduce various monitoring processes and

discuss their properties. Section 4 reports Monte Carlo simulation evidence on the performance of

the various tests. The last section concludes the paper.

2 Structural Models: Merton and beyond

There are two broad approaches to describe a firm’s default process in the credit risk literature. The

structural approach makes explicit assumptions about the dynamics of a firm’s assets, its capital

structure and its debt and share holders. A firm defaults if its assets are insufficient according to

3



some measure/threshold. In the reduced form approach there is no relationship between default

and say the firm value. Instead there is a less detailed information set (akin to that observed by

the market) and dynamics of default are exogenously determined via a default rate or intensity by

a jump process. Consequently in a structural credit risk model default is endogenously generated

whereas it is exogenously given in a reduced form model. Moreover while reduced form models

exogenously specify recovery rates, structural models determine recovery rates in terms of the value

of the firm’s assets and liabilities at default. However the fundamental difference between these

models is not in terms of the characterization of the default time but in terms of the information set

available to the modeler. Moreover given that any structural model is only partially structural in the

sense that it makes specific assumptions about certain attributes of the credit risk, the distinction

between the structural and the reduced-form models can be thought of one of degree rather than

existence. A further review of these approaches can be found in Duffie and Singleton (2003) and

Eom et al (2004) inter alia. In the remainder of the paper we focus on so called structural models

- yet our analysis of quality control could easily be extended to reduced form models.

The first structural model for assessing credit risk, typically of a corporation’s debt, dates back

to Black and Scholes (1973) and Merton (1974). It is also sometimes called the BSM type model.

A popular implementation of the model is the commercial KMV model used by Moody’s (Crosbie

and Bohn, 2001) as well as academics (e.g. Vassalou and Xing, 2004).

Once a model is specified, its unknown parameters may be calibrated to observed data. The direct

approach requires that one collects detailed information on an obligor’s balance sheet in order

to estimate its fixed liabilities, which are generally assumed to be non-stochastic. The obligor’s

capacity to carry these liabilities depends on the market value of its assets, which cannot be directly

observed. However, by treating equity as a put option on underlying assets, one can use observed

equity prices and volatility to recover the current value and volatility of the obligor’s assets.3 This

procedure depends strongly on the assumed distribution for the asset return process. In practice,

log-normality is nearly always imposed - since the basic foundations are the BS option pricing

model. In this section, we present the original Merton model, based on log-normality, followed by

a stochastic volatility extension based on the Heston (1993). A first subsection 2.1 is devoted to a

short review of the Merton model. Subsection 2.2 introduces a class of monitoring processes that

will play a key role in our analysis. Subsection 2.3 looks at extensions of the basic Merton model.

3Practitioners sometimes also use an indirect approach, where one starts with agency ratings of the type issued
by S&P and Moody’s. An obligor’s current rating is taken to be a sufficient statistic for some structural measure of
its credit quality. In credit risk management applications, it is generally assumed that firms in the same rating grade
share the same distance to default (defined later). By examining historical patterns of default for each rating grade,
one can estimate unknown parameters of the return distribution process as well as the distance to default associated
with each grade. In this paper we will rather assume that parameters are estimated directly, which is more closely
related to the ‘econometric’ approach - the focus of our paper.
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2.1 Default Probabilities and Distance to Default

The purpose of this subsection is to provide a brief review of the Merton (1974) model. It is

assumed that the market value of the firm’s assets (VA(t)) follows a geometric Brownian motion

(GBM), dropping time indices for simplicity:

dVA = μVAVAdt+ σVAVAdW (2.1)

where μVA is the expected return on VA(t) and σVA is the instantaneous volatility of VA(t) and

W (t) is a standard Wiener process. Furthermore, if we assume that the firm has only one class

of debt that pays no coupon with face value F and maturity TM , the market value of the equity,

VE can be thought as a call option with maturity TM , strike price F and underlying asset VA(t).

Consequently the option pricing formula by Black and Scholes (1973) can be used to derive the

value of the option i.e.

VE = VAN(d1)− Fe−rTMN(d2)

where r is the risk-free rate of interest and N(.) is the cumulative standard normal distribution

and d1 and d2 are the usual expressions derived for the BS model. Under the assumptions of the

Merton model, Itô’s lemma yields the following relation between the volatility of equity value, σVE ,

and the asset volatility, σVA ,

σVE =
VA
VE

∂VE
∂VA

σVA .

Since ∂VE/∂VA = N(d1) in the BS model, it follows for the Merton model that

σVE =
VA
VE

N(d1)σVA . (2.2)

which is referred to in the literature as the optimal hedge equation.

Consequently the nonlinear equations (2.1) and (2.2) can be solved simultaneously in order to obtain

values for the unobserved asset value VA(t) and asset volatility σVA using data on the equity value,

equity volatility, the risk-free rate, time to maturity and the strike price as inputs. Subsequently

the distance to default (DD) can be calculated as (setting TM = 1):

DD =
ln(VA/F ) + (μVA −

1
2σ
2
VA
)

σVA
(2.3)

where default occurs if the face value of the debt exceeds the value of the assets. Intuitively the

distance to default indicates how many standard deviations a firm is away from default given its

net worth. We can think of the distance to default as a measure of an obligor’s leverage relative

to the volatility of its asset values. As the value an obligor’s assets changes over time, its distance

5



to default changes as well. If assets fall below the value of fixed liabilities the distance to default

drops below zero, and the obligor becomes insolvent. Given assumptions about the asset return

process, an obligor’s distance to default is all that is needed to determine its default probability at

a fixed horizon date.

2.2 Towards an optimal monitoring process: The Radon-Nikodym derivative

The above analysis assumes that there are no structural changes in (2.1) i.e. μVA and σVA are

time homogeneous. Given the empirical evidence of structural breaks in financial markets and the

motivation mentioned in the Introduction we assume that this maintained hypothesis is no longer

valid. In monitoring changes in the parameters we shall focus, for the moment, on changes in the

drift, i.e. μVA since this determines expected returns.

In risk management applications real-time or sequential tests have the advantage that practitioners

can apply these procedures on-line i.e. with the arrival of every new data observation. Sequential

procedures require a historical startup sample which we will assume to run from 1 through m. Then

for all subsequent observations we are interested in testing the following null hypothesis:

H0 : μVA(t) = μVA t = m+ 1,m+ 2, . . . (2.4)

where one builds on the so called non-contamination hypothesis (cfr. Chu et al., 1996) which

assumes parameter constancy holds (thus μVA(t) = μVA for t = 1, . . . ,m) and one tests on-line.

The procedures we propose to construct sequential tests will involve empirical processes, based on

returns, volatility estimators and distance to default. However, the basic process of interest will be

the Radon-Nikodym derivative (henceforth RND), which is a likelihood ratio, and will play a key

role in testing. We will provide the details of the statistical theory in the next section. For the

moment we focus on the population characteristics of the monitoring processes.

Under the alternative, we consider a single drift change,

H1 : μVA(t) =

(
μVA(1) t = m+ 1, ..., τ > m

μVA(2) t = τ + 1, ..., n ≤ m+ q
(2.5)

and we define the associated process:

α(t) =

(
0 t = m+ 1, ..., τ > m

(μVA(2)− μVA(1))/σVA t = τ + 1, ..., n ≤ m+ q
(2.6)

Hence, prior to some point t = τ : μ
VA
(t) = μVA(1) and ∀ t > τ : μ

VA
(t) = μVA(2). A change

of drift is a common situation encountered in derivative security pricing. Indeed, RND’s figure
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prominently in option pricing since it is common to change probability measures (drifts that is).

Since the Merton (1974) model is based on the BS model we go through these arguments to derive

a process that will be used in our paper in an entirely new context.

In option pricing one denotes P as the natural or real-world probability measure and a different

probability measure Q which will be the risk-neutral probability measure - with the same volatility

but different drift. In monitoring applications the two probability measures will be prior and post

m, i.e. Pn and Pm. To establish the connection between the two probability measures one uses the

Radon-Nikodym theorem. Let dPn/dPm be the RND. The Radon-Nikodym theorem tells us that

EPn
(VA(n)|VA(m)) = EPm

(dPn/dPmVA(n)|VA(m))

Provided a boundedness (or Novikov) condition is satisfied, namely:

EP [

Z n

m
α(t)2dt] <∞

one has that:

dPn/dPm = exp [

Z n

m
α(t)dW (t)− .5

Z n

m
α(t)2dt] (2.7)

for n ≤ m + q. This RND will play a key role in the monitoring procedures we will study and in

fact will have certain optimality properties discussed in the next section.

To conclude with BSM type models it is worth mentioning that there is a relationship between the

above RND appearing in equation (2.7) and the distance to default process in equation (2.3). In

particular, note that for any m < t ≤ m+ q :

DD(t)−DD(m)− lnVA(t)− lnVA(m)
σVA

= α(t) (2.8)

since the distance to default process is linked to the drift of the underlying asset process. The

above equation shows that there are two sources of variation in distance to default: (1) the random

movements of the asset value, and (2) the potential shifts in the structural parameters. Ignoring

the possibility of parameter shifts may lead to faulty inference about default and it is the purpose

of our analysis to design tests that monitor structural parameter variation.

2.3 The Merton model - stochastic volatility and other generalizations

A large literature emerged since the original work of Merton (1974). It is the purpose of this

section to discuss how one can construct monitoring processes for a more general structural credit

risk models and in particular stochastic volatility generalizations of the BSM model (Fouque et
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al., 2006). We will show that, while RND’s are often readily available, though there remain some

non-trivial practical implementation issues that emerge.

As a lead example, we will take a model which features stochastic volatility. Hence, the market

value of the firm’s assets (VA(t) ) no longer follows a geometric Brownian motion (GBM). Instead,

following the example of Heston (1993), we assume that values of the asset follow the process:

dVA(t) = μVAVA(t)dt+ σVA(t)VA(t)dW1(t)

dσ2VA(t) = (θ − κσ2VA(t))dt+ ξσVA(t)dW2(t)

cov(dW1(t), dW2(t)) = ρdt (2.9)

where σVA(t) is the time-varying instantaneous variance of the underlying asset, α/β is the long-

run mean of the instantaneous variance, β is the parameter that indicates mean-reversion of the

variance, and ξ is the volatility of the variance process (or ‘volatility of volatility’). dW1 and dW2 are

Wiener processes with correlation ρ. The Heston model allows for volatility of the underlying asset

to be randomly determined and assumes that it follows a mean-reverting (Ornstein-Uhlenbeck)

process.

In the context of the above model the RDN for a shift in drift is specified in equation (2.7), assuming

again the appropriate Novikov condition holds, with the α(t) process appearing in (2.6) replaced

by:

α(t) =

(
0 t = 1, ..., τ > m

(μVA(2)− μVA(1))/σVA(t) t = τ + 1, ..., n ≤ m+ q
(2.10)

The above RND leads to several issues, which we discuss in the remainder of this section.

(A) Hidden State Variables

Similar to the option pricing context, the first observation emerging from equation (2.10) is that

the RDN now involves the latent volatility process. Hence, as in prices of risk calculations (see e.g.

Chernov and Ghysels (2000)) one has to extract hidden state variables in order to implement the

monitoring processes. In this case the latent process is stochastic volatility. Obviously, there are

many ‘filters’ to extract volatility. Hence the application of this will be based on some commonly

used volatility filters. The case of stochastic volatility is only one example of hidden states.

(B) Distance to default

While the notion of distance to default is deeply rooted in structural models of credit risk, it is not

easy to generalize to cases beyond the BS economy. For the case of stochastic volatility, distance to
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default could potentially be backed out of corporate bond data (see Fouque et al. (2005) for further

discussion), but this is rather involved. We will instead follow an approach often encountered in

practice, which consists of obtaining the distance to default with the so-called plug-in estimators,

i.e.:

DD(t) =
ln(VA(t)/F ) + (μVA −

1
2σVA(t)

2)

σVA(t)
. (2.11)

Hence the Merton formula is used here with constant volatility being replaced by time-varying

volatility - an approach similar to the popular BS implied volatility calculations. While the above

is not a correct characterization of distance to default in a stochastic volatility economy, we will

nevertheless use it as one potential monitoring process, mainly for comparing it with the BSM

model.

Another advantage of the plug-in formula in equation (2.11) is that it can again easily be related

to the RND with the α(t) process appearing in equation (2.10). In particular, note that for any m

< t ≤ m+ q :

DD(t)σVA(t)−DD(m)σVA(m)− (lnVA(t)− lnVA(m)) + .5(σVA(t)
2 − σVA(m)

2)

σVA(t)
= α(t) (2.12)

where we notice again that we need the latent volatility process to characterize the mapping.

(C) Structural Breaks in State Variable Dynamics

So far, we focused exclusively on potential changes in the drift, and computed RND’s with regards

to probability measures that were constrained by such changes. The stochastic volatility example,

reveals that there might be more complex fundamental changes at stake. Indeed, the parameters

that determine the volatility dynamics may also be subject to change and allowing for them would

modify the RND. While we restrict our analysis, as far as RND characterizations is concerned,

to shifts in the drift of returns, we will show by simulation, that the resulting processes do have

power against changes in parameters pertaining to the volatility process. Obviously, the resulting

monitoring procedures may no longer share some of the optimality properties in terms of minimal

detection delay that will be discussed in the next section.

3 Empirical Monitoring Processes and Sequential Tests

In this section we discuss the change-point tests and the empirical series involved in monitoring

diffusion models. First we present the general formulation of the problem and assumptions. Then

we define the three alternative test statistics along with the asymptotic distribution of the sequential
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statistics and their corresponding boundaries. We also discuss the optimal monitoring based on

recent work of Moustakides (2004).

3.1 The general set-up

Assume that VA denotes the value of the assets of a firm which is distributed according to either

the BSM model in (2.1) or to the Heston model in (2.9). Given that the Heston model can

be considered as a generalization of the BSM model and the empirical relevance of time-varying

volatility, we develop the general set-up for sequential change-points in the context of the Heston

specification. Note that other SV models can also be analyzed in our framework, which we will

refer to below. The objective is to examine the null hypothesis that there is no structural change in

the mean value of the assets. We assume that μVA(t) over a historical sample of m observations is

stable, t = 1, ...,m, defined as the non-contamination sample which in addition allows the estimation

of possible unknown parameters. Therefore the null hypothesis of testing on-line (that is with a

sequential procedure updating as new data arrives) from t = m + 1,m + 2, ... is given by (2.4).

Under the alternative hypothesis of a single drift change, at an unknown time τ is given by (2.5).

Denote a generic process by X(t) that we wish to monitor in order to test the hypothesis (2.4).

Given the discrete data arrival as well as the specification of credit risk measures over discrete

intervals (e.g. daily or monthly Distance to Default indicators in corporations) we treat, for

monitoring purposes, X(t) as the discretely sampled observations from the continuous time models

(2.1) and (2.9). In general, X(t) = h
¡
∆VA(t)/σVA(t)

¢
or h (∆DD(t)) or RND-related processes for

a measurable function h(.) and ∆VA(t) = ln(∆VA(t))− ln(∆VA(t− 1)).

For the Heston model under H0 we assume that X(t) (i) is a weakly stationary process with

uniformly bounded (2 + δ)th moments for some 0 < δ ≤ 2 and (ii) is a strong mixing process such
that

sup
A∈Fm

1 ,B∈F∞m+n
|P (A ∩B)− P (A)P (B)| ≤ n−ψ for all m,n ≥ 1

where Fυ denotes the σ− field generated byXυ,Xυ+1, ...,X . Then letting Y (n) = X(1)+...+X(n),

the limit σ2Y = limn→∞
1
nEY (n)

2 exists, and if σY > 0, then there exists a Wiener process

{W (t), 0 ≤ t <∞} such that Y (n)−σW (n)
a.s.
= O(n1/2−ε) where ε = δ/600 (see for instance, Philip

and Stout, 1975, Theorem 8.1, p.96). This theorem is general enough to cover many applications.

Under the above mixing and stationarity conditions X(t) satisfies the strong invariance principle:X
1≤t≤n

(X(t)−E(X(t)))− σXW (n)
a.s.
= o(nγ). (3.13)

with some 0 < γ < 0.5 and W (.) a Wiener process. Hence (3.13) holds under H0. Consequently,
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under the null, X(t) satisfies the Functional Central Limit Theorem (FCLT)

Y (n) := T−1/2
X

1≤t≤n
(X(t)−E(X(t)))→ σXW (n). (3.14)

The above conditions are satisfied by the Heston model and other stochastic volatility models (SV).

Genon-Catalot et al. (2000, Proposition 3.2, page 1067) show that the process σVA(t) in the Heston

model is β−mixing (which implies α−mixing). The key insight of Genon-Catalot et al. (2000) is that
continuous time SV models can be treated as hidden Markov processes when observed discretely

which thereby inherits the ergodicity and mixing properties of the hidden chain. Carrasco and

Chen (2002) extend this result to generalized hidden Markov chains and show β−mixing for the
SV-AR(1) model as well as a family of GARCH models. Other SV specifications found in Chernov

et al. (2003) also satisfy the β−mixing condition. Hence, using the continuous mapping theorem,
for the SV model in (2.9) and any continuous measurable function h(.) the monitoring processes

X(t) = h(∆VA(t)) and X(t) = h(∆DD(t)), which are functions of σVA(t), are also β−mixing.
For instance, in the Heston model the FCLT holds if X(t) = ∆VA(t) or (∆VA(t))2 are strongly

mixing and have finite (4 + δ)th moments. Necessary and sufficient conditions for the existence of

moments in SV models can be found for instance in Chernov et al. (2003) that deal with moment

based estimation of these models.

For completeness we note that the BSM model is the simplest form of diffusion for which ∆VA(t)

is an independent and identically distributed (i.i.d.) process and the CLT applies. Hence for the

BSM model, under H0, ∆DD(t) is also an i.i.d. process (since it is a linear function of ∆VA(t)).

3.2 Sequential change-point statistics

The following sequential test statistics, Sn, for monitoring the process Xt are considered: The

Fluctuation (FL) detector:

SFL
n = (n−m)σ−10 (Xn−m −Xm), (3.15)

where

Xn−m =
1

n−m

Xn

j=m+1
Xj

measures the updated mean estimate, Xn−m, from the historical mean estimate, Xm.

The Partial Sums (PS) statistic:

SPS
n =

Xm+k

i=m+1
(Xi −Xm), k ≥ 1 (3.16)

is similar to the Cumulative Sums (CUSUM) test of Brown et al. (1975) in that it monitors the
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least squares residuals Xi −Xm.

The Page (PG) CUSUM statistic is:

SPG
n =

Xn

i=1
Xi − min

1≤i<n

Xn

i=1
Xi (3.17)

which can also be considered as a Partial Sums type test since for an independentXi, it is equivalent

to
Pn

i=1Xi −
Pn−r

i=1 Xi for any r, 1 ≤ r ≤ n (see Page, 1954).

The asymptotic distribution of the FL and PS statistics can be found in Horvath et al. (2006) under

the conditions discussed in the previous section and for a general boundary function. Given that

the PG test can be written in terms of partial sums the FCLT also applies to this test.

The FCLT for the above sequential test statistics holds if we replace the asymptotic variance in

(3.14) of dependent processes σX =
P∞

t=−∞ cov(Xt,X0) by a consistent estimator. There is a

large literature on alternative Heteroskedastic and Autocorrelation Consistent (HAC) estimators.

What is important to emphasize is that the asymptotic variance is based on an estimator of the

uncontaminated sample m.4

3.3 Empirical Monitoring Processes

Given the above test statistics we use the following monitoring processes: (i) The observed processes

for the standardized changes in the value of the assets, ∆VA(t)/σVA(t), and the changes in Distance

to Default, ∆DD(t), (ii) The Radon-Nikodym derivative given by (2.7) where α(t) is based on

the estimated parameters and more precisely on the standardized difference of mean value of

∆VA(t) estimates during the monitoring and historical periods,
¡bμVA(n−m)− bμVA(m)¢ /σVA such

as
¡
∆VA(n−m)−∆VA(m)

¢
/σVA , and (iii) The Radon-Nikodym derivative given by (2.7) where

α(t) are the observed processes in (i) i.e. ∆VA(t)/σVA and ∆DD(t).

Given the above two structural models, σVA(t) = σVA in the BSM model, whereas in the Heston

model the stochastic nature of σVA(t) is based on dynamic volatility filters with parameters obtained

over the historical sample m. Nevertheless, for the Heston model we also consider the misspecified

historical volatility estimators, mainly for comparison purposes with the BSM model. It is also

acknowledged that instabilities in the Heston model could be due to the SV parameters for which

we specify other types of monitoring processes that yield more power in detecting breaks in volatility

such as functions of ∆VA(t)/σVA(t) and ∆DD(t) that approximate the quadratic behavior of the

process,
¡
∆VA(t)/σVA(t)

¢2 and (∆DD(t))2 .

4Horvath et al (2006) provide some promising simulation results of updating sequentially the HAC estimation for
sequential tests which may call of an interesting extension of the theory.
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3.4 Optimal Monitoring Schemes

There are various optimal schemes and criteria. Let the true break point be τ , and suppose the

estimated breakpoint is denoted by τ̂ and is determined by:

τ̂ = inf
t≥m

S(t) > b(t) (3.18)

then if we define the expected detection delay as E[τ̂ − τ ], we are interested in the minimization of

the average detection delay or the average run length (ARL). Lorden (1971) introduced an expected

delay min—max criterion and established the asymptotic optimality of the CUSUM test under the

proposed min-max criterion.

Given the topic of the paper we are more interested in the optimality results of detecting changes

in continuous time processes. Most of the attention has focused on a Brownian motion with drift.

This means that when VA(t) follows a geometric Brownian motion (GBM), we can consider the

case of ∆VA/σVA , which is a drifted BM. The optimality of CUSUM has been established for the

BM with constant drift by Beibel (1996), Ritov (1990) and Shiryayev (1996). Moustakides (2004)

established the optimality of the Page (1954) CUSUM test in detecting changes in the statistics of

Itô processes, in a Lorden-like sense, when the expected delay is replaced in the criterion by the

corresponding Kullback—Leibler (K—L) divergence. However, in the case of the drifted BM, both

the Lorden expected delay and K-L divergence criteria coincide, which means that for monitoring

drift parameters in BSM type models, the Page CUSUM test is an optimal test both in terms of

expected delay and K-L divergence criteria. Therefore, we consider again the log likelihood ratio,

which according to equation (2.7) equals:

un ≡ log dPn/dPm = [

Z n

m
α(t)dW (t)− .5

Z n

m
α(t)2dt] (3.19)

Then Moustakides (2004) shows that the Page CUSUM test:

S(n) = un − inf
0≤t≤n

ut (3.20)

is optimal which implies that using the RND in a Page CUSUM test yields the optimal monitoring

process and test statistic combination.

Some important caveats apply, however. Let us consider again the BS GBM and assume as in

equation (2.5) that there is a single drift change. To show optimality, Moustakides (2004) assumes

that the GBM before and after the break are known.5 Hence, there is no parameter estimation

5Moustakides (2004) also imposes other regularity conditions, which are standard, such the Novikov condition to
guarantee the existence of the RND.
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uncertainty and therefore μVA(1), μVA(2) and σVA are known a priori, what is not known is the

timing of the breakpoint τ . Obviously, we do not know the parameters in practice, which introduces

estimation uncertainty. It also explains why we need to consider different versions of the RND which

rely on different estimators of the drift parameters. It is in part the purpose of the simulation section

to assess how estimation uncertainty affects the optimality properties of the Page CUSUM test with

the RND as monitoring process. Whether the Page test yields the lowest ARL even in the presence

of estimation error is examined via simulations. This is the topic to which we return in section 4.

An attempt to extend the Moustakides (2004) results to the Heston model is faced by the critical

role of the likelihood ratio representation of the Page test in deriving the optimality results.

For the Heston model as well as other SV models, mentioned above, the likelihood function

is not computationally tractable. Even if we consider the hidden Markov representation of SV

models (Genon-Catalot et al., 2000) in relation the results in Fuh (2003) for the optimality of the

CUSUM for hidden Markov chains, then the problem remains that the likelihood function is not

computationally tractable except if we use numerical integration methods. While simulation-based

likelihood methods could potentially be considered to compute the RND and extract the hidden

state variables, they would be computationally intensive to implement especially in a sequential

framework. We want to keep the sequential monitoring processes simple and easy to apply and

therefore resort to empirical processes that are not computationally involved.

It is also worth noting that recent extensions of structural credit risk models involve structural

parameters that are state/regime dependent where the state could be the phase of the business cycle

or the firm’s external rating (e.g. Bangia et al., 2003). For instance cash-flows and bankruptcy costs

may be state-dependent. The testing procedure proposed here can be extended to capture changes

in the regime switching mechanism. This extension would imply that some of the RN related

processes would of course differ from the standard diffusion credit risk models. Such extensions as

well as an investigation of the optimality properties of the Page test and RN related processes for

such models is left for future work.

3.5 Boundaries

The monitoring scheme is a stopping time, determined by a statistic, Sn, and a threshold b(m,n),

according to τg(Sn) ≡ min{n ≥ m, Sn ≥ b(m,n)}. The theory of the drifted Wiener process
provides a way to find the appropriate boundaries. Linear and parabolic boundary functions can

be considered that grow with the sample size at approximately rates
p
(n/m) and

p
log(n/m),

respectively. For i.i.d. processes Robbins (1970) suggests the boundary

b1(n/m) = (n+m)0.5[4.6 + ln((n/m) + 1)]0.5. (3.21)
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and Seigmund (1985) shows the optimality of this boundary for independent processes and simple

hypotheses. We apply this boundary to the sequential tests of the BSM monitoring processes.

Chu et al. (1996) extend the i.i.d. results of Robbins and Seigmund (1970) to monitoring procedures

where the partial sum of the residuals and recursive estimates in linear time series obey the FCLT,

under milder restrictions on general class of boundary functions (see Theorem 3.4, p. 1051 and

Theorem A, Appendix A, p. 1062). The following boundary is derived analytically for the sequential

CUSUM-type and Fluctuation tests:

b2(n/m) =

µ
(n/m)(n/m− 1)

∙
α2 + ln

µ
n/m

n/m− 1

¶¸¶0.5
(3.22)

where α2 = 7.78 and 6.25 gives the 95% and 90% monitoring boundaries, respectively. In addition,

Leisch et al. (2000) specify the boundary b3(t) = λ
p
2 log+(n/m) where log+(n/m) = 1 if (n/m) ≤ e

and log+(n/m) = log(n/m) if (n/m) > e, for which the critical values λ for the increments of a

Brownian bridge are obtained via simulations in the context of Generalized Fluctuation tests (see

for instance, Table 1, p. 846, Leisch et al., 2000). Zeileis et al. (2005) argue that simulation

evidence for λ
p
log+(n/m) suggests that most of the size of the test is used at the point where the

boundary changes from being constant to growing and this makes it inappropriate for a process

with growing variance such as the Brownian bridge. Hence they suggest a simple boundary that has

the advantage of not using up the size of the corresponding test at the beginning of the monitoring

period while at the same time growing in a linear manner given by

b4(n/m) = λ · (n/m) (3.23)

where λ is the simulated critical value for alternative monitoring horizons (shown in Table III in

Zeileis et al., 2005). In the remainder of the analysis we consider b2(n/m) and b4(n/m) and note

that these linear boundaries have an intersection point during the monitoring period. For instance,

if the historical sample is n then b2(n/m) and b4(n/m) intersect at 2m for a 10% significance level.

After the intersection point the slope of b4(n/m) is lower than that of b2(n/m) which implies that

it is more likely to capture small breaks late in the sample. In contrast, before the crossing point

b4(n/m) rests higher then b2(n/m) which means that the probability to detect an early break is

lower for b4(n/m) relative to b2(n/m). We apply b2(n/m) and b4(n/m) to the sequential tests of

the Heston monitoring processes.

The choice of the boundary in sequential testing is traditionally followed based on the minimization

of the ARL which we address in the simulation analysis. In turn the detection delay also depends

on the choice of the historical sample m which we also address via simulations.
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4 Simulation Analysis

In this section we examine the properties of the sequential change-point tests defined in section 3.2

for the alternative monitoring processes presented in section 3.3 for the BSM and Heston models.

The first subsection describes the Monte Carlo design and the second subsection discusses the

simulation results.

4.1 The Monte Carlo Design

We simulate two structural models for the value of the assets VA using discretization of the BSM

and Heston parameterizations. First consider the Euler discretization of BSM in (2.1):

∆VA = μVAVA∆t+ σVAVA
√
∆tε

where the discretized Wiener process is
√
∆tε, where ε is a standard normal random variable. This

discretization yields the following simulation process for VA,t+∆t. Since ∆VA := VA,t+∆t − VA,t,

VA(t+∆t) = VA(t) + μVAVA(t)∆t+ σVAVA(t)
√
∆tε. (4.24)

In practice it is usually more accurate to simulate lnVA than VA. From Ito’s lemma (2.1) yields:

d lnVA = (μVA − 0.5σ
2
VA
)dt+ σVAdW

so that

VA(t+∆t) = VA(t) exp
h
(μVA − 0.5σ

2
VA
)∆t+ σVA

√
∆tε

i
(4.25)

Note that although (4.24) is only true in the limit as ∆t → 0, equation (4.25) is exactly true for

all ∆t. For simplicity we set ∆t = 1 in the simulations. Given that Distance to Default is defined

in (2.3) we use the simulated processes (4.25) to obtain the simulated path for DD and set F as a

constant assumed to be 61%, 50% and 20% of the sample mean for VA. These values were obtained

from the descriptive statistics of the sample of US banks in the database of Andreou et al. (2006)

and correspond to the sample mean, 25th, 5th and 1st percentile of the sample values of F for

these banks, respectively. From the same database we obtain sample averages which we use for the

starting values of VA(0), σVA(0), and μVA(0).
6

Similarly the Euler discretized Heston model is: VA(t + ∆t) = VA(t) + μVAVA(t)∆t +

VA(t)σVA(t)
√
∆tε1 and σ2VA(t + ∆t) = σ2VA(t) + (θ − κσVA(t))∆t + ξσVA(t)

√
∆tε2 where the two

correlated standard normal processes ε1 and ε2 are given by ε1 = x1 and ε2 = ρx1 + (1− ρ2)0.5x2

6The robustness of the simulations results are examined for alternative starting values.
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where x1 and x2 are univariate independent standard normal processes. For simplicity we assume

ρ = 0. Note that this assumption also simplifies the specification of the RND for the Heston model

and makes it more comparable to the BSM model. There is a large literature on the appropriate

simulation schemes of stochastic volatility models. Although a comparison of these methods is

beyond the scope of the present paper we have used the Milstein correction for simulating the

Heston model (Kloeden and Platen, 1995):

VA(t+∆t) = VA(t)[1 + μVA∆t+ σVA(t)ε1 + 0.5σ
2
VA
(t)(ε21 −∆t)]

σ2VA(t+∆t) = σ2VA(t) + (θ − κσ2VA(t))∆t+ ξσVA(t)ε2 + 0.25ξ
2(ε22 −∆t)

(4.26)

In the Heston model we apply the same values as in the BSM mentioned above. For the parameter

values in (4.26) we consider those in the estimated model of Andersen et al. (2002) such that

θ = 0.0074, κ = 0.0123, ξ = 0.0578, ρ = 0 (in Table VI, column 7, p. 40).

The above models refer to the simulated processes under the null hypothesis of parameter stability.

Under the alternative hypothesis we consider a permanent mean shift in the drift of the two models

in order to assess the power of the sequential monitoring procedures. For the Heston model we also

consider the alternative hypothesis of changes in the SV parameters. Details of the sizes and the

time of the break as well as the non-contamination sample sizes are discussed in the next section.

For each model we obtain the simulated returns process ∆VA and define the empirical monitoring

processes discussed in section 3.3 and their corresponding test statistics in section 3.2, namely the

Fluctuation (FL), the Partial Sums (PS) and Page (PG), (3.15), (3.16) and (3.17), respectively.

We evaluate the test statistics using the boundaries defined in section 3.5. For the BSM model we

use the linear Robbins boundary defined in (3.21) given we are dealing with an i.i.d. process and

for the Heston model we use the parabolic Chu et al. and linear Zeileis et al. boundaries in (3.22)

and (3.23), respectively. The tests are evaluated in terms of their size and power properties and

in terms of their detection delay measured by the Average Run Length (ARL). We report these

criteria mainly for conciseness purposes. 7

4.2 Simulation results

The simulation results for the BSM model found in Tables 1 and 2 present the size and

power properties, respectively, of the three alternative statistics, the Fluctuation (FL), the

Partial Sums (PS) and Page (PG), (3.15), (3.16) and (3.17), for the five monitoring processes:

The first row corresponds to the RND for the standardized estimated mean drift parameters¡
∆VAn−m −∆VAm

¢
/σVA which can also be considered as the Maximum Likelihood estimates in a

7Additional criteria such as Maximal Run Length (MRL) that refers to the maximal detection delay, the standard
deviation of the first hitting time and the distribution of the first hitting time can also be obtained from the authors.
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geometric Brownian motion model. We denote this process RN −ML in the Table 1. The second

row refers to the monitoring process of standardized returns ∆VA(t)/σVA , and the third to its

corresponding RND denoted by RN−∆VA(t)/σVA . The fourth row refers to the changes in Distance
to Default, ∆DD(t) monitoring process and its RND equivalent denoted by RN −∆DD(t). It is

worth noting that Moustakides (2004) sets σVA = 1 in the BSM model whereas in the simulation

design we consider σVA 6= 1 which is estimated based on the historical sample variance estimator
from the noncontamination sample of m observations. Since the properties of the boundary

functions depend on m we consider historical sample sizes, m = 125, 500 observations and set

the monitoring horizon q = 2m, 3m, 4m. Under the null hypothesis, H0 : μVA(t) = μVA , and as

expected when q → ∞ the size of the test improves which is shown by the results in Table 1 for

q = 4m as opposed to 2m.8 Moreover we find that as m increases the size of all tests improves.

Overall the results show that for q = 4m and different m, the Page test yields simulated size close

to the 5% nominal size for four out of the five monitoring processes, as opposed to the FL and PS

tests that appear slightly more conservative in terms of size.

We now turn to evaluate the properties of the sequential monitoring methods under the alternative

hypothesis of a structural change in μVA of break sizes δm such that H1 : δmμVA for t = m+τ+1, ...

where δm = 2, 2.5, 3, 4 and μVA is the parameter under the H0, at change-point location τ = 1.1m

where m = 125, 500 and the monitoring horizon is q = 4m. In Table 2 we evaluate the

aforementioned test statistics and monitoring processes in terms of their power (measured as the

mean number of rejections under the alternative) to detect a break and in terms of their detection

delay measured by the ARL. As expected we find that as the size of the break increases the power of

the tests improves and the detection delay is minimized. This result holds for all tests, monitoring

processes and historical samples sizes, m. Out of the three tests the Page (PG) test appears to have

the highest power and lower ARL. We also compare the alternative monitoring processes and find

that the Radon-Nikodym derivative based on ∆VA(t)/σVA , denoted by RN −∆VA(t)/σVA , yields
the optimal monitoring process in terms of the lowest ARL - as indicated by the ARLs with a (*)

sign. Moreover, this is the monitoring process with the relatively highest power. In almost all cases,

the two monitoring processes, RN−ML and ∆VA(t)/σVA , give the same ARL and RN−ML yields

only slightly higher power than ∆VA(t)/σVA . One explanation why the RN−ML yields lower ARL

than RN−∆VA(t)/σVA is that in finite samples the estimation error of the the mean drift μVA (and
variance parameter σVA), affects the ARL. As the size of the break, δm, increases the deviation

between the ARLs of these two processes, RN −ML and RN −∆VA(t)/σVA , increases. Finally,
the monitoring processes that relate to the Distance to Default industry standard, ∆DD(t) and

RN −DD(t), have good power and similar ARLs to RN −∆VA(t)/σVA and RN −ML especially

for large break sizes δm < 3.9
8Note that the examination of the finite sample properties of these tests requires monitoring horizons which are

equal to empirically relevant samples, hence our choice of q.
9Note that for the PS and FL tests the Robbins boundary yields identical simulation results which does not hold

18



Summarizing the BSM model simulation results show that the Page test has empirical size close to

the nominal one when using the Robbins boundary, b1(t) and yields the highest power and lower

ARL compared to the Partial Sums (PS) and Fluctuation (FL) tests for all break sizes (δm) and

historical samples, m. In addition, across the different monitoring processes we find that the one

based on the RND which involves the standardized asset value growth rate, RN − ∆VA(t)/σVA ,
yields the optimal monitoring process in terms of the lowest ARL for all three tests, break sizes

and historical samples.

Turning to the Heston model simulation results we examine the monitoring processes mentioned

above augmented by the estimation of σVA(t). We employ two widely used discrete volatility

estimators (given the discrete nature of our monitoring schemes) such as the GARCH model and

RiskMetrics (RM) industry standard. We contrast these estimators with the misspecified constant

historical variance estimator (denoted by CVOL in Table 3) mainly for comparison purposes with

the BSM model and with the approach used by practitioners based on the implied volatility of

option prices. Table 3 presents the size of the three sequential change-point tests for the Chu et al.

parabolic and the Zeileis et al. linear boundaries, in (3.22) and (3.23), respectively. We report the

results for only two monitoring processes that yield good size and power results, ∆VA(t)/σVA(t)
in the upper part of Table 3 and the standardized estimated change in the drift parameters¡bμVA(n−m)− bμVA(m)¢ /σVA (in the lower part of this table). We find that the drift estimators
proposed by Merton (1980) based on the difference in the returns over long spans yields an improved

performance of these tests, as shown in the lower part of Table 3. However, this process is oversized

compared to ∆VA(t)/σVA(t) and for the linear boundary size is closer to the 5% nominal one for all

statistics and monitoring processes. The power of these processes for the Heston model is examined

in Table 4 under the alternative of a break in the mean of VA(t) (as discussed above for the BSM

model).10 Interestingly we find that monitoring the observed standardized ∆VA(t)/σVA process

yields higher power and lower ARLs. One possible explanation is that it is very difficult to estimate

the mean of diffusions (also argued in Merton, (1980)) especially in the presence of SV. Moreover

we find that the GARCH and RM scaling estimators for ∆VA(t) yield slightly better power than

the constant historical volatility but overall the power improves as the historical samplem increases

and for relatively large breaks. Overall the ARLs obtained from monitoring breaks in the mean

of VA(t) that follows a Heston model are higher than the ARLs obtained from monitoring a BSM.

This result is not surprising given that the dependence as well as the nonlinearity in the SV model.

Note that monitoring the industry standard of the scaled differences in the Distance to Default

yields good size but very weak power under the Heston model (and hence for conciseness we do not

report it in the Tables). Two explanations for this result are the fact that the traditional Merton

Distance to Default measure with plug-in estimates in (2.11) is not the appropriate specification

for logarithmic boundaries. However, we focus on the Robbins boundary due to its optimal properties mentioned in
section 3.5.
10We focus on δm = 2, 3 for the Heston model for conciseness. Qualitatively similar results apply to larger breaks.
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in the presence of the SV and that DD(t) is not a good approximation of changes in the drift of a

diffusion.

We further apply our methods to examine the instability of the Heston model due to structural

changes in the SV parameters. We consider two simple alternative hypotheses of permanent

increases in the volatility parameters θ and κ given by H1 : δθθ where δθ = 3, 5 and H1 : δκκ

where δκ = 0.2, 0.3 (where under the H0 : δθ = 1 and δκ = 1) at τ = 1.1m. Given that the FCLT

conditions are satisfied by the nonlinear functions
¡
∆VA(t)/σVA(t)

¢2 and (∆DD(t))2 we examine the

properties of sequential change-point tests based on monitoring these quadratic transformations.

Table 5 reports the size results where we observe that the Page (PG) test appears to be oversized

when used in relation to the Riskmetrics (RM) estimator. The power of these tests is presented in

Table 6 which shows that the GARCH and historical volatility estimator (CVOL) have good power

for detecting breaks in the volatility parameters whereas the RM appears to have poor power for

monitoring (∆DD(t))2. Overall the power and ARLs as expected are improved for the parabolic as

opposed to the linear boundary. However despite the fact that we are dealing with an early break

in the sample the ARLs of the power of the two boundaries is quite close.

Summarizing the Heston model simulation results show that the monitoring processes

∆VA(t)/σVA(t) and
¡
∆VA(t)/σVA(t)

¢2 have good size and relatively higher power and lower ARL for
detecting breaks in the mean and volatility, respectively. This result holds for all three sequential

change-point tests, for any volatility filter and any historical sample, m. Again the Page test yields

the highest power and lowest ARL relative to the Fluctuation and Partial Sums tests.

Last but not least, we have found that the above results are robust to: (i) other HAC estimators i.e.

the Quadratic Spectral HAC estimator with prewhitening, (ii) other break dates such τ = 1.5m and

2m and break sizes as well as gradual and multiple structural changes that may also affect credit

risk (e.g. Bangia et al., 2002), (iii) other historical sample sizes m = 250, 750, 1000, (iv) other

parameters for the Heston model for ρ = 0 such as θ = 0.0025, κ = 0.0063, ξ = 0.0229, ρ = 0

found in the estimation results in Andersen et al. (2002) (Table III, column 7, p. 37) and

ρ = −0.3799, θ = 0.0107, κ = 0.0162, ξ = 0.0771 also found in Andersen et al. (Table VI, column 8,
p.40) and finally other starting values.

5 Conclusions

The focus of the paper is on structural models of credit risk. A common assumption in these

models is that their parameters remain invariant through time. Yet, in practice these parameters

are subject to change. We study the issue of fundamental shifts in the structural parameters of

credit risk models and provide sequential test procedures that are relatively easy to implement.
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We propose different monitoring methods and processes and address their optimality in terms of

minimal detection delay of a break. The simulation analysis shows that these monitoring methods

have good properties which suggest that they can be used as formal quality control procedures that

can allow risk managers to monitor shifts in the structural parameters of credit risk models.

The paper presents various tests to monitor changes in the parameters of discretely sampled

diffusions and extends and in particular makes operational, the optimal sequential schemes of

Moustakides (2004). From a practical point of view, the procedures we suggest have the appealing

feature that they involve processes that are very familiar to practitioners. In particular, the optimal

process based on the Radon-Nikodym derivative is rather fortunate, since it is a common and well

understood concept in the risk management literature, although it is typically applied in a different

context, namely not a statistical context but rather to compute a change of measure between

objective and risk neutral probability measures.

Our analysis focuses on structural credit risk models. Yet, the quality control tools we present can

be applied to a larger class of credit risk models. For example, sequential tests can be applied to

test the parameter stability of reduced form models. It would not be clear a priori what would be

the optimal monitoring process, a topic which would need further exploration. Likewise, one of the

most popular approaches to bond risk measurement in practice is direct credit spread modeling.

The Merton framework suggests that credit spreads should vary with equity volatility, as extensively

explored in Campbell and Taksler (2003). It is interesting to note that the Campbell and Taksler

paper is in fact implicitly based on a structural break argument, namely they rely on the Campbell,

Lettau, Malkiel and Xu (2001) paper which shows that idiosyncratic volatility has fundamentally

changed over the last 20 years or so. One could again investigate how to monitor for structural

breaks in the context of such credit spread models.
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Table 1: Size of sequential change-point tests for different monitoring 
processes under the Black-Scholes-Merton model

Robbins (1970) linear boundary
Historical Sample:   m=125 m=500
Monitoring Sample: 2m 3m 4m 2m 3m 4m

Tests: Processes:
PS RN-ML 0.001 0.009 0.032 0.000 0.005 0.019

ΔVA /σVA 0.001 0.009 0.029 0.000 0.005 0.021
RN-ΔVA /σVA 0.002 0.009 0.025 0.000 0.004 0.017

ΔDD 0.001 0.009 0.029 0.000 0.005 0.021
RN-ΔDD 0.002 0.007 0.021 0.000 0.007 0.019

FL RN-ML 0.001 0.009 0.032 0.000 0.005 0.019
ΔVA /σVA 0.001 0.009 0.029 0.000 0.005 0.021

RN-ΔVA /σVA 0.002 0.009 0.025 0.000 0.004 0.017
ΔDD 0.001 0.009 0.029 0.000 0.005 0.021

RN-ΔDD 0.002 0.007 0.021 0.000 0.007 0.019
PG RN-ML 0.002 0.012 0.035 0.000 0.006 0.022

ΔVA /σVA 0.003 0.023 0.059 0.001 0.017 0.047
RN-ΔVA /σVA 0.003 0.018 0.041 0.001 0.012 0.043

ΔDD 0.003 0.023 0.058 0.001 0.017 0.047
RN-ΔDD 0.006 0.019 0.053 0.001 0.019 0.046

Notes:
(1) The three sequential change-point tests are: Partial Sums (PS), Fluctuation (FL), Page (PG).(2) The monitoring processes are: Change in Distance to Default (ΔDD); Standardized 
changes in asset value  (ΔVA /σVA) - while a constant volatility over the historical sample of m observations - the Radon-Nikodym derivatives based on the Maximum Likelihood
 mean estimator (RN-ML) on changes in  Distance to Default (RN-ΔDD) and on Standardized changes in asset value (RN-ΔVA /σVA). (3) The number  of replications is 1,000 
with nominal size equal to 5%.(4) The ARHAC (den Haan and Levine,1997 ) with maximum lag length equal to 25 is estimated  using the AIC. Similar  results were obtained
 by the QSHAC with prewhitening (Andrews and Monahan, 1992). These HAC estimators used to scale statistics were estimated over the historical sample of m observations.

Table 2: Power and Average Run Length (ARL) of  sequential change-point tests for different monitoring 
 processes when there is a break in the mean value of the assets that follow a Black-Scholes-Merton model.

PS FL PG
Robbins (1970) linear boundary
Monitoring Horizon = 4m
Break size in μVA : 2 3 4 2 3 4 2 3 4
Tests Process m Power ARL Power ARL Power ARL Power ARL Power ARL Power ARL Power ARL Power ARL Power ARL

RN-ML 125   138 0.838 51 0.911 24 0.933 15 0.838 51 0.911 24 0.933 15 0.844 48 0.914 23 0.935 15
ΔVA /σVA 0.835 51 0.908 24 0.930 16 0.835 51 0.908 24 0.930 16 0.842 48 0.911 23 0.932 15

RN-ΔVA /σVA 0.857 44* 0.934 15* 0.953 8* 0.857 44* 0.934 15* 0.953 8* 0.862 42* 0.936 14* 0.954 8*
ΔDD 0.842 49 0.914 22 0.937 14 0.842 49 0.914 22 0.937 14 0.848 47 0.917 21 0.938 13

RN-ΔDD 0.748 84 0.901 27 0.936 14 0.748 84 0.901 27 0.936 14 0.724 93 0.891 31 0.941 12
RN-ML 500   550 0.903 98 0.937 47 0.948 31 0.903 98 0.937 47 0.948 31 0.907 92 0.939 44 0.949 29
ΔVA /σVA 0.903 98 0.937 47 0.947 31 0.903 98 0.937 47 0.947 31 0.907 92 0.939 44 0.949 29

RN-ΔVA /σVA 0.913 83* 0.949 29* 0.959 15* 0.913 83* 0.949 29* 0.959 15* 0.917 78* 0.950 28* 0.959 14*
ΔDD 0.904 96 0.938 46 0.949 30 0.904 96 0.938 46 0.949 30 0.908 90 0.940 43 0.950 28

RN-ΔDD 0.871 146 0.935 51 0.951 26 0.871 146 0.935 51 0.951 26 0.858 165 0.946 51 0.971 23



Table 3: Size of sequential change-point tests for monitoring the standardized changes in V A  and the Radon-Nikodym (RN) derivative based on the estimated drift change 
following the Heston model

               m=125               m=500
Boundaries: Parabolic Linear Parabolic Linear
Monitoring Horizon: 2m 3m 4m 2m 3m 4m 2m 3m 4m 2m 3m 4m

Tests Volatility 

            Monitoring Process: ΔlnV A /σVA

PS CVOL 0.032 0.060 0.072 0.020 0.052 0.071 0.027 0.065 0.069 0.016 0.055 0.067
RM 0.006 0.011 0.012 0.003 0.009 0.012 0.003 0.005 0.006 0.001 0.004 0.006

GARCH 0.012 0.019 0.021 0.007 0.015 0.021 0.006 0.015 0.017 0.003 0.012 0.017
FL CVOL 0.038 0.057 0.059 0.020 0.052 0.071 0.033 0.060 0.060 0.016 0.055 0.067

RM 0.008 0.011 0.010 0.003 0.009 0.012 0.003 0.004 0.004 0.001 0.004 0.006
GARCH 0.015 0.018 0.017 0.007 0.015 0.021 0.008 0.012 0.013 0.003 0.012 0.017

PG CVOL 0.100 0.118 0.119 0.030 0.081 0.107 0.125 0.147 0.148 0.038 0.101 0.130
RM 0.088 0.096 0.099 0.016 0.051 0.069 0.089 0.085 0.092 0.016 0.040 0.062

GARCH 0.083 0.086 0.084 0.018 0.047 0.062 0.091 0.090 0.093 0.019 0.050 0.070

             Monitoring Process: RN - ΔμVA

PS CVOL 0.051 0.129 0.201 0.073 0.099 0.185 0.093 0.130 0.222 0.049 0.096 0.204
RM 0.035 0.128 0.214 0.086 0.097 0.194 0.094 0.130 0.216 0.067 0.097 0.198

GARCH 0.049 0.119 0.197 0.089 0.090 0.179 0.112 0.121 0.215 0.054 0.090 0.197
FL CVOL 0.012 0.141 0.196 0.073 0.099 0.185 0.099 0.142 0.214 0.049 0.096 0.204

RM 0.010 0.141 0.210 0.086 0.097 0.194 0.090 0.141 0.208 0.067 0.097 0.198
GARCH 0.011 0.131 0.189 0.089 0.090 0.179 0.101 0.132 0.208 0.057 0.090 0.197

PG CVOL 0.170 0.190 0.253 0.095 0.123 0.229 0.149 0.191 0.273 0.097 0.124 0.248
RM 0.099 0.182 0.262 0.085 0.117 0.233 0.173 0.204 0.277 0.105 0.132 0.247

GARCH 0.103 0.167 0.232 0.090 0.107 0.209 0.136 0.180 0.264 0.089 0.113 0.238

Notes:
(1) The three sequential change-point tests are: Partial Sums (PS), Fluctuation (FL), Page (PG).
(2) The volatility models are: CVOL is the Constant Volatility, RM is the Riskmetrics with daily parameters a 0=0.0, a1=0.94, a2=0.06 and the GARCH model with coefficients
 a0=0.026, a1=0.844, a2=0.104.
(3) The number of replications is 1,000 with nominal size equal to 5%.
(4) The ARHAC (den Haan and Levine,1997 ) with maximum lag length equal to 25 is estimated using the AIC. Similar results were obtained by the QSHAC 
with prewhitening (Andrews and Monahan, 1992). The HAC estimators used to scale statistics were estimated over the historical sample of m observations.
(5) The parabolic and the linear boundary correspond to the Chu et al (1996) and Zeileis et al (2005)  boundaries, respectively.



Table 4: Power and ARL of sequential change-point tests that monitor the standardized changes in V A  and the  Radon-Nikodym (RN) 
derivative of the  drift change of VA when there is a structural change in the mean of the value of the assets of a  Heston model

Monitoring Processes: ΔlnVA /σVA   RN - ΔμVA

Boundaries: Parabolic Boundary Linear Boundary Parabolic Boundary Linear Boundary
Break size: δm =2 δm =3 δm =2 δm =3 δm =2 δm =3 δm =2 δm =3
Tests Volatility Power ARL Power ARL Power ARL Power ARL Power ARL Power ARL Power ARL Power ARL

PS CVOL 138 0.332 239 0.624 131 0.325 242 0.601 139 0.226 306 0.259 298 0.207 311 0.240 303
550 0.506 693 0.804 247 0.489 718 0.776 288 0.279 1171 0.260 1190 0.259 1191 0.239 1211

RM 138 0.085 331 0.348 233 0.087 330 0.341 236 0.228 305 0.306 286 0.210 310 0.284 292
550 0.425 814 0.824 217 0.416 827 0.791 266 0.269 1181 0.248 1202 0.251 1199 0.229 1221

GARCH 138 0.191 292 0.549 158 0.189 292 0.530 165 0.204 311 0.279 293 0.187 316 0.257 298
550 0.511 686 0.843 189 0.494 711 0.811 236 0.280 1170 0.248 1202 0.258 1192 0.228 1222

FL CVOL 138 0.300 251 0.606 137 0.325 242 0.601 139 0.219 308 0.252 300 0.207 311 0.240 303
550 0.479 733 0.809 240 0.489 718 0.776 288 0.273 1177 0.252 1198 0.259 1191 0.239 1211

RM 138 0.063 339 0.297 252 0.087 330 0.341 236 0.222 307 0.302 287 0.210 310 0.284 292
550 0.367 900 0.834 201 0.416 827 0.791 266 0.266 1184 0.242 1208 0.251 1199 0.229 1221

GARCH 138 0.154 305 0.510 173 0.189 292 0.530 165 0.198 313 0.274 294 0.187 316 0.257 298
550 0.469 748 0.854 172 0.494 711 0.811 236 0.275 1175 0.240 1210 0.258 1192 0.228 1222

PG CVOL 138 0.329 240 0.632 128 0.346 234 0.622 131 0.316 284 0.361 272 0.291 290 0.337 278
550 0.512 684 0.830 207 0.512 683 0.792 265 0.348 1102 0.370 1080 0.323 1127 0.338 1112

RM 138 0.077 334 0.327 241 0.098 326 0.366 226 0.332 279 0.399 263 0.307 286 0.376 269
550 0.413 832 0.861 162 0.455 768 0.809 239 0.370 1080 0.372 1078 0.344 1106 0.340 1110

GARCH 138 0.176 297 0.548 159 0.209 285 0.559 155 0.301 287 0.397 263 0.272 294 0.367 271
550 0.512 684 0.876 139 0.527 662 0.826 213 0.377 1073 0.394 1056 0.347 1103 0.362 1088

Table 5: Size of sequential change-point tests applied to the simulated squared changes of Distance to Default and 
squared standardized changes in VA for the Heston model
Histrical Sample:                m=125           m=500
Boundaries: Parabolic Linear Parabolic Linear
Monitoring Horizon: 2m 3m 4m 2m 3m 4m 2m 3m 4m 2m 3m 4m
Test Volatility Monitoring Process: log [(ΔlnDD)2]
PS CVOL 0.014 0.053 0.070 0.035 0.043 0.066 0.048 0.085 0.109 0.025 0.071 0.101

RM 0.016 0.044 0.069 0.007 0.035 0.066 0.036 0.069 0.099 0.023 0.060 0.095
GARCH 0.032 0.084 0.113 0.013 0.068 0.106 0.066 0.101 0.125 0.042 0.087 0.118

FL CVOL 0.023 0.051 0.059 0.035 0.043 0.066 0.060 0.080 0.095 0.025 0.071 0.101
RM 0.026 0.044 0.061 0.007 0.035 0.066 0.044 0.064 0.083 0.023 0.060 0.095

GARCH 0.049 0.084 0.101 0.013 0.068 0.106 0.079 0.098 0.114 0.042 0.087 0.118
PG CVOL 0.087 0.124 0.142 0.011 0.081 0.126 0.158 0.189 0.207 0.064 0.143 0.190

RM 0.129 0.185 0.208 0.018 0.116 0.171 0.194 0.229 0.246 0.076 0.174 0.221
GARCH 0.138 0.192 0.212 0.031 0.134 0.189 0.202 0.225 0.243 0.093 0.173 0.222

Monitoring Process: log[(ΔlnVA /σVA)2]
PS CVOL 0.043 0.112 0.154 0.026 0.100 0.151 0.058 0.102 0.124 0.033 0.089 0.118

RM 0.153 0.324 0.378 0.110 0.294 0.364 0.112 0.203 0.218 0.078 0.180 0.208
GARCH 0.010 0.022 0.024 0.005 0.018 0.023 0.003 0.009 0.009 0.002 0.007 0.009

FL CVOL 0.049 0.100 0.130 0.026 0.100 0.151 0.069 0.096 0.106 0.033 0.089 0.118
RM 0.171 0.317 0.356 0.110 0.294 0.364 0.127 0.198 0.203 0.078 0.180 0.208

GARCH 0.013 0.021 0.019 0.005 0.018 0.023 0.005 0.008 0.008 0.002 0.007 0.009
PG CVOL 0.087 0.145 0.173 0.037 0.124 0.181 0.154 0.182 0.196 0.063 0.141 0.189

RM 0.320 0.414 0.446 0.209 0.385 0.449 0.261 0.315 0.324 0.155 0.275 0.311
GARCH 0.106 0.144 0.151 0.027 0.089 0.119 0.098 0.112 0.125 0.019 0.060 0.089



Table 6 :Empirical Power and ARL of  sequential tests that monitor the square changes in Distance to Default and squared standardized 
changes in VA  when there is a structural change in the volatility of the value of the assets of a  Heston model

Boundary:                Parabolic
Monitoring Horizon = 4m log [(ΔlnDD)2] log[(ΔlnVA /σVA)

2]
Break size: δθ = 3 δθ = 5 δκ = 0.3 δκ = 0.2 δθ = 3 δθ = 5 δκ = 0.3 δκ = 0.2
Tests Volatility Break time Power ARL Power ARL Power ARL Power ARL Power ARL Power ARL Power ARL Power ARL

PS CVOL 138 0.314 262 0.516 197 0.220 292 0.267 277 0.509 173 0.662 116 0.361 228 0.397 215
550 0.756 357 0.651 508 0.623 549 0.600 582 0.750 327 0.629 509 0.634 500 0.601 550

RM 138 0.030 353 0.033 352 0.039 350 0.039 350 0.648 121 0.727 92 0.540 162 0.564 153
550 0.204 1156 0.173 1200 0.132 1259 0.127 1267 0.802 249 0.643 488 0.701 401 0.647 481

GARCH 138 0.277 274 0.414 231 0.217 293 0.263 278 0.091 329 0.216 282 0.060 340 0.073 335
550 0.686 459 0.560 641 0.532 682 0.495 735 0.409 837 0.512 683 0.335 949 0.382 878

FL CVOL 138 0.284 271 0.494 204 0.194 300 0.239 286 0.475 186 0.650 121 0.325 242 0.364 227
550 0.756 356 0.665 488 0.615 561 0.602 580 0.749 328 0.638 495 0.626 512 0.602 549

RM 138 0.025 354 0.027 354 0.032 352 0.034 352 0.638 125 0.726 92 0.525 167 0.548 159
550 0.172 1201 0.158 1221 0.109 1292 0.109 1292 0.806 244 0.651 475 0.701 400 0.650 477

GARCH 138 0.252 282 0.382 240 0.196 300 0.239 286 0.074 335 0.180 295 0.049 344 0.059 341
550 0.680 468 0.573 622 0.520 698 0.492 739 0.364 905 0.510 687 0.299 1003 0.359 913

PG CVOL 138 0.307 264 0.512 198 0.229 289 0.271 276 0.505 175 0.674 112 0.353 231 0.394 216
550 0.776 327 0.674 476 0.648 512 0.627 543 0.778 285 0.653 472 0.662 459 0.629 508

RM 138 0.078 338 0.077 338 0.099 331 0.091 333 0.678 110 0.738 88 0.636 126 0.663 116
550 0.197 1165 0.177 1194 0.144 1242 0.134 1256 0.728 360 0.617 526 0.710 387 0.684 426

GARCH 138 0.277 274 0.396 236 0.243 285 0.282 272 0.346 234 0.487 181 0.283 257 0.324 242
550 0.701 436 0.583 607 0.563 637 0.524 692 0.519 673 0.510 687 0.526 663 0.554 621

Boundary:                Linear
Monitoring Horizon = 4m log [(ΔlnDD)2] log[(ΔlnVA /σVA)

2]
Break size: δθ = 3 δθ = 5 δκ = 0.3 δκ = 0.2 δθ = 3 δθ = 5 δκ = 0.3 δκ = 0.2
Tests Volatility Break time Power ARL Power ARL Power ARL Power ARL Power ARL Power ARL Power ARL Power ARL

PS CVOL 138 0.300 266 0.490 205 0.212 294 0.257 280 0.494 179 0.640 124 0.354 231 0.390 217
550 0.726 401 0.623 550 0.602 580 0.578 615 0.726 364 0.606 543 0.616 528 0.581 580

RM 138 0.029 353 0.030 353 0.034 351 0.036 351 0.629 129 0.708 99 0.525 167 0.547 159
550 0.196 1166 0.153 1230 0.126 1268 0.118 1280 0.782 279 0.625 515 0.683 427 0.628 509

GARCH 138 0.264 278 0.388 238 0.208 296 0.251 282 0.093 328 0.219 281 0.060 340 0.074 335
550 0.657 500 0.527 688 0.512 711 0.472 769 0.403 846 0.490 716 0.332 954 0.374 891

FL CVOL 138 0.300 266 0.490 205 0.212 294 0.257 280 0.494 179 0.640 124 0.354 231 0.390 217
550 0.726 401 0.623 550 0.602 580 0.578 615 0.726 364 0.606 543 0.616 528 0.581 580

RM 138 0.029 353 0.030 353 0.034 351 0.036 351 0.629 129 0.708 99 0.525 167 0.547 159
550 0.196 1166 0.153 1230 0.126 1268 0.118 1280 0.782 279 0.625 515 0.683 427 0.628 509

GARCH 138 0.264 278 0.388 238 0.208 296 0.252 282 0.093 328 0.219 281 0.060 340 0.074 335
550 0.657 500 0.527 688 0.512 711 0.472 769 0.403 846 0.490 716 0.332 954 0.374 891

PG CVOL 138 0.318 261 0.505 200 0.238 286 0.280 273 0.516 171 0.659 118 0.377 222 0.414 208
550 0.740 380 0.628 542 0.626 545 0.595 589 0.746 333 0.617 527 0.641 490 0.601 550

RM 138 0.060 343 0.062 343 0.077 338 0.070 340 0.697 103 0.758 81 0.653 119 0.681 109
550 0.214 1140 0.165 1212 0.150 1233 0.135 1255 0.748 330 0.628 511 0.728 360 0.698 405

GARCH 138 0.282 272 0.399 235 0.242 285 0.283 272 0.331 239 0.494 179 0.263 265 0.307 248
550 0.674 476 0.534 679 0.544 664 0.496 733 0.531 655 0.519 673 0.536 647 0.567 601

Notes:
(1) The notes in table 3 apply to this table.
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