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This study investigates the effect of pollution and pollution spillovers on the Total Factor 

Productivity (TFP) growth among the 48 contiguous U.S. states, for the period 1965-2002. 

Specifically, this study accounts for the spatial relationship between the states that arises from 

the transboundary nature of Sulphur dioxide (SO2) emissions and investigates how the 

dispersion of pollution affects economic growth. The relationship between TFP growth, 

pollution and pollution spillovers is estimated using a semiparametric smooth coefficient 

model that allows estimating the output elasticity of pollution and pollution spillovers for each 

state and each period and accounts for possible nonlinearities in the data. According to the 

results, the effect of spillover pollution on growth is negative and larger in magnitude than the 

positive effect of a state’s own emissions: decreases in emissions might not be so harmful for 

productivity growth.  
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1 Introduction 

It is well established that emissions turn to harmful pollutants that can travel across state 

borders.1 This paper accounts for the spatial relationship between the states that arises from 

the transboundary nature of emissions and investigates how the dispersion of emissions affects 

economic growth. Specifically, this paper measures the effect of pollution spillovers on the 

Total Factor Productivity (TFP) growth among the 48 contiguous U.S. states, for the period 

1965-2002. The empirical relationships are explored using nonparametric econometric 

methods that allow obtaining heterogeneous estimates (for each state and period) as well as the 

pattern of these estimates. The analysis uses SO2 emissions; SO2 emissions can be transported 

over hundreds or thousands of kilometers away from the emitting source and deposited on the 

area of a downwind state. WBK & Associates Inc. (2003) report that when SO2 is released it 

can remain in the atmosphere from 2 to 8 days (Katz, 1977), from 1 to 3 days according to 

Hidy (1994) and from 1 to 5 days according to the Hazardous Substances Data Bank (HSDB, 

2002).2  

 

The fact that emissions travel across state boundaries can create an environment where states 

may engage in strategic interaction. For example states, as a response to the pollution they 

receive from other states, may decrease or increase their emissions, depending on the 

“damage” they cause. Maddison (2007) notes that it is usually assumed that the reaction 

function of a country with respect to the emissions of other countries is downward sloping.  

This is true if the perceived marginal damage of a country is convex to the emissions of others 

(see Freeman, 1993, and Førsund and Strøm, 1994, for a discussion on the damage functions). 

If the marginal damage function is negatively sloped with respect to the pollution received by 

others then the emission function is upward slopping of other countries´ emissions. The effect 

of the pollution spillovers on TFP growth, provided by the estimates obtained in this paper, 

can be used as an indicator of “damage”, if one wants to use this term.  Depending on how 

                                                           
1 Hence the term tranbandoury pollution. 
2 This is the so-called “residence time” of SO2 in the atmosphere. It is determined by the rate of removal of SO2 
from the atmosphere; “Once SO2 is released into the atmosphere, it may be converted to other compounds and/or 
removed from the atmosphere by various mechanisms. Processes such as oxidation, wet deposition, dry 
deposition, absorption by vegetation and by soil, dissolution into water and other processes contribute to the 
removal of SO2 from the atmosphere” (WBK & Associates Inc., 2003, p.6). 
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much a state is affected by other states´ emissions, that is depending on the level of pollution 

spillovers as well as the emissions that the state is producing (its “own emissions”), their 

estimated effect on growth will give an inside for the state´s incentives to change or not its 

emissions levels. Two offsetting effects on growth are expected to take place from the 

generation of emissions. On one hand the pollution spills in a state (hereafter named: spillins) 

from other states are expected to have negative effect on growth.3 The pollution a state is 

receiving from other states is a negative externality, both because of its effect on the 

environment (including the reduction of e.g. labor productivity, see Empora & Mamuneas 

(2011) for more extended discussion on the negative externality effect of emissions that 

applies here also) as well as in the sense of Baumol and Oates (1988, p.17) definition: “An 

externality is present whenever some individual´s (say A´s) utility or production relationships 

include real variables, whose values are chosen by others (persons, corporations, governments) 

without particular attention to the effects of A´s welfare”. The effect of “neighbors” emissions 

on productivity growth also captures possible environmental policy reactions (and thus 

pollution abatement cost variations) to the environmental policies of the neighbors.4 On the 

other hand a state´s “own emissions” have an overall positive effect (the estimates in Empora 

& Mamuneas (2011) provide the evidence on this) and are expected to continue having a 

positive effect after accounting for pollution spillovers. Which of the two effects is the greatest 

in absolute value is what, in terms of productivity gains or losses, will determine the 

incentives of states to change their emissions policy. Given these incentives and the fact that 

states are responsible for most of the enforcement of environmental standards, this will 

potentially offer important policy implications about the success or failure of specific 

environmental policies and programs. 

 

Most of the models proposed in the literature do not account for the relationship between 

transboundary pollution spillovers and economic growth. Only very few papers have taken 

                                                           
3 The use of the term “pollution spillins” or “pollution received” throughout the paper is not a measure of the 
quantity of depositions within a state. Instead, higher pollution spillins in a state is meant to proxy the assumption 
that when states defined as “neighbors” to a state, are responsible for greater generation of transboundary 
pollution, increase in their emissions results in increase in the possible pollution spillins in that state.  
4 Fredriksson and Millimet (2002) find that states’ environmental regulations are affected by those of their 
neighbors. There is also a lot of work in the literature investigating the effect of regulations on measures of 
competitiveness; environmental regulations increases the costs of firms due to pollution abatement but it can also 
be productivity engaging through technological progress in the production and pollution abatement techniques. 
Pasurka (2008) offers an interesting review on the topic. 
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into account the spatial relationship between countries that arises from the transboundary 

nature of pollutants (Murdoch, Sandler, Sargent, 1997; Hauer and Runge, 2000; Stern, 2000; 

Ansuategi, 2003; and Maddison, 2006; 2007). These papers are part of the ECK literature and 

(the empirical ones) mainly use data on sulfur emissions in a panel of European countries. 

Fredriksson and Millimet (2002) account also for environmental spillovers but in the context 

of environmental regulations; they use environmental regulations as the dependent variable to 

investigate the direction and the magnitude of the strategic interaction between U.S. states. 

They find that states are affected by their neighbors. In terms of water pollution spillovers, 

Sigman (2005) examines water quality in state rivers across the U.S. states and finds evidence 

of free riding behavior among the states. The environmental laws in the U.S. are at a large 

extend federally set, nevertheless, the U.S. states have significant flexibility in implementation 

and enforcement. The Clean Air Act Amendments (initiated in the 1970s and continue until 

today) which are implemented at the federal level gives states considerable freedom in 

selecting the ways of pollution control and thus in defining their environmental policy. It 

seems that transboundary pollution together with the nature of the environmental policy 

setting and enforcement in the U.S. allows states to act strategically. The purpose of this paper 

is not to estimate reaction functions due to transboundary spillovers; rather it provides 

estimates of their effect on growth, which in turn can be used as indicators influencing the 

motives and the behavior of the states thus generating possible strategic interaction between 

states. 

 

The contribution of this paper can be summarized in the following. First and most importantly 

is that, unlike previous work, this study provides estimates of the effect of the pollution a state 

is receiving, proxied by neighboring states´ emissions, on TFP growth. Second, the 

nonparametric estimation methods provide heterogeneous estimates of this effect. Third, 

policy implications arise by examining the effect of spillovers on TFP growth; this effect 

being one factor affecting a state´s environmental behavior. That is, depending on the amount 

of emissions a state is producing and the magnitude of pollution it receives, estimating the 

effect of these two on its growth (their combined net effect on growth), can give a measure of 

how strong (if any) are the incentives towards implementing various environmental policies.  
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According to the findings, the relationship between pollution spillovers and TFP growth is 

negative. The analysis suggests that a strategic interaction game emerges; states that are 

relatively low emitters but high receivers of pollution from other states have relatively 

stronger incentives to cut back on emissions since, given that all states do the same, in 

productivity terms, they will benefit the most from a reduction in emissions. Overall, states 

alone have no incentive to cut back on their emissions unless all the states follow the same 

policy; for a successful reduction in interstate pollution spillovers, a federally set and enforced 

policy is necessary. This reduction will benefit all the states since according to the magnitude 

of the estimates reducing emissions might not be necessarily too harmful for productivity 

growth.  

 

The paper is organized as follows. Section 2 presents the model. Section 3 presents the method 

and the data used for the empirical estimation. Section 4 presents the results. Section 5 

discusses the findings and the possible policy implications. Finally, section 6 concludes.  

2 Model 

The following production function is defined to describe the production process 

 

         ( , , , , )ey F x x e p t=                 (1) 

 

where y, is the output produced using a vector of non residual generating inputs x, and the 

input xe that generates emissions. e stands for emissions that enter directly in the production 

function and represent the negative externality effect emissions can have on production.5 p 

represents pollution spillovers between states. The pollution that a state receives from other 

states, p, negatively affects the receiver’s state environment (e.g deterioration of natural 

recourses, affects the productivity of agents in the economy and etc). Thus receiving pollution 

from other states is a pure negative externality and as such it can only have a negative effect 

on the “receiver’s” state output. t is a technology index measured by time trend. 

 

Following Murty and Russell (2002; 2010), the generation of the production residual is 

described by 
                                                           
5 See Empora & Mamuneas (2011) for details on the use of e directly in the production function. 
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        ( , )ee g x t=                  (2) 

 

where t is a time trend that captures the production technology of emissions6. The pollution 

spillover variable or the pollution received by state i at time t is proxied by “neighbors” 

emissions. It is the weighted sum of the other states´ emission densities but the state in 

question  

 

     ( )
n

it jt ij jt
i j

p p s w s
≠

= =∑                                                 (3) 

 

where ijw  is the weight used to define the relationship between states i and j as far as pollution 

is concerned. When ijw is positive then states i and j are classified as “neighbors”. jts  is the 

emission density of state j defined as the emissions divided by the area of the state j.7 More on 

the construction of spillover pollution variable is provided in the data section of the paper. 

 

Solving (2) for xe, ( , ),ex h e t=  and replacing it in (1) the following production function is 

defined for state i at time t:8  

 

                 ( , ( , ), , , ) ( , , , )it it it it it it ity F x h e t e p t f x e p t= =     (4) 

 

That is output, y, depends on x, the vector of traditional inputs (capital, k, and labor inputs, l), 

the emissions state i is producing, e, the spillover pollution, p, and the time trend t that is now 

capturing the combined production of output and emissions technology. Total differentiation 

of (4) with respect to time and division by y along with the definition of TFP growth index, 

results in the following relationship between TFP growth, emissions and pollution spillovers 

(see Empora & Mamuneas (2011) for a detailed derivation), for state i in year t          

                                                           
6The residual generation mechanism in equation (2) describes the technology of emission production and does 
not constitute a behavioral relationship.  
7 Once again it is emphasized that “pollution received” does not measure the quantity of depositions within a 
state; it is constructed in order to capture the effect of neighboring states ´emissions.  
8  The function g(.) must be monotonic otherwise is not invertible. The 2nd law of thermodynamics ensures that 

(.) 0e ge x ′ >∂ ∂ = (Baumgartner et al., 2001). Moreover, SO2 emissions are mainly energy related. In general, 
emissions can be generated also from materials, in which case ex  will represent an aggregator index of the 
intermediate inputs. 
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         ˆ ˆ ˆ ˆ
it itit it e it p itTFP e pe e= Α + +                                                 (5)  

 

The last two terms on the right hand side of (5) capture the unobserved contribution of the 

emissions state i is producing, e, and the spillover pollution, p, to aggregate production. This 

unobserved contribution of own emissions and spillover pollution to output growth, is 

modeled as a general unknown function of both a state’s emissions and a state’s pollution 

received, 1 ˆ( , )e p eθ  and 2 ˆ( , ) ,e p pθ  respectively 

 

                                               1 2
ˆ ˆ ˆ ˆ( , ) ( , )it it it it it it it itTFP e p e e p pθ θ= Α + +                                 (6) 

 

The output elasticity of emissions and the output elasticity of spillover pollution, 1(.)θ and

2 (.),θ  capture the state-specific effect of own emissions and spillover pollution on growth.   

3 Data and empirical analysis  

Adding the usual error term, ,itu  equation (6) becomes 

 

                                    1 2
ˆ ˆ ˆ( , ) ( , )T

it it it it it it it it itTFP W e p e e p p uβ θ= + + +       (7) 

 

where 1
ˆ( , , )T

it i itW D t TFP −=  contains the variables in the linear part of the equation and the 

error term satisfies ( )ˆ ˆ, , , , 0.it it it it it itE u W e p e p = 9 The model of equation (7) is estimated using 

the smooth coefficient semiparametric model. This allows for own emissions and spillover 

pollution to influence TFP growth for each state and each period and in a nonlinear fashion 

(Fan, 1992; Fan and Zhang, 1999; Li et al., 2002; Kourtellos, 2003; and Mamuneas, et al., 

2006). For the estimation of equation (7), the panel dataset with information on the 48 

contiguous U.S. states for the years 1965-2002 is employed (see Empora & Mamuneas (2011) 

                                                           
9 Moving from equation (6) to equation (7) ˆ

itA is expressed as a function of state dummies to capture idiosyncratic 
exogenous technological change and time trend to capture exogenous shifts in technology. The lagged TFP 
growth ( 1

ˆ
itTFP − ) is used as a regressor to account for the dynamics of TFP growth and to capture serial 

correlation problems. 
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for details on the construction of the dataset). Emissions and pollution spillovers are measured 

using the SO2 pollutant.  

 

One issue to be addressed in order to investigate the relationship between the interstate 

pollution spillovers and growth is the choice of weights; it is necessary to specify the weights 

for the construction of the spillover or pollution received variable. Fredriksson and Millimet 

(2002) when analyzing whether there is strategic interaction between the states as far as 

environmental stringency, is concerned, they emphasize the importance of the choice of the 

weight matrix; they use various geographical and/or income/population based weights. States 

can be interconnected in various ways. The spatial weights matrix (the `w s in equation (3)) can 

use inverse geographical distances between states or indicating which states share a common 

border. States can be also related due to environmental factors like for example the direction 

of the wind. Murdoch et al. (1997), Ansuategi (2003) and Maddison (2007) employ scientific 

information to account for pollution spillovers between European countries; they use a 

transport (or blame) matrix of coefficients (produced by the EMEP (European Monitoring and 

Evaluation Program)) that transforms a vector of emissions into a vector of depositions.10  

 

In the analysis of this paper various weighting schemes are used but only some of them proved 

to be functional. The ones discussed in the empirical analysis are the following: the first, is 

one in which weights are based on the inverse distances between the states, the second is a 

weight that defines two states as neighbours if the distance between the two states is less than 

the median distance between two states in the sample. Thus the above two weighting schemes 

are distance based ones.11 Two more weighting schemes are used; one that assigns a weight of 

one if states accept inflows of pollution from the other states (zero otherwise). The 

information used to construct this weight is obtained by U.S. EPA in the context of the Clean 

Air Interstate Rule (CAIR) program.12 The last weighting scheme does not involve the use of 

weights as such; the unweighted sum of emissions of all other states but the state in question is 

used as the pollution spillover variable in the estimations. Table 6 of the appendix provides 

descriptive statistics for the growth of the pollution spillover variables constructed using each 

of the weighting schemes. In addition to these weighting schemes, for which the results are 

                                                           
10 Currently such information on transport matrices for U.S. states is not available for use in the current paper.  
11 Distance between states is from Wolf (2000). 
12 Source: http://www.epa.gov/cair/where.html.  



8 
 

presented in the next section, experimentation using other weighting schemes was also 

performed. The search among weights created a list of weighting schemes that have been also 

used in estimations. Some of them either don’t work at all or don’t perform well for all states. 

Some of these weights are listed in table 7 of the appendix. 

 

The spillover pollution variable is constructed using the weight matrix (with the leading 

diagonal terms equal to zero) along with the data on the emission density of each state. 

Emissions and not ambient concentration rates are used for this calculation. Ansuategi (2003) 

argues that ambient concentration rates measure the local impact of polluting activities but the 

source of the polluting activities, that is, the origin of emissions, is not taken into account. In a 

framework that accounts for transboundary pollution spillovers, the choice of the pollution 

measure to be used becomes even more important. That is, a state can produce low (high) 

quantity of emissions but to exhibit high (low) reported ambient concentration rates due to 

transboundary pollution transfers between states. There are of course other factors like 

chemical transformation of the pollutant in the ambient air. So using ambient concentration 

rates is not the best measure for calculating pollution transfers between states because it 

already contains, or is net from, any interstate pollution spillovers that have taken place. Using 

emissions, although it accounts for the origin of the polluting activities, which is important in 

defining pollution spillovers between states, it does not account for the area in which they are 

released nor for the location of the impact. The first issue is dealt with by using emission 

density for the calculation of spillover pollution; emissions transferred outside a state’s border 

may diminish as the size of the state increases. That is, bigger states typically absorb more of 

their own emissions.13 By dividing emissions by the state size, the emissions that the states 

that are assigned a nonzero weight (the “neighboring” states; states from which pollution can 

be transferred to other states), are able to spill out is adjusted according to the size of area in 

which they are released. The unknown probable location of the impact of emissions is then 

dealt with by calculating the pollution spillovers using specific weighting schemes. 

 

Before proceeding to the results, it should be noted that NOx spillovers were also constructed 

but it seems that in this case the model does not perform well. One reason might be that NOx 

causes much less damage on the environment than SO2. Muller and Mendelsohn (2007), 
                                                           
13 This is true if one assumes that the polluting activities take place in the center of a state (which is a circle). But 
even if it is not, this assumption is not restrictive.  
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measure the damages of air emissions in the U.S. in 2002 using six air pollutants. They find 

that SO2 emissions generate considerable more damage than NOx; SO2 produces 26% of total 

damages while NOx emissions generate only 8% of total damages. Also, the differences in 

sources for the two pollutants may be another reason for why the model does not work well 

for NOx emissions. According to the U.S. EPA, National emissions Inventory (2002), 70% of 

SO2 comes from stationary sources while only 22% of NOx comes from these sources. The 

major source for NOx is mobile sources (59% and only 5% for SO2). Since NOx emissions 

come mainly from mobile sources, the relationship between the origin and receptor states, as 

far as pollution spillovers is concerned, might need more precise (in terms of environmental 

engineering) weights between states in order to be modeled. Further investigation of the effect 

of transboundary nature of NOx emissions and is effect in growth is left as a future research14.   

4 Empirical results 

The results of the semiparametric model are presented in figures 1-3 and tables 1-3 and 4. 

Figure 1 and table 1 present the results on two distance based weighting schemes. Figure 2 and 

table 2 present the results of the CAIR weighting scheme and that of the unweighted measure 

of spillover pollution. Figure 3 plots the results for the marginal effect of own emissions on 

growth. Table 3 offers the 15 states with the highest effect of spillover pollution on their 

growth, for all weighting schemes. Table 4 presents the estimates of the exogenous rate of 

technological change for all weighting schemes. The average estimated exogenous rate of 

technological change ranges from 0.008, for the CAIR weighting scheme, to 0.04 when the 

weighting scheme used is the one with the inverse distances between states. Table 5 presents 

the estimates of the linear parametric model for each of the weighting scheme.15  

 

The nonparametric results are based on standard local kernel estimation using the standard 

Gaussian density as the kernel. The bandwidth is chosen by cross-validation. Figures 1 and 2 

plot the output elasticity of spillover pollution, 2 (.),θ  on the vertical axis and spillover 

                                                           
14 To see if the difference between SO2 and NOx holds before 1990, when the Clean Air Act amendments were 
released by EPA and generated the cap-and-trade system for SO2, the analysis was also performed for the period 
1965-1990; the difference remains but the nonparametric estimates for NOx are now statistically incignificant.  
15 In the literature people also use standardized weights; the elements of the row of the matrix sum to unity and 
have zeros in the leading diagonal. Standardized weights are not essential; they are usually used for the ease of 
interpretation. 
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pollution on the horizontal axis, for the different weights.16 Figure 3 plots the output elasticity 

of emissions, 1(.),θ  on the vertical axis and emission levels on the horizontal axis. For each 

figure the estimates are drawn along with the 95% confidence intervals for these estimates. 

The straight line is the estimated parameter of pollution received and emissions, respectively, 

from a parametric linear specification, where 1(.)θ  and 2 (.)θ  are constants and therefore the 

contribution of pollution to TFP growth is linear (see table 5 for the parametric estimates).  

 

Two specification tests are performed. First, the Li and Wang (1998) test; it tests the null 

hypothesis of a parametric linear specification against a general nonlinear specification. The 

test results show rejection of the null. This holds for all the estimated models that use all the 

different weighting schemes presented in this paper (the p-value is 0.0001 for each one of 

them). Second, a serial correlation test is also performed. This test is (also) used as a 

specification test because if serial correlation is present to the parametric linear specification 

and not in the semiparametric one, this might be an indication that nonlinear effects, and not 

error dependency, are probably present and are not captured by the regression function in the 

linear parametric formulation (Li and Hsiao, 1998, and Li and Stengos, 2003). The null 

hypothesis is no-first order serial correlation. The Lagrange Multiplier test employed for the 

parametric model shows that 1st order serial correlation is present (the null hypothesis is 

rejected in all cases/all weighting schemes with a p-value equal to zero). The testing for serial 

correlation in the semiparametric specification is conducted using the test proposed by Li and 

Stengos (2003). In terms of implementation this test is the same as the LM test used in the 

case of the parametric model. For the standard errors in the smooth coefficient function, these 

are obtained with block "wild" bootstrapping to account for dependent data. The results 

indicate that 1st order serial correlation is also present (for all weighting schemes) in the 

semiparametric specification (with zero p-values). Including the lagged TFP growth as a 

regressor and re-applying the test, shows that in the linear model first order serial correlation is 

still (strongly) persistent (the p-value is less than 0.0005 for all weighting schemes) while in 

the semiparametric is not (the p-value is greater than 0.77 for all weighting schemes). The 

tests results support the use of the semiparametric model since nonlinear effects seem to be 

present. This nonlinear relationship is also evident by observing the linear estimate in the 

                                                           
16 

1
(.)θ  is evaluated at the mean of spillover pollution. 

2
(.)θ  is evaluated at the mean of own emissions. This is 

necessary because otherwise the graphical analysis would require a three dimensional graph.  
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graphs; apart from certain ranges, the linear estimate lies outside the 95% upper and lower 

bands. Finally, the point estimates from the semiparametric model seem to be statistically 

different from zero since the 95% bands do not include zero for most of the estimates.  
 
The results show that the effect of spillover pollution, as expected, negative.17 The pollution 

that a state receives from other states is a negative externality and as such it has a negative 

effect on the “receiver’s” state growth. The heterogeneous estimates show that the negative 

marginal effect on growth is higher the higher the spillover pollution is. In the case of 

emissions that the states are producing, the effect on TFP growth is positive.18 As far as the 

magnitude of these estimates is concerned, on average the output elasticity of spillover 

pollution ranges from -0.01 to -0.03 depending on the weight used (see tables 1 and 2)19. The 

average output elasticity of own emissions ranges from 0.006 to 0.007. The average output 

elasticity of spillover pollution is large relatively to the average output elasticity of emissions. 

Muller and Mendelsohn (2007), found that in the U.S., the 2002 14.8 million tons of SO2 

emissions (19% of the total emissions by weight (PM2.5, NH3, SO2, VOC’s  PM10 NOx ) 

generated $19.5 billion in damages (26% of total damages) and is considered to be amongst 

the four pollutants (PM2.5, NH3, SO2, VOC’s ) that cause the greatest damage. According to 

their results, most of the damages are attributed to effects on human health. This means that 

the negative externality effect of spillover pollution, coming from factors like the worsening of 

the productivity and quality of the inputs (mostly labor inputs), is well captured by the model 

as the relatively large impact on the production indicates.  

 

Comparing the results between the different weighting schemes, the results on the effect of 

spillover pollution on growth show a lot of similarities as far as the average magnitude of the 

effect on growth as well as the distribution of states is concerned. Table 3 reports the 15 states 

with the highest negative output elasticity from spillover pollution. Ohio is always, no matter 

the weight used for the construction of spillover pollution, the state that has the biggest 
                                                           
17 In order to account for the possible lag of the effect of the spillover pollution on the economy, the lagged 
values of spillover pollution are used in the estimation.   
18 In this paper emission levels are used as a measure of own emissions. According to the results in Empora & 
Mamuneas (2011), using emissions or emission density does not differentiate the pattern of their effect on 
growth, in the case of SO2. The robustness of this is also verified in this paper. Moreover the results, of the effect 
of spillover pollution on growth, are not much differentiated between the two measures of own emissions. Since 
the focus of the paper is the effect of spillover pollution, to conserve space the results shown and discussed in this 
paper are only for the case in which emission levels are used as the variable for a state´s “own emissions”.  
19 The estimates before 1990 do not change the results qualitatively. Quantitatively the estimated elasticities are 
three times larger relatively to the full sample estimates (for all weighting schemes).  
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negative output elasticity of spillover pollution (and the biggest positive output elasticity of 

own emissions); Ohio is among the states that receive the highest, on average, pollution from 

other states (see table 8 of the appendix for rankings of the states as far as the level of 

pollution they receive, is concerned).20 Also, overall, the states with the biggest negative 

elasticity of pollution spillovers are the eastern states. A comparison of the R2 values, although 

the differences are minor, favors the last weighting scheme (when using the sum of emission 

densities – unweighted – of all states but the state in question as the spillover variable in the 

estimations). Nevertheless, because this weight ignores factors that define and shape the 

relationship between states, all the other weights, with the next best being the weight defining 

as neighbors the states that are less than 1091 miles (median distance) far from each other, are 

preferable. A similar weighting scheme also performs the best in Maddison (2006); he 

specifies countries as neighbors if the distance between them is less than 1750 miles. Lin 

(2010) also uses a similar weight, which takes the value of one if a site is located between 1 

and 500km from another site.  

 

As a final remark, according to Anselin (2002) a number of issues concerning the specification 

of weights should be taken into account but in general the choice of the correct weighting 

scheme is a matter of the application in hand. For example, the distance based weights 

generally place more weight to states that belong to a neighborhood of small states. This 

feature of the distance based weights, although is a drawback in general, is appropriate in the 

application of this study because the states more heavily weighted are the east states; the 

middle-east states are generally small and therefore have more neighbors. These states are also 

high emitters, therefore states located near these states, will have, according to the distance 

based weights, higher spillover pollution. Since the eastern states are, according to U.S. EPA 

the ones receiving the highest pollution spillins due to prevailing winds, and also these high 

“receiver” states the same with the high “giver” states, the distance based weights used in this 

study are therefore correctly capturing the status of the east U.S. states by defining this 

neighborhood of states as being the high receivers of spillover pollution.21 The distance based 

                                                           
20 The statement that Ohio receives the highest pollution from other states, captures not the quantity of 
depositions within the Ohio, but the neighboring states´ (as these are defined as such when the weight between 
Ohio and other states is positive) emission density. Higher levels of pollution received means that a state has 
either more “neighbors” or the neighbors are high polluters, or both. 
21 The U.S EPA performed the so-called State-by-State zero-out modeling to quantify the contribution from 
emissions in each state to future PM2.5 nonattainment in other states. According to the resulting PM2.5 
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weights would have produced misleading results if, for example, the high polluters were the 

big states, these states were located to the east and small states were located to the west. Then 

the selection of these distanced based weights will have been inappropriate because they 

would have not been able to capture the correct relationships between states (since they would 

have been placing a lot of weight on the small states, thus producing false spillover effects). 

5 Discussion  

The results lead to some interesting conjectures. First, the average output elasticity of 

pollution spillovers, for all states, and for all weighting schemes, is higher in absolute value 

than that of emissions the state is producing. This means that, all else equal, on average the 

marginal net effect on productivity growth is negative; if a state reduces its emissions but 

other states don’t then this reduction will cause a decrease in its productivity growth. 

Assuming that the growth rate of states’ emissions and that of the pollution they receive are 

the same, then if all states reduce their emissions by 1%, the net effect on output will be 

positive; using the nearest neighbor weighting scheme, on average output will go down by 

0.006% but also increase by 0.03% from a 1% reduction in spillover pollution. The net effect 

on output will be positive (increase by 0.02%). That is, it seems that reducing emissions might 

not be necessarily so harmful for productivity growth.  

 

The results also suggest a grouping of the states based on the difference between the estimated 

elasticities, 2 1
ˆ ˆ .θ θ−  This difference shows which states will benefit the most from a 

reduction in spillover pollution. For example, states like Ohio, Maryland, Delaware, New 

Jersey and West Virginia show high estimated difference between the marginal effect on 

growth of the pollution they receive and the emissions they produce. These (east) states are 

highly affected by the emissions of neighboring states, i.e. they receive relatively high levels 

of pollution from other states. This group of states has relatively stronger incentives to cut 

back on emissions since, given that all states do the same, they will benefit the most. For 

                                                                                                                                                                                      
contribution matrix (available at http://www.epa.gov/CAIR/pdfs/iaqr_pm25_contributions.xls), the high receiver 
states of P.M2.5 are the same with the states having the highest spillover pollution in this study. The biggest 
contributors are, according to the same matrix, the same as the high receivers; the middle-eastern states. Since 
this indicative PM2.5 contribution matrix classifies the “receivers” and “givers” all being in the same area i.e. 
they are neighbors, provides further support that the distance based weights, used in the paper and classify the 
same states as neighbors, are appropriate in the application of this study.  

http://www.epa.gov/CAIR/pdfs/iaqr_pm25_contributions.xls
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states like, Arizona, Washington, California, Nevada and Montana the estimated difference, 

2 1
ˆ ˆ ,θ θ−  is low. These states have weaker incentives to cut back on their emissions. For the 

rest of the states the difference, 2 1
ˆ ˆ ,θ θ−  is average relatively to the two aforementioned 

extremes.  

 

Overall, states will benefit from a reduction in the spillover pollution, some more and some 

less, and therefore the incentives to cut on their emissions are also higher for some and lower 

for others. But no matter the degree of the benefit, left on their own to set their environmental 

policy, they do not have incentive to cut back on their emissions because they will only benefit 

if other states do the same. Reducing emissions in order to reduce spillovers is not a credible 

strategy because of the free riding behavior of the states. A state has the incentive to free ride 

since if the other states reduce their emissions, the state in question will gain the most if it 

does not; pollution spillovers and their negative effect on growth will be reduced and at the 

same time the positive effect of its own emissions will, at the least, be the same. This is 

common knowledge, which means that if all states assume the same then none of the states 

will be willing to reduce its emissions in order to reduce spillovers. That is unless the states 

are assured that there will be a reduction in the pollution spillovers, they don’t have incentives 

for reducing their emissions. Thus the states will engage in a prisoner’s dilemma-type game 

and reach a sub-optimal equilibrium. Because of the public nature of spillovers, that is if a 

state reduces its emissions then some others benefit, states can only rely on governments for 

the provisions of pollution spillover reduction; to get to the optimal solution, a federal policy 

towards an overall reduction of emissions is necessary. Ansuategi (2003) calls this game 

“open-loop Nash equilibrium” where each country takes the other countries ‘policies as given 

when maximizing their objective function.  

 

Most of the papers dealing with transboundary pollution, measure the outcome of strategic 

interaction, if any. They do not provide estimates of the possible channels for why for example 

a country affected by the emissions of other countries is reducing (or increasing or does not 

change) its emissions. For the latter to be addressed it usually requires, among others, an 

environmental damage function. The estimates provided by this paper, on the effect of the 

pollution spillovers together with the effect of the emissions a state is producing, on TFP 
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growth, is one indicator of why possible strategic interaction games can take place. The game 

is based on the states’ incentives to change their emissions policy. This paper provides, in 

productivity terms alone, estimates of these incentives.  

 

U.S. states act, to a significant extent, independently as far as their environmental policy is 

concerned; this gives states the liberty to act strategically. Policies that are determined at the 

level of the state are likely to ignore the air pollution spillovers. In order for a policy to be 

credible, is, for this policy to be set at the federal level. So it seems that to ensure the control 

of spillovers and reduce their negative effect on growth, federal policies, is a superior (or, as it 

looks like, the only) choice. This is also acknowledged by the U.S. EPA, which issued the 

Clean Air Interstate Rule on March 10, 2005, to reduce interstate pollution movements.22 

Summarizing, in terms of productivity only, ceteris paribus, it seems that this type of action (if 

it is a collective one), will benefit all states (some more, some less) since, according to the 

estimates, the reduction in productivity growth from reducing emissions comes with the 

benefit from a reduction in pollution spillovers.  

6 Conclusion 

This paper takes into account the transboundary nature of SO2 emissions and measures the 

effect of pollution spillovers on the Total Factor Productivity (TFP) growth among the U.S. 

states. The effect of pollution spillovers on productivity growth is negative for each one of the 

states in the sample and is also larger in magnitude than the positive effect of a state’s own 

emissions. As far as policy implications is concerned, it seems that the incentives for a state-

level policy towards emissions cut backs (in order to reduce overall spillovers) differs among 

states (or among group of states) depending on the levels of the emissions a state is producing, 

the level of pollution it receives from other states and their (combined) effect on TFP growth. 

Although some states will gain from the reduction is spillovers, it holds that no state is willing 

to reduce its emissions unless all states do the same.  

 

Although the intention of this paper is not to model and estimate strategic interaction effects 

between the U.S. states, but to provide estimates of the effect of pollution spillovers on one 

                                                           
22 Because the Clean Air Interstate Rule was first issued in 2005, the effect of this policy cannot be accounted for 
since it falls outside the time period of the dataset in this paper.  



16 
 

very important economic indicator, the TFP growth, nevertheless, these estimates provide 

some insights about the states´ behavior. That is, in productivity terms alone, the estimates of 

pollution spillovers on growth, quantify the incentives of the states; states with high negative 

output elasticities of the pollution spillovers relativity to the output elasticities of their own 

emissions have higher incentives to cooperate for reducing emissions. But because, unless all 

states follow a reduction of emissions policy, no state is willing to do so, points towards a 

federally set policy in order for a reduction in pollution spillovers to be achieved. This 

reduction will (for some sates more and for some other less) benefit all the states since 

according to the estimates reducing emissions might not be necessarily too harmful for 

productivity.  

 

This paper integrates different areas of research that have developed independently. Unlike 

previous work, it provides estimates of the effect of transboundary pollution on the state level 

productivity growth. In productivity terms, this effect can be used as another measure of 

“damage” of the transboundary pollution spillovers and can be taken into account in policy 

setting situations. The pollution spillover variable is constructed using various weighting 

schemes. The results are not much differentiated among weights thus providing confidence for 

the robustness of the results. Nonetheless, future work could focus on finding alternative and 

more detailed weighting matrices for the measurement of pollution spillovers among the U.S. 

states. Overall this work can have a broader applicability. It can be applied to other air 

pollutants and/or other types of pollution, like water pollution. It can be also applied to a set of 

other countries (like the European countries) or areas within countries that are linked with 

each other because of the spatial dispersion of pollution, and provide measures of the spillover 

effect on their productivity growth.   
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Figure 1 Output elasticities of spillover pollution, 2 ( , ),ite pθ distance based weights 
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Figure 2 Output elasticities of spillover pollution, 2 ( , ),ite pθ  other weights 
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Figure 3 Output elasticities of emissions (own), 1( , )ite pθ  23 

 
 

 
 

                                                           
23 The shapes of the figures of the output elasticity of own emissions are the same between the different models 
that use the different weighting schemes for the construction of the spillover pollution variable. 
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Table 1 Output elasticity of own and spillover pollution: nonparametric estimates. Average by 

state, 1965-2002, distance based weights 

 Weighting scheme 

State 
 
 

 
 

1/distij 

(1) 

 

 

=1 if distij ≤ median 

(2) 

 Own Spillover  Own Spillover 
Alabama  0.00819 -0.01445  0.00538 -0.03693 
Arizona  0.01234 -0.01491  0.01065 -0.01087 
Arkansas  0.00531 -0.01052  0.00333 -0.02831 
California  0.00820 -0.00921  0.00728 -0.00935 
Colorado  0.00675 -0.00860  0.00515 -0.01527 
Connecticut  0.00293 -0.01448  0.00287 -0.03477 
Delaware  0.00068 -0.02870  0.00261 -0.03688 
Florida  0.00855 -0.01395  0.00532 -0.03447 
Georgia  0.00777 -0.01433  0.00507 -0.03770 
Idaho  0.00706 -0.00746  0.00652 -0.00941 
Illinois  0.01484 -0.01898  0.01254 -0.05193 
Indiana  0.01430 -0.01789  0.01340 -0.05152 
Iowa  0.00628 -0.01121  0.00390 -0.02801 
Kansas  0.00626 -0.00981  0.00379 -0.02534 
Kentucky  0.00698 -0.01590  0.00652 -0.04178 
Louisiana  0.00706 -0.01092  0.00434 -0.02560 
Maine  0.00414 -0.01208  0.00308 -0.03097 
Maryland  0.00292 -0.01655  0.00340 -0.03769 
Massachusetts  0.00423 -0.01409  0.00375 -0.03136 
Michigan  0.00798 -0.01495  0.00632 -0.04346 
Minnesota  0.00637 -0.01013  0.00423 -0.02260 
Mississippi  0.00586 -0.01078  0.00345 -0.02999 
Missouri  0.01008 -0.01480  0.00686 -0.02786 
Montana  0.00727 -0.00843  0.00660 -0.01005 
Nebraska  0.00568 -0.00971  0.00367 -0.02435 
Nevada  0.00731 -0.00816  0.00677 -0.00936 
New Hampshire  0.00296 -0.01472  0.00300 -0.03248 
New Jersey  0.00108 -0.02174  0.00340 -0.03541 
New Mexico  0.00764 -0.00945  0.00651 -0.01152 
New York  0.00366 -0.01668  0.00578 -0.03687 
North Carolina  0.00595 -0.01386  0.00394 -0.04015 
North Dakota  0.00672 -0.00920  0.00482 -0.01770 
Ohio  0.03282 -0.03142  0.03063 -0.07320 
Oklahoma  0.00628 -0.00945  0.00372 -0.02513 
Oregon  0.00719 -0.00734  0.00669 -0.00894 
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Table 1 (continued) 

 Weighting scheme 

State 
 
 

 
 

1/distij 

(1) 

 

 

=1 if distij ≤ median 

(2)* 

 Own Spillover  Own Spillover 
Pennsylvania  0.00541 -0.01812  0.01231 -0.04636 
Rhode Island  0.00212 -0.01611  0.00276 -0.03338 
South Carolina  0.00513 -0.01215  0.00296 -0.03959 
South Dakota  0.00657 -0.00815  0.00595 -0.01129 
Tennessee  0.00993 -0.01528  0.00667 -0.03522 
Texas  0.01208 -0.01600  0.00860 -0.01953 
Utah  0.00721 -0.00819  0.00665 -0.00967 
Vermont  0.00444 -0.01101  0.00275 -0.03335 
Virginia  0.00530 -0.01296  0.00340 -0.03824 
Washington  0.00765 -0.00806  0.00701 -0.00888 
West Virginia  0.00849 -0.01600  0.00681 -0.04030 
Wisconsin  0.00588 -0.01382  0.00410 -0.03925 
Wyoming  0.00693 -0.00874  0.00554 -0.01387 
       
Average 
(all states)  0.00722 -0.01332  0.00606 -0.02909 
Std. Error  0.00541 0.00568  0.00508 0.01550 
       
Obs.   1824   1824  
R2   0.07699   0.07997  
*sample median distance between states is 1091 miles (mean distance is 1194.5 miles).  
The 48 contiguous states are included in the dataset. The states of Alaska, Hawaii and the 
District of Columbia are excluded from the sample.  
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Table 2 Output elasticity of own and spillover pollution: nonparametric estimates. Average by 

state, 1965-2002, other weights 

 Weighting scheme 

State 
 
 

 
 

CAIR 

(1)  
 

jj i
e

≠∑  

(2) 

 Own Spillover  Own Spillover 
Alabama  0.00354 -0.02851  0.00673 -0.02902 
Arizona  0.01067 -0.02095  0.00875 -0.03342 
Arkansas  0.00658 -0.02684  0.00409 -0.02754 
California  0.00724 -0.02428  0.00490 -0.02894 
Colorado  0.00661 -0.02670  0.00413 -0.02781 
Connecticut  0.00136 -0.03604  0.00415 -0.02330 
Delaware  0.00156 -0.03597  0.00399 -0.02219 
Florida  0.00879 -0.01992  0.00651 -0.02965 
Georgia  0.00245 -0.03110  0.00638 -0.02940 
Idaho  0.00645 -0.02749  0.00396 -0.02762 
Illinois  0.01160 -0.02687  0.01404 -0.03719 
Indiana  0.01161 -0.02648  0.01480 -0.03513 
Iowa  0.00711 -0.02456  0.00470 -0.02777 
Kansas  0.00674 -0.02611  0.00428 -0.02786 
Kentucky  0.00429 -0.02787  0.00802 -0.02883 
Louisiana  0.00730 -0.02399  0.00486 -0.02774 
Maine  0.00652 -0.02716  0.00403 -0.02738 
Maryland  0.00322 -0.03078  0.00476 -0.02238 
Massachusetts  0.00717 -0.02438  0.00474 -0.02151 
Michigan  0.00504 -0.02799  0.00800 -0.03210 
Minnesota  0.00686 -0.02560  0.00444 -0.02803 
Mississippi  0.00684 -0.02565  0.00438 -0.02750 
Missouri  0.00975 -0.01885  0.00775 -0.03119 
Montana  0.00674 -0.02617  0.00432 -0.02814 
Nebraska  0.00652 -0.02715  0.00403 -0.02765 
Nevada  0.00669 -0.02636  0.00426 -0.02799 
New Hampshire  0.00655 -0.02697  0.00405 -0.02566 
New Jersey  0.00132 -0.03480  0.00473 -0.02029 
New Mexico  0.00711 -0.02464  0.00473 -0.02854 
New York  0.00314 -0.03019  0.00718 -0.02947 
North Carolina  0.00157 -0.03295  0.00545 -0.02814 
North Dakota  0.00674 -0.02614  0.00424 -0.02773 
Ohio  0.02954 -0.04024  0.03304 -0.05157 
Oklahoma  0.00665 -0.02650  0.00417 -0.02769 
Oregon  0.00647 -0.02741  0.00398 -0.02766 
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Table 2 (continued) 

  Weighting scheme 

State 
 
 

 

CAIR 

(1)  
 

jj i
e

≠∑  

(2) 

 Own Spillover  Own Spillover 
Pennsylvania  0.00911 -0.02898  0.01357 -0.03559 
Rhode Island  0.00166 -0.03623  0.00393 -0.02467 
South Carolina  0.00695 -0.02520  0.00447 -0.02688 
South Dakota  0.00645 -0.02749  0.00396 -0.02761 
Tennessee  0.00435 -0.02777  0.00791 -0.02905 
Texas  0.01002 -0.01867  0.00868 -0.03552 
Utah  0.00667 -0.02649  0.00423 -0.02784 
Vermont  0.00638 -0.02787  0.00388 -0.02737 
Virginia  0.00323 -0.03069  0.00485 -0.02736 
Washington  0.00677 -0.02596  0.00432 -0.02781 
West Virginia  0.00380 -0.02915  0.00804 -0.02475 
Wisconsin  0.00557 -0.02608  0.00566 -0.02871 
Wyoming  0.00670 -0.02629  0.00423 -0.02788 
       
Average 
(all states)  0.00658 -0.02751  0.00634 -0.02865 
Std. Error  0.00497 0.00468  0.00556 0.02905 
       
Obs.   1824   1824  
R2   0.07720   0.08514  
The 48 contiguous states are included in the dataset. The states of Alaska, Hawaii and 
the District of Columbia are excluded from the sample. 
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Table 3 Ranking of states as far as the average magnitude of the estimated output elasticity of 

spillover pollution 

States with the highest output elasticity* 

Weighting scheme 

1/distij  =1 if distij ≤ median  CAIR  
jj i

e
≠∑  

         
Ohio  Ohio  Ohio  Ohio 
Delaware  Illinois  Rhode Island  Illinois 
New Jersey  Indiana  Connecticut  Pennsylvania 
Illinois  Pennsylvania  Delaware  Texas 
Pennsylvania  Michigan  New Jersey  Indiana 
Indiana  Kentucky  North Carolina  Arizona 
New York  West Virginia  Georgia  Michigan 
Maryland  North Carolina  Maryland  Missouri 
Rhode Island  South Carolina  Virginia  Florida 
Texas  Wisconsin  New York  New York 
West Virginia  Virginia  West Virginia  Georgia 
Kentucky  Georgia  Pennsylvania  Tennessee 
Tennessee  Maryland  Alabama  Alabama 
Michigan  Alabama  Michigan  California 
Arizona  Delaware  Kentucky  Kentucky 
* The first state is the one with the highest (in absolute terms) average output elasticity of 
spillover pollution. 
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Table 4 Exogenous rate of technological change  

 Weighting scheme 

State 
 

 
 

 1/distij 

(1) 
 
 

=1 if distij ≤ median 

(2)  

 
CAIR 

(3)  

jj i
e

≠∑  

(4) 

Alabama  0.03805  0.00574  0.00802  0.03696 
Arizona  0.04621  0.01408  0.01623  0.04466 
Arkansas  0.04077  0.00878  0.01084  0.03975 
California  0.03853  0.00637  0.00869  0.03737 
Colorado  0.04222  0.01005  0.01236  0.04110 
Connecticut  0.03625  0.00415  0.00604  0.03561 
Delaware  0.03830  0.00577  0.00807  0.03725 
Florida  0.04263  0.01036  0.01280  0.04152 
Georgia  0.04344  0.01108  0.01366  0.04230 
Idaho  0.04110  0.00893  0.01122  0.03982 
Illinois  0.03411  0.00167  0.00403  0.03297 
Indiana  0.03779  0.00561  0.00769  0.03674 
Iowa  0.03758  0.00551  0.00779  0.03653 
Kansas  0.03704  0.00501  0.00720  0.03603 
Kentucky  0.03750  0.00516  0.00743  0.03649 
Louisiana  0.03308  0.00114  0.00326  0.03209 
Maine  0.03694  0.00460  0.00721  0.03596 
Maryland  0.03676  0.00444  0.00678  0.03593 
Massachusetts  0.03639  0.00425  0.00690  0.03569 
Michigan  0.03476  0.00233  0.00452  0.03378 
Minnesota  0.03912  0.00699  0.00932  0.03803 
Mississippi  0.03841  0.00636  0.00852  0.03735 
Missouri  0.03632  0.00430  0.00654  0.03519 
Montana  0.03381  0.00181  0.00394  0.03258 
Nebraska  0.03680  0.00478  0.00699  0.03577 
Nevada  0.04412  0.01194  0.01425  0.04289 
New Hampshire  0.04236  0.01006  0.01259  0.04140 
New Jersey  0.03560  0.00344  0.00543  0.03494 
New Mexico  0.03558  0.00353  0.00573  0.03442 
New York  0.03193  -0.00010  0.00185  0.03128 
North Carolina  0.04329  0.01088  0.01339  0.04220 
North Dakota  0.03525  0.00324  0.00543  0.03435 
Ohio  0.03508  0.00290  0.00509  0.03395 
Oklahoma  0.03637  0.00433  0.00654  0.03532 
Oregon  0.04079  0.00864  0.01092  0.03964 
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Table 4 (continued) 

 Weighting scheme 

State 
 

 
 

 1/distij 

(1) 
 
 

=1 if distij ≤ median 

(2)  

 
CAIR 

(3)  

jj i
e

≠∑  

(4) 

Pennsylvania  0.03428  0.00220  0.00430  0.03344 
Rhode Island  0.03483  0.00263  0.00420  0.03410 
South Carolina  0.04276  0.01034  0.01285  0.04167 
South Dakota  0.03970  0.00759  0.00985  0.03866 
Tennessee  0.04132  0.00910  0.01127  0.04016 
Texas  0.04111  0.00918  0.01163  0.03993 
Utah  0.04096  0.00883  0.01108  0.03967 
Vermont  0.03900  0.00664  0.00929  0.03800 
Virginia  0.04042  0.00807  0.01044  0.03942 
Washington  0.04090  0.00873  0.01103  0.03974 
West Virginia  0.03012  -0.00219  0.00016  0.02916 
Wisconsin  0.03825  0.00589  0.00808  0.03728 
Wyoming  0.03205  -0.00001  0.00222  0.03107 
         
Average 
(all states)  0.03812  0.00594  0.00820  0.03709 
Std. Error  0.00382  0.00399  0.00401  0.00369 
         
Obs.  1824  1824  1824  1824 
The 48 contiguous states are included in the dataset. The states of Alaska, Hawaii and the 
District of Columbia are excluded from the sample. 
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Table 5 Parametric estimation results (1965-2002). Dependent variable: TFP growth   

  Weighting scheme 

Variable  

 1/distij 

(1) 

  

=1 if distij ≤median 

(2) 
 

CAIR 

(3) 
 

jj i
e

≠∑  

(4) 

           
Growth of spillover  
pollution 

 
 -0.01732  -0.02732  -0.03102  -0.03598 

  (0.02730)  (0.03054)  (0. 02372)  (0.05710) 
Growth of emissions  0.00479*  0.00486*  0.00475*  0.00494* 
  (0.00266)  (0.00259)  (0.02372)  (0.00252) 
Lagged TFP growth  0.19249**  0.19740**  0.19289**  0.19698** 
  (0.07676)  (0.07439)  (0.07611)  (0.07880) 
Year  -0.00016  -0.00018  -0.00017  -0.00018 
  (0.00018)  (0.00019)  (0.00018)  (0.00020) 
Constant  0.33406  0.36654  0.35067  0.37159 
  (0.37872)  (0.39367)  (0.37521)  (0.40504) 
         
Obs.  1,824  1,824  1,824  1,824 
R2  0.073  0.074  0.073  0.074 
Robust standard errors in parentheses. These are the Driscoll and Kraay (1998) standard errors which 
are robust to both heteroskedasticity and serial correlation of unknown form as well as cross sectional 
dependence.  
*** p<0.01, ** p<0.05, * p<0.1. 
The estimated model includes state specific effects. 
The 48 contiguous states are included in the dataset. The states of Alaska, District of Columbia and 
Hawaii are excluded from the sample. 
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7 Appendix   

Table 6 Descriptive statistics (1965-2002) 

Growth of  Mean  Std.Dev.  Min  Max 

SO2 emissions  -0.00893  0.21333  -2.54625     2.66449 
         

Spillover pollution          

1/distij  -0.01261    0.05997    -0.55752     0.62535 
         
=1 if distij ≤ median  -0.01390      0.05504  -0.57531     0.18984 
         
CAIR   -0.00409      0.04035    -0.33305     0.17460 
         

jj i
e

≠∑  
 -0.01255       0.04252    -0.13126     0.06634 

         
Obs.  1824       
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Table 7 Some other weighting schemes 

weight*  Source and information 

Border=1 if states share a 
common border, zero 
otherwise 
 

 
 
 
 

The source of information about which states share a common border is:  
http://www.enchantedlearning.com/usa/states/ 
 
 

Border/radius_distanceij 
 
 
 
 
 
 
 
  

This weight uses the radius of each state to calculated the distance 
between states; it is assumed that states are circles and the distance 
between two neighbouring states is the sum if their radius (radius_ 

distanceij). Radius is calculated as: / ,  3.14.r area π π= =  
Source for area of states: U.S. Census Bureau, 2000 Census of Population 
and Housing, Summary Population and Housing Characteristics 
(http://www.census.gov/population/www/censusdata/density.html) 
 

DW=1 if the direction of 
the wind affects a state, 
zero otherwise 
 
 
  

This weight is constructed based on information on prevailing wind 
directions. Wind directions is from specific sites in each U.S. state and are 
given in compass points; mean wind speeds (SPD) and peak gust (PGU) 
are in miles per hour (mph). Source: National climatic data center, U.S. 
Department of Commerce (http://www.ncdc.noaa.gov).  
 

(DW x speed)/distij 
 

 
 
 
 
 

 
 
 
 
 
 

The source for the direction and speed of the wind is the same as above. 
The speed of the wind is also used in this weight in order to calculate how 
fast a particle can travel. It is then divided by distance between states to 
account for the distance it travels to get to another state. Distance between 
states is from Wolf (2000). 
 
 

S_W_SW=1 if a state is 
located to the south, west 
or southwest of other 
states, zero otherwise. 
 

 
 
 
 

This weight is constructed according to information obtained from Lin 
(2010). According to Lin, who uses information on the direction that the 
winds blow, a state i is considered a neighbour of state j if it located to the 
South, West or Southwest of state j.  
 

(S_W_SW)/distij 
 
 

 
 

Same as above but is now divided by the distance between states (obtain 
by Wolf, 2000). 
 

*Variants of the weights in this table are also used in estimations.  
 

 
 
  

http://www.enchantedlearning.com/usa/states/
http://www.census.gov/population/www/censusdata/density.html
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Table 8 Ranking of states as far as the levels of spillover pollution 

15 States with the highest level of spillovers* 

weight 1 
(1/distij)   

weight 2 
(=1 if distij ≤ median)  

weight  
(CAIR) 

     

Delaware  Michigan  Pennsylvania 
Pennsylvania  North Carolina  West Virginia 
New Jersey  South Carolina  New York 
New York  Illinois  Georgia 
Maryland  Kentucky  North Carolina 
Rhode Island  Wisconsin  Ohio 
New Hampshire  Virginia  New Jersey 
Connecticut  Indiana  Kentucky 
Kentucky  Maryland  Tennessee 
Indiana  West Virginia  Alabama 
Massachusetts  Delaware  Connecticut 
Ohio  Georgia  Delaware 
West Virginia  Ohio  Michigan 
Michigan  Alabama  Rhode Island 
Wisconsin  New Jersey  Indiana 
* The first state is the one with the highest levels of “pollution received”. 
The last “weighting scheme” used in the estimations, the sum of all states´ emissions but the 
state´s emissions in question, ,jj i

e
≠∑  is not a weight as such and it is therefore not 

presented in this table.  
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