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Abstract

This paper extends the results of Prékopa (1973, 1980) on strictly log-concave cu-

mulative distributions to strictly log-concave probability distributions. It is shown that

if a random variable follows a strictly logarithmic concave distribution, then the prob-

ability that the random variable is contained within a convex polytope is also strictly

logarithmic concave. This formal result can be useful for identification and estimation of

a general class of linear-index discrete response models, where the additively separable

unobservable follows a strictly log-concave distribution.
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1 Introduction

In discrete response threshold crossing models, where the dependent variable takes values

from a finite set of discrete outcomes, the strict log-concavity of the likelihood function in the

parameters of interest plays a crucial role in their identification and estimation. The literature

has shown that if the likelihood function is strictly log-concave in the parameters of interest,

then unique estimation of those parameters in the binary and multinomial discrete response

models can be achieved1.

In the most commonly used form of discrete response models, where the disturbance term is

additively separable, the log-concavity of the likelihood function is directly related to the log-

concavity of the probability density function of the random unobservables and many widely

used distributions are known to be log-concave (Bagnoli and Bergstrom (2005)). This pa-

per extends the work of Prékopa (1973, 1980) who showed that the cumulative distribution

function (CDF) of a random variable with a strictly log-concave probability density function

(PDF) is also strictly log-concave, to show that the probability distribution function is also

strictly log-concave. In particular, it is shown that if a random variable has a strictly loga-

rithmic concave density, then the probability that it is contained in a convex polytope is also

strictly log-concave. This result is of particular importance when examining linear (single and

multiple) index discrete response models.

The contribution of this paper is two-fold. It lays out a general formalization of some well

known results in the literature, related for example to the classic probit and logit models that,

to the best of our knowledge, have not been explicitly shown, and formally states a result

applicable to a wider class of linear index discrete response models with additively separable

disturbance term, whose distribution is strictly log-concave. For example in economic appli-

cations that model the demand for differentiated products, the choice individuals make can be

multidimensional and the choice probabilities are given by the probability the random vector

1See for example Albert and Anderson (1984), Delle Site et al. (2019), Demidenko (2001), Lesaffre and

Kaufmann (1992), Mäkeläinen et al. (1981), McCullagh (1980), Orme and Ruud (2002), Pratt (1981), Silvapulle

(1981) and Silvapulle and Burridge (1986).
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of unobservables is contained in a convex polytope. If these multidimensional unobservables

jointly follow a strictly log-concave distribution, then the probability they are jointly con-

tained in such a polytope is strictly log-concave in the thresholds that define the half-space

representation of the convex polytope. Since these thresholds are linear in the parameters,

under the standard rank condition as discussed in Wedderburn (1976), the probabilities are

guaranteed to be strictly log-concave in the model parameters, too. This provides a sufficient

condition for point-identification and unique estimation of the regression parameters.

1.1 Notation Section

For the rest of the paper the following notations are used. V ∈ Rn denotes a random vector,

with PDF, f . Throughout, f is assumed to be log-concave in V , that is ∀λ ∈ (0, 1) and

∀ V1, V2 ∈ Rn,

f(λV1 + (1− λ)V2) ≥ f(V1)
λf(V2)

1−λ.

When the above inequality is strict f is strictly log-concave in V .

The probability that the random vector, V ∈ Rn, is contained in a convex polytope A is

denoted by P (A) = P (V ∈ A). A convex polytope is a convex set of points in Rn defined

by the intersection of a finite number of half-spaces. The half-space or H-representation of a

convex polytope A is given by,

A = {HV ≤ `}

where H is a (q × n) matrix, V is a (n × 1) vector and ` is a (q × 1) vector of constant

thresholds.

Define two convex polytopes A and B, then the Minkowski addition of those sets is given

by,

A+B = {a+ b|a ∈ A, b ∈ B} (1)
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2 Strictly Log-concave Probability Distribution Func-

tions

Similarly to Section 1.1, a function F : Rn → R+ is said to be strictly logarithmic concave on

Rn if for any pair of V1, V2 ∈ Rn and for every 0 < λ < 1,

F(λV1 + (1− λ)V2) > F(V1)
λF(V2)

1−λ.

Theorem 4 of Prékopa (1973) provides a set of four conditions which if satisfied the measure

P defined on measurable subsets of Rn and generated by the strictly logarithmic concave

function F is also strictly logarithmic concave , i.e.

P(λA+ (1− λ)B) > P(A)λP(B)1−λ

where A and B are convex subsets of Rn with the property that 0 < P(A) < ∞ and 0 <

P(B) <∞.

Theorem 5 of Prékopa (1973) uses the result in Theorem 4 to show that, if the PDF of a

random vector V ∈ Rn, f , is positive and strictly log-concave in an open convex set D then

its corresponding CDF, F 2, is also strictly logarithmic concave in the set D.

This section extends Theorem 5 of Prékopa (1973) to show that if f is positive and strictly

log-concave in an open convex set D, then the measure P , the probability distribution function

generated by f , is also strictly logarithmic concave in the set D, where P is given by,

P (S) = P (V ∈ S) (2)

and S is a measurable set in Rn.

Such an extension is useful in proving point-identification and unique estimation in many

discrete response models where the additively separable unobservables follow a strictly log-

concave distribution and the probability of observing a specific outcome is given by the form

in (2).

2Theorem 5 of Prékopa (1973) calls F , defined in its proof as F (u) = P (A), where A = {x|x ≤ u}, x ∈ Rn,

the probability distribution function, instead of the cumulative distribution function. See Prékopa (2007)

Theorem 4, Prékopa (2012) Theorem 3, and Delle Site et al. (2019) page 104.
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Theorem 1. If f is a positive and strictly log-concave density function in an open convex set

D ⊂ Rn then the probability distribution function generated by f , P , is strictly log-concave in

this open convex set D.

Proof. The proof follows similar arguments as the proof of Theorem 5 in Prékopa (1973) on

pages 7-8. Define two convex sets A and B in the interior of D ⊂ Rn with A 6= B as

A = {V |HV ≤ `1}

B = {V |HV ≤ `2} (3)

where H is a (q×n) matrix, V is a (n×1) vector and `1 and `2 are (q×1) vectors of constants

with `1 6= `2
3, such that 0 < P (A) < ∞ and 0 < P (B) < ∞. Define the vectors of the k

upper bounds of A and B as `u1 = (`11, . . . , `1k) and `u2 = (`21, . . . , `2k), respectively, and fix

`u1 < `u2 . Following Theorem 4 of Prékopa (1973), thereafter Prékopa4, if for every λ ∈ (0, 1)

the two sets can be decomposed as A1 ∪A2 = A, A1 ∩A2 = ∅, B1 ∪B2 = B, B1 ∩B2 = ∅ and

A1 ∩B1 = ∅4, so that the four conditions given below are satisfied, then it can be shown that

P [V ∈ (λA+ (1− λ)B)] > [P (V ∈ A)]λ[P (V ∈ B)]1−λ.

Define A1, B1, A2 and B2 as

A1 =

{
V
∣∣ HV ≤ `1,

k∑
i=1

(KiV ) ≥
k∑
i=1

`1i − δ
}

(4)

B1 =

{
V
∣∣ HV ≤ `2,

k∑
i=1

(KiV ) ≥
k∑
i=1

`2i − ζ
}

(5)

A2 = A− A1, B2 = B −B1 (6)

such that

A2 :

{
V
∣∣ HV ≤ `1,

k∑
i=1

(KiV ) <
k∑
i=1

`1i − δ
}

(7)

3The two convex sets are in fact convex polytopes made from the intersection of a finite number of half-

spaces, linear in V ∈ Rn. This linearity allows for linear combinations of half-spaces to be chosen which makes

the proof more tractable.
4The proof of Theorem 4 of Prékopa (1973) on page 6 requires the sets A1 and B1 to be disjoint sets.
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B2 :

{
V
∣∣ HV ≤ `2,

k∑
i=1

(KiV ) <
k∑
i=1

`2i − ζ
}

(8)

where δ > 0 and ζ > 0, such that A2 6= ∅, B2 6= ∅ and A1 ∩B1 = ∅. K is a k × n matrix with

k ≤ q such that, KiV = `1i and KiV = `2i correspond to the ith upper hyperplane of A and

B, respectively.

Condition 1 (Prékopa4): A1 and B1 are bounded, closed and convex sets, and A2 and B2

are convex sets.

Suppose that V̂ ∈ A1 and Ṽ ∈ A1 and define V 1 = λV̂ + (1−λ)Ṽ , where λ ∈ (0, 1). Using

(4), notice that:

λHV̂ ≤ λ`1

(1− λ)HṼ ≤ (1− λ)`1

⇒

λHV̂ + (1− λ)HṼ ≤ λ`1 + (1− λ)`1

⇒

H[λV̂ + (1− λ)Ṽ ] ≤ `1

⇒

HV 1 ≤ `1 (9)

and that,

λ
k∑
i=1

(KiV̂ ) ≥ λ
k∑
i=1

`1i − λδ

(1− λ)
k∑
i=1

(KiṼ ) ≥ (1− λ)
k∑
i=1

`1i − (1− λ)δ

⇒

λ

k∑
i=1

(KiV̂ ) + (1− λ)

k∑
i=1

(KiṼ ) ≥
k∑
i=1

`1i − δ

⇒
k∑
i=1

[λ(KiV̂ ) + (1− λ)(KiṼ )] ≥
k∑
i=1

`1i − δ

⇒
k∑
i=1

[Ki(λV̂ + (1− λ)Ṽ )] ≥
k∑
i=1

`1i − δ
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⇒
k∑
i=1

(KiV
1) ≥

k∑
i=1

`1i − δ (10)

Combining (9) and (10),

V 1 : HV 1 ≤ `1,
k∑
i=1

(KiV
1) ≥

k∑
i=1

`1i − δ

∴ V 1 ∈ A1, therefore A1 is convex. The fact that A1 is closed and bounded, follows from

the weak inequalities in (4). Following similar arguments, it can be shown that B1 is closed,

bounded, and convex, while A2 and B2 are convex sets.

Condition 2 (Prékopa4): The following relations hold:

λA1 + (1− λ)B1 ∪ λA2 + (1− λ)B2 = λA+ (1− λ)B (11)

λA1 + (1− λ)B1 ∩ λA2 + (1− λ)B2 = ∅ (12)

λA1 + (1− λ)B1 ∩ A1 = ∅ (13)

λA1 + (1− λ)B1 ∩ B1 = ∅ (14)

Definitions (4), (7), (5), and (8) imply that for any fixed λ ∈ (0, 1), λA1 + (1− λ)B1 can be

expressed as,{
V
∣∣ HV ≤ λ`1 + (1− λ)`2, λ

k∑
i=1

(KiV ) + (1− λ)
k∑
i=1

(KiV ) ≥
k∑
i=1

(λ`1i + (1− λ)`2i)− λδ − (1− λ)ζ

}
⇒ {

V
∣∣ HV ≤ λ`1 + (1− λ)`2,

k∑
i=1

(KiV ) ≥
k∑
i=1

(λ`1i + (1− λ)`2i)− λδ − (1− λ)ζ

}
(15)

and λA2 + (1− λ)B2 as{
V
∣∣ HV ≤ λ`1 + (1− λ)`2,

k∑
i=1

(KiV ) <
k∑
i=1

(λ`1i + (1− λ)`2i)− λδ − (1− λ)ζ

}
(16)

Then following (15) and (16), relations (11) and (12) hold for all δ and ζ.

To prove (13) and (14), first notice that the definitions of A1 and B1 imply that the set

A1 is bounded below by the hyperplane
k∑
i=1

(KiV ) =
k∑
i=1

`1i − δ and B1 is bounded below by

the hyperplane
k∑
i=1

(KiV ) =
k∑
i=1

`2i − ζ. Then, proving relations (13) and (14) is equivalent

to showing that for any fixed λ ∈ (0, 1), there exists a ζ > 0 and a δ > 0 such that the
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lower bound of λA1 + (1 − λ)B1 is above the upper bound of A1 and the upper bound of

λA1 + (1− λ)B1 is below the lower bound of B1. The latter relation is satisfied if,

(δ, ζ) :



k∑
i=1

`2i − ζ >
k∑
i=1

(λ`1i + (1− λ)`2i)

λ

(
k∑
i=1

`2i

)
− ζ > λ

k∑
i=1

`1i

λ

(
k∑
i=1

`2i −
k∑
i=1

`1i

)
> ζ


(17)

Since `u1 < `u2 ,

(
k∑
i=1

`2i −
k∑
i=1

`1i

)
> 0, which implies that there exists ζ > 0 sufficiently

small such that (14) holds.

Relation (13) holds for all δ and ζ such that,

(δ, ζ) :



k∑
i=1

(λ`1i + (1− λ)`2i)− λδ − (1− λ)ζ >
k∑
i=1

`1i

k∑
i=1

(1− λ)`2i − (1− λ)ζ >
k∑
i=1

(`1i − λ`1i) + λδ

k∑
i=1

(1− λ)`2i − (1− λ)ζ >
k∑
i=1

(1− λ)`1i + λδ

(1− λ)

[
k∑
i=1

(`2i − `1i)− ζ
]
> λδ

δ < (1−λ)
λ

[
k∑
i=1

(`2i − `1i)− ζ
]



(18)

Since `u1 < `u2 and (17) shows that a sufficiently small ζ > 0 exists such that

[
k∑
i=1

(`2i − `1i)− ζ
]
>

0, then a δ > 0 sufficiently small exists.

Condition 3 (Prékopa4): For the measures of the decomposing sets the following relations

hold

P (A1) > 0 ; P (B1) > 0 (19)

and
P (A2)

P (A1)
=
P (B2)

P (B1)
(20)

Condition 3 (Prékopa4) can been shown to hold following the proof of Theorem 5 Prékopa

(1973) on page 8, the steps of which, with a slight change in notation, are included for

completeness. Fix δ0 and ζ0 to satisfy conditions (13) and (14). Condition (19) is satisfied for
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any δ > 0 and ζ > 0. If (20) is also satisfied for δ0 and ζ0 then the proof is completed. If (20)

is not satisfied for δ0 and ζ0 since P (A1) is continuous in δ and P (B1) is continuous in ζ and

lim
δ→0

P (A1) = lim
ζ→0

P (B1) = 0

a δ1 can be found, with δ1 ≤ δ0, and a ζ1, with ζ1 ≤ ζ0, to satisfy both relations and (20) is

satisfied with these.

Condition 4 (Prékopa4): f is strictly logarithmic concave in the convex hull A1 ∪B1 ⊂ D.

f is strictly logarithmic concave in D ⊂ Rn, therefore Condition 4 (Prékopa4) is satisfied.

Following Theorem 1, Theorem 9 of Prékopa (1980) can also be extended to strictly loga-

rithmic concave functions. Theorem 9 of Prékopa (1980) states that (with a slight change in

notation),

“If g1(`,W ), ..., gr(`,W ) are concave functions in Rq+n, where ` is a q-component and W is

a n-component vector, and V is a n-component random vector whose probability distribution

is logarithmic concave in Rn, then the function

h(`) = P (g1(`, V ) ≥ 0, . . . , gr(`, V ) ≥ 0)

is logarithmic concave on Rq”.

Theorem 2 below extends Theorem 9 of Prékopa (1980) to strictly log-concave probability

measures over convex polytopes. In particular, it is shown that the measure P is strictly

logarithmic concave in the thresholds defining the half-space representation of the convex

polytope.

Theorem 2. If g1(`,W ), ..., gr(`,W ) are linear functions in Rq+n, where ` is a q-component

of constant thresholds and W is a n-component vector, and V is a n-component random vector

whose probability density function is strictly logarithmic concave in Rn then the function

h(`) = P (g1(`, V ) ≥ 0, . . . , gr(`, V ) ≥ 0)

is strictly logarithmic concave on Rq.
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Proof. Define the sets H(`1) and H(`2) as

H(`1) ≡


W :

g1(`1,W ) ≥ 0

.

∧

.

gr(`1,W ) ≥ 0


and H(`2) ≡


W :

g1(`2,W ) ≥ 0

.

∧

.

gr(`2,W ) ≥ 0


where gj with j = {1, . . . , r} are concave functions. Equivalently,

H(`1) = {W |gj(`1,W ) ≥ 0, j = 1, . . . , r}

H(`2) = {W |gj(`2,W ) ≥ 0, j = 1, . . . , r}

From the proof of Theorem 9 of Prékopa (1980), on pages 13-14, it follows that the set

H = {`|H(`) 6= ∅}, with `1 ∈ H(`) and `2 ∈ H(`), is convex, and if H 6= ∅, the family H(`) is

concave on H. Further restricting the functions gj to be linear functions in Rq+n implies that

the set H = {`|H(`) 6= ∅} is a convex polytope. Define by h(`) = P [V ∈ H(`)] then,

h(λ`1 + (1− λ)`2) = P [V ∈ H(λ`1 + (1− λ)`2)]

≥ P [V ∈ (λH(`1) + (1− λ)H(`2))]

> [P (V ∈ H(`1))]
λ[P (V ∈ H(`2))]

1−λ

= h(`1)
λh(`2)

1−λ (21)

where the strict inequality follows from Theorem 1. This completes the proof that h(`) is

strictly logarithmic concave in `.

2.1 Examples

For illustration purposes, Theorems 1 and 2 are applied to two discrete response models with

additively separable disturbance terms, the binary response probit model and the bivariate

ordered response probit model.
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2.1.1 Binary Response Probit Model

Consider the simple binary response probit model,

Y = 1(Xβ + V > 0) (22)

where 1(·) is the indicator function which equals to 1 if (·) is true and 0 otherwise, X is an

(1 × k) vector of regressors, β is a (k × 1) vector of parameters of interest and V ∈ R is the

scalar unobserved heterogeneity, such that V ⊥ X and V ∼ N(0, 1)5. Using the notation in

Section 2 define as,

H0(`) = {W |g0(`,W ) ≥ 0} and H1(`) = {W |g1(`,W ) > 0}

where,

g0(`,W ) = −(Xβ +W ), g1(`,W ) = Xβ +W and ` = Xβ

The choice probabilities for the probit model are thus given by,

P (Y = 0|X) = h0(`) = P (V ∈ H0(`)) = P (−(Xβ + V ) ≥ 0) = Φ(−`) = Φ(−Xβ)

P (Y = 1|X) = h1(`) = P (V ∈ H1(`)) = P (Xβ + V > 0) = Φ(`) = Φ(Xβ)

Since the standard normal distribution is strictly log-concave, Theorems 1 and 2 imply that

both P (Y = 0|X) and P (Y = 1|X) are strictly log-concave in ` and hence strictly log-concave

in −Xβ and Xβ respectively. Then, if there exists no linear subspace of Rk containing X

with probability 1, both P (Y = 0|X) and P (Y = 1|X) are strictly log-concave in β as well.

2.1.2 Bivariate Ordered Response Probit Model

Consider the bivariate ordered response probit model with three outcomes (Greene and Hen-

sher (2010)),

Y1 = m if αm < X1β1 + V1 ≤ αm+1 and Y2 = n if δn < X2β2 + V2 ≤ δn+1

where (m,n) ∈ {0, 1, 2}, α0 = δ0 = −∞, α1 = δ1 = 0 and α3 = δ3 = ∞ , X1 and X2 are two

(1 × k) vectors of regressors, β1 and β2 are two (k × 1) vectors of parameters of interest, α2

5Pratt (1981) discusses strict log-concavity in the ordered response probit model.
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and δ2 are unknown threshold coefficients and V = (V1, V2)
′ ∈ R2 is the vector of unobserved

heterogeneity, such that V ⊥ (X1, X2) and V ∼ N(0,Σ), where Σ is known. Using the

notation in Section 2 define as,

Hmn(`) =


W :

gmn1 (`,W ) > 0

gmn2 (`,W ) ≥ 0

gmn3 (`,W ) > 0

gmn4 (`,W ) ≥ 0


,



gmn1 (`,W ) = X1β1 +W1 − αm

gmn2 (`,W ) = αm+1 −X1β1 −W1

gmn3 (`,W ) = X2β2 +W2 − δn

gmn4 (`,W ) = δn+1 −X2β2 −W2


and ` =



`1 = X1β1 − αm

`2 = −(X1β1 − αm+1)

`3 = X2β2 − δn

`4 = −(X2β2 − δn+1)


The choice probabilities for the bivariate ordered response probit model are thus given by,

P (Y1 = m,Y2 = n|X1, X2) = hmn(`) = P (V ∈ Hmn(`))

Since P (V ∈ Hmn(`)) is the probability that the random vector V is contained in the

convex polytope Hmn(`), generated by a bivariate normal distribution with known Σ which

is strictly log-concave, Theorems 1 and 2 imply that P (Y1 = m,Y2 = n|X1, X2) for all (m,n)

is strictly log-concave in `. Then, if there exists no linear subspaces of Rk containing X1

and X2 with probability 1, P (Y1 = m,Y2 = n|X1, X2) for all (m,n) is strictly log-concave in

β1, β2, α2, δ2 as well.

3 Conclusion

Log-concave distributions cover a wide range of the most commonly used distributions in

statistical and econometric models. This paper shows that in models where the multivariate

random vector of unobservables follows a strict log-concave distribution, the probability that

it is contained in a convex polytope is also strictly log-concave in the thresholds that define

the half-space representation of the convex polytope. In linear index discrete response models

with additively separable unobservables, where the response probabilities are given by the

probability the multivariate vector of unobservables lies in a convex polytope, under the stan-

dard rank condition, this result implies that the likelihood function will be strictly log-concave

in the parameters, as shown for example in Theorem 3 of Wedderburn (1976). Therefore, this

result provides a sufficient condition for point-identification of the parameters, existence of

12



a unique MLE and no other critical points, when for example, as discussed in Mäkeläinen

et al. (1981), the gradient vector of a twice-continuously differentiable log-likelihood function

vanishes in at least one point in the parameter space. This condition together with the strict

log-concavity of the likelihood function6, ensure that not only the log-likelihood has a unique

global maxima and no other stationary points inside the parameter space, but also it has no

local maxima on the boundary7.

Furthermore, the strict log-concavity assumption is directly related to when algorithm

based procedures, such as the EM algorithm8, converge to a global optimum. For example, as

shown in Wu (1983), Corollary 1, if the likelihood function is unimodal in the parameter space

with a unique stationary point, then any EM sequence converges to the unique maximizer of

the log-likelihood function, under a certain differentiability condition9. The strict log-concavity

of the likelihood function in the parameters implies that it is also unimodal in the parameters

10; thus, the EM algorithm is guaranteed to convergence to the unique MLE, when a unique

stationary point exists.
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2.6 in Mäkeläinen et al. (1981) is a sufficient condition for the strict log-concavity of the likelihood function.
7Under for example complete or quasicomplete separation, discussed in Albert and Anderson (1984), the

MLE is at infinity on the boundary of the parameter space. As also pointed out by Peters and Chesher (2000)

in these two improper data configurations unique and finite maximum likelihood estimates do not exist.
8Lange (2013) highlights that “In the absence of concavity, there is also no guarantee that the EM algorithm

will converge to the global maximum”.
9McLachlan and Krishnan (2007) provide an extensive discussion of the theory, methodology and applica-

tions of the EM algorithm.
10See Dharmadhikari and Joag-Dev (1988), page 178.

13



Delle Site, P., Kilani, K., Gatta, V., Marcucci, E., de Palma, A., 2019. Estimation of consistent

logit and probit models using best, worst and best–worst choices. Transportation Research

Part B: Methodological 128, 87–106.

Demidenko, E., 2001. Computational aspects of probit model. Mathematical Communications

6, 233–247.

Dharmadhikari, S., Joag-Dev, K., 1988. Unimodality, convexity, and applications. New York:

Academic Press.

Greene, W.H., Hensher, D.A., 2010. Modeling ordered choices: A primer. Cambridge Univer-

sity Press.

Lange, K., 2013. Optimization. volume 95. Springer Science & Business Media.

Lesaffre, E., Kaufmann, H., 1992. Existence and uniqueness of the maximum likelihood

estimator for a multivariate probit model. Journal of the American Statistical Association

87, 805–811.
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