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Abstract

This paper introduces a spatial dimension to an otherwise standard class of strategic

market games in order to study the issue of market location in a perfectly competitive

setup. In this framework, each player decides strategically where and what quantities she

wishes to trade and, hence, the market structure (or simply the distribution of the active

trading posts and prices) emerges endogenously. We conduct a comprehensive analysis for

a class of simple games with a continuum of traders and we show that (i) not all market

structures can support a Nash equilibrium, (ii) at least some multi-market structures can

support a Nash equilibrium and (iii) prices in a multi-market Nash equilibrium, generi-

cally, diverge.

JEL classification: R32, C72, D41

Keywords: spatial model; market locations; strategic market games; perfect compe-

tition.

∗xefteris.dimitrios@ucy.ac.cy
†n.ziros@ucy.ac.cy

1



1 Introduction

Marketplaces are locations in which economic agents perform their trading activities and their

distribution over a geographical area may affect social welfare in a number of ways. A thorough

analysis of the determinants of the number and of the distribution of marketplaces should,

thus, improve our understanding on various questions addressed in the literature of spatial

economics but also on more general issues of economic theory. This paper considers that

heterogeneous agents (in terms of consumption preferences and initial endowments), whose

residences are distributed over a geographical area, strategically decide where and how much

to trade and, thus, the number and the distribution of marketplaces over the geographical area

emerge endogenously. A formal study of this game with an arbitrarily large number of agents

(perfect competition) allows us to characterize the nature and the properties of sustainable

market structures.

In order to accommodate trade in a model with instrumental agents, we employ the method-

ology of strategic market games (SMG), which, to the best of our knowledge, has never been

used before in the context of location theory. This class of games, originating in Shubik (1973)

and in Shapley and Shubik (1977), provide a non-cooperative foundation to perfect competi-

tion as they have been particularly successful in showing that in mass markets individuals tend

to exhibit price taking behavior1. Given that SMG are often thought of as an extension of

Cournot’s analysis of competition to the general equilibrium framework, we consider that they

could be associated with (and utilized by) many branches of the existing literature on spatial

economics2.

In the present paper we analyze a simple class of SMG with an arbitrarily large number

of traders (perfectly competitive setup), enriched with a spatial dimension. That is, unlike

common SMG, players are not only characterized by preferences on consumption bundles and

a set of initial endowments but by a location parameter and an aversion to transportation costs

too. The game that we consider is a variant of the "bilateral oligopoly" model of Gabszewicz

1For formal studies on the relation between non-cooperative equilibria of SMG and competitive equilibria
the reader is referred to Dubey and Shubik (1978), Postlewaite and Schmeidler (1978), Mas-Colell (1982), Sahi
and Yao (1989) and Dubey and Shapley (1994).

2For example, general equilibrium approaches to location-relevant issues can be found in Wang (1990), Fujita
and Smith (1987), Berliant and Wang (1993), Berliant et al. (1990), Karmann (1982), Baesemann (1977),
Schweizer et al. (1976).

2



and Michel (1997), whose key feature is the separation of individuals into two types, where each

type has a corner endowment in one of the two goods. Therefore, there are two factors that

determine the choice of location; the prices (i.e., the ratio at which the two goods are exchanged)

in the different markets (which, in turn, is determined by the populations of individuals of both

types and their actions in each market) and the distance of a market from the initial location

of an individual3. In addition, we assume that the location parameters (residences) of the

individuals of the two types follow distinct distributions. In particular, we consider that there

is a high concentration of individuals of one type in the left half of the unit interval and a high

concentration of individuals of the other type in the right half. This generic assumption is a

key feature of the model and it leads to some appealing results about the divergence of prices

in multi-market formulations.

Regarding the main results of the paper, we initially prove that there exists a Nash equi-

librium where all individuals trade on the same market independently of its location. Then we

move on to consider structures with more markets and we prove that some multi-market Nash

equilibria do exist4. It is also demonstrated that in a multi-market Nash equilibrium no single

price clears all markets for a commodity, and thus we show that the "law of one price" fails even

in a perfectly competitive setup. A key result of the paper (as shown in Propositions 3,5 is that

no equilibrium exists if markets are set on contiguous locations, hence not all market structures

can support a Nash equilibrium. As a complement, Proposition 4 proves that there is an upper

bound on the number of active markets in equilibrium. The intuition behind these results is

clear; as any two active markets exhibit unequal prices, the benefit from moving to the market

with the most preferred price offsets the small transportation costs between neighbor markets;

hence there is a collapse of trade in some market locations and the given market structures fail

to support an equilibrium. Therefore, unlike the standard market games, in our approach the

number of marketplaces is determined endogenously. Finally, in addition to the general results,

we consider a representative case that provides a numerical analysis of our outcomes and allows

for some further results about social welfare.
3Our agents’ preferences are closely associated with agents’ preferences of imperfect competition spatial

models. See for instance, Hotelling (1929), D’Aspremont et al. (1979), Economides (1984), Osborne and
Pitchik (1987), Salop (1979), Novshek (1980), Economides (1993), Hamilton et al. (1989), Anderson and Neven
(1991), Hamilton et al. (1994), Gupta et al. (1997) and Huck et al. (2003).

4Equilibria with multiple markets can also be found in several other studies, e.g., in Kung and Wang (2012)
for the relevant issue of knowledge transmission or in Fujita and al. (1997) for the formation of employment
centers.
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Our approach clearly bears no resemblance with most spatial competition models à la

Hotelling, where, typically, a finite number of firms compete in terms of prices and locations.

Nonetheless, the analysis in Anderson and Engers (1994), which also studies the choice of lo-

cation under the price-taking hypothesis, is close to our framework. That paper studies the

existence of equilibrium in a model where a finite number of firms merely choose their loca-

tions, as prices are determined subsequently by a planning authority whose only concern is the

maximization of social surplus. The results exhibit that minimum differentiation (firms choos-

ing the same location) occurs in equilibrium only when considering the duopoly case together

with completely inelastic demand. On the other hand, minimum differentiation never arises in

equilibrium when considering more than two firms or suffi ciently elastic demand.

The rest of the paper is organized as follows. In Section 2 we present the model. The general

results follow in Section 3. Section 4 presents a representative case of the model. Section 5

offers some concluding remarks. Finally, the proofs of the main results and a brief discussion

about the properties of the considered utility functions can be found in the appendix section.

2 The model

We consider that a unit mass of type A (B) individuals is distributed on the [0, 1] interval (lin-

ear city) according to an absolutely continuous distribution function FA (FB). An individual

is characterized by her actual location (or location parameter), her initial endowment and her

preferences over consumption bundles of two distinct goods. An individual of type A possesses

w > 0 units of good I and zero units of good II, whereas an individual of type B possesses

w > 0 units of good II and zero units of good I. If we assume that good I serves as money, then

individuals of type A and B can be thought of as the consumers and the producers (with zero

production costs) respectively of good II. Consumption preferences for the two types of indi-

viduals are described by their utility functions, which we denote with uA(xI , xII) for individuals

of type A and with uB(xI , xII) for individuals of type B. We suppose that the preferences of

the two types are perfectly symmetric, so that uA(xI , xII) = uB(xII , xI) for all xI and xII (this

assumption can be relaxed at a significant analytical cost). We assume that these functions are

increasing, continuous, strictly concave for every (xI , xII) ∈ (0,+∞)2, differentiable in both
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arguments and that when xII > 0 (xI > 0) it is the case that limxI→+∞ uA(xI , xII) = +∞

(limxII→+∞ uA(xI , xII) = +∞). For the derivation of our general results we further assume

that uA(φ, 0) = uB(0, φ) = 0 for every φ ≥ 0 and that w = 1, which, obviously, does not

make the qualitative part of our results less general compared to an analysis that considers an

arbitrary w.

In our model agents will be free to trade any amount of their initial endowment at any

possible location of our linear city. Locations of individuals are indexed by lower case letters

and an individual with location parameter h who decides to trade in location l, faces the

corresponding transportation cost according to the function c(h, l).

Finally, in order to keep things tractable we further assume that:

Assumption 1 FA(z) = 1 − FB(1 − z) (symmetry about the centre of the linear city) and

F
′′
A > 0 and F ′A(0) = 0 (monotonicity).

Assumption 2 c(h, l) = |h− l|,

Assumption 3 ∂x̂I/∂pII = ∂x̂II/∂pI = 0 where (x̂I , x̂II) is the unique solution of the problem

maxxI ,xII uA(xI , xII) s.t. pIxI + pIIx
II ≤ m for parameters pI , pII ,m > 0 and

Assumption 4 uA(x̂I , x̂II) > 1 for pI = pII and m = pIw.

A few comments regarding the above assumptions are in order. Assumption 1 suggests that

the greater mass of type A individuals is located in the right part of the interval, whereas the

greater mass of type B individuals is symmetrically located in the left part of the interval.

Assumption 3, although it seems to be quite restrictive, is satisfied by many popular utility

functions. For example, any Cobb-Douglas utility function has this property. It should be

stressed at this point that this assumption is a suffi cient condition for the derivation of our

results but not a necessary one. Indeed, in the Appendix we show that our results extend to

utility functions that fail to satisfy this property. Assumption 4, concerning the utility values

at the solution of the maximization problem, just guarantees that the transportation costs that

we are introducing in our SMG are not so high to make an agent better off by not trading at

a "fair" market. This assumption is necessary because our aim is to investigate how trading
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locations and patterns arise in a spatial SMG without making the transportation costs the sole

determinant factor of the behavior of any of our agents.5

We now turn to describe the rules of trade in our economy6.

2.1 The strategic market game

The associated market game for this economy is described as follows. Each individual chooses

only one a location where she places orders for purchases or sales of good y ∈ {I, II} depending

on her type.7 Hence, each type A individual may bid an amount b (with 0 ≤ b ≤ 1) of money

(good I) in exchange for good II in location l′ ∈ [0, 1], with her bids in all other locations being

equal to zero. Similarly, each type B individual may offer an amount q (with 0 ≤ q ≤ 1) of

good II in exchange for good I in location l′′ ∈ [0, 1], with her offers in all other locations being

equal to zero. Hence, the strategy sets are SA = {(l′, b) ∈ [0, 1]2} for type A individuals and

SB = {(l′′, q) ∈ [0, 1]2} for type B individuals. We denote by σ′i,α = (l′, b) ∈ [0, 1]2 the strategy

of a type A individual i ∈ [0, 1] with location parameter α ∈ [0, 1] and by σ′′g,β = (l′′, b) ∈ [0, 1]2

the strategy of a type B individual g ∈ [0, 1] with location parameter β ∈ [0, 1]. For measuring

the size of specific subsets of individuals we employ a Lebesque measure. Specifically, we denote

by µjA (µ
j
B) the Lebesque measure of type A (B) individuals who trade in location l

j.

Given a profile of bids and offers with Bl, Ql > 0 (where Bl, Ql are the total bids and offers

in location l) the market clearing price in location l is:

pl =
Bl

Ql
(1)

If at least one of Bl and Ql is equal to zero we consider that trade does not take place in

location l and agents get back their bids (offers).

5One could avoid making this assumption if one assumed instead transportation costs of the form c(h, l) =
t|h− l|, for t > 0 suffi ciently small.

6An similar investigation of a strategic market game with a continuum of traders can be found in Dubey
and Shapley (1994).

7After the presentation of our formal arguments it will become evident that all our results hold even when
each agent is allowed to trade at any number of locations: in an equilibrium of such a generalized game each
agent trades at exactly one location. Hence this assumption is without loss of generality.
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According to the allocation mechanism of the game, supplied quantities of the two goods

in a specific location are distributed among individuals in proportion to their bids or offers.

Hence, the final allocations for the traders participating in market l are as follows: xIA = 1− b,

xIIA = b/pl for type A individuals and xIB = plq, xIIB = 1− q for type B individuals.

Finally, the payoff of a type A individual i ∈ [0, 1] with location parameter α ∈ [0, 1] who

chooses to trade b units of her initial endowment in location l′ given a strategy profile σ̂ is given

by:8

Uα
A(σ′i,α, σ̂) = uA(1− b, b/p′)− c(α, l′) if Bl′ , Ql′ > 0 and

Uα
A(σ′i,α, σ̂) = uA(w, 0)− c(α, l′) otherwise

and the payoff of a type B individual g ∈ [0, 1] with location parameter β ∈ [0, 1] who

chooses to trade q units of her initial endowment in location l′′ given a strategy profile σ̂ is

given by:

Uβ
B(σ′′g,β, σ̂) = uB(p′′q, 1− q)− c(β, l′′) if Bl′′ , Ql′′ > 0 and

Uβ
B(σ′′g,β, σ̂) = uB(0, w)− c(β, l′′) otherwise.

Hence, individuals of type A are viewed as solving the following problem:

max
σ′i,α∈[0,1]2

Uα
A(σ′i,α, σ̂) (2)

and individuals of type B are viewed as solving the following problem:

max
σ′′g,β∈[0,1]2

Uβ
B(σ′′g,β, σ̂) (3)

8Given that individual deviations from a strategy profile σ̂ cannot affect prices at any location there is no
substantial need to introduce a separate notation for the profile which contains the strategies of all individuals
except from the deviating one. This would be necessary in a model with a finite number of players.

7



An equilibrium is defined as a strategy profile that forms a Nash equilibrium in the ensuing

game with the strategic payoff functions that are given above. In particular we will focus in

what we call stable Nash equilibria. A Nash equilibrium is understood to be stable in this

framework if and only if almost all9 players strictly prefer their equilibrium strategies to any

other strategy. That is, stable Nash equilibria are almost strict Nash equilibria. The reason

why we prefer to analyze only such Nash equilibria is straightforward: a Nash equilibrium that

fails this refinement involves a positive measure of players (infinitely many) who are indifferent

between their equilibrium strategy and at least one other strategy and, hence, it is unable to

produce robust predictions.

It is evident in the description of our SMG that the locations of the active markets emerge

endogenously. That is, if for example a mass of consumers and producers all individually decide

to trade at a certain location l then this location l will be an active market. On the contrary

if no individuals or if individuals only of one type decide to trade at location l, l will be an

inactive market (a location at which no trade occurs).

Given that equilibrium market structures may be classified according to various character-

istics, some further definitions are required at this point.

Definition 1 An N-market structure is a profile of locations (active markets) (l1, . . . , lN) such

that l1 < . . . < lN on the unit interval.

Definition 2 An N-market structure satisfies Symmetry if for every market j it is true that

lj = k + j−1
N−1(1− 2k). Moreover, an N-market structure, with N > 1, satisfies Full-Spreadness

and Symmetry (FS) if and only if lj = j−1
N−1 .

The idea behind a Symmetric market structure is that successive markets are equidistant.

For the particular case in which N = 1 we consider that Symmetry is satisfied if and only if

l1 = 1
2
. In the above definition k stands for the location of market 1, that is the market closer

to the left border. Therefore, if we set k = 0 we have an FS market structure, which indicates

that active markets cover the whole linear city, i.e., l1 = 0, . . . , lN = 1.

9"Almost all players" in this framework means all players except a subset of players whose Lebesgue measure
is zero.
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Definition 3 An N-market equilibrium is defined as an N-market structure for which a stable

Nash equilibrium exists with active trading in all markets of the N-market structure and nowhere

else.

Before moving to the main inquiry of the paper, let us state a preliminary result about the

properties of the equilibria under investigation.

Proposition 1 If Assumptions 2-4 hold then 1) b̂ = arg max
b∈[0,1]

uA(1 − b, b/p) for every p > 0

(that is, b̂ is independent of p), 2) if in a stable Nash equilibrium positive measures of type A

and type B individuals trade in market lj, we must have that pj = µjA/µ
j
B and 3) any stable

Nash equilibrium that involves a positive measure of trading agents is such that all agents trade.

The first part of Proposition 1 shows that the amount of good I that all individuals of type

A trade is always the same no matter the chosen market, or in other words, the submitted level

of b̂ does not depend on the (potential) price disparities across markets. The second part of

the proposition exhibits that no equilibrium features a location where only one type of agents

submit positive quantities for exchange. Therefore, at equilibrium, individuals submit their bids

or offers only in locations with positive measure subsets of both types of traders. Moreover,

similarly to the first part of the result, it is proved that all type A, B individuals who trade in

market j submit equal quantities (b̂ = q̂) , and the resulting market clearing price of good 2 in

this location is solely determined by the measures of the subsets of traders who choose location

lj. In particular, the price is equal to the ratio of active consumers over active producers in

this market. Finally, the last part of Proposition 1 shows that at any stable Nash equilibrium

no group of individuals chooses not to trade, as there is always benefit from trading. Hence,

all traders are better off by traveling to the trading posts and by taking part in the exchange

of the two goods.

3 General results

The first result of this section exhibits that having all individuals trading on a single market

(independently of its location) is an equilibrium.
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Proposition 2 For every location l1 ∈ [0, 1] there exists a one-market equilibrium with all

agents trading at l1.

The intuition behind this one-market result is rather clear. Given that all other traders meet

in a single market, the best response of an individual, independently of her location parameter

or the location of the market, is to participate in the same market rather than no-trade at all.

Note also that in such an equilibrium the whole masses of both types of individuals choose the

same location, therefore the corresponding price is equal to one, or in other words, one unit of

good II is exchanged for one unit of good I.

The above result is now extended to the case of two markets. The first part of Proposition

3 demonstrates that there is always a two-market structure that supports an equilibrium. The

second part, however, reveals that not all two-market structures constitute an equilibrium.

Proposition 3 There always exist two-market equilibria. Not every pair of locations (l1, l2) ∈

[0, 1]2 though constitute two-market equilibria.

The first part of Proposition 3 shows that there are market structures (l1, l2) for which

we can always find the unique location parameters α̇1, β̇
1
that define the type A and type B

individuals who are indifferent between the two markets. In this case, we can derive that the

mass of consumers located to the left of α̇1 and the mass of producers located to the left of β̇
1

are better off going to l1 rather than going to any other location, and similarly, the mass of

consumers located to the right of α̇1 and the mass of producers located to the right of β̇
1
are

better off going to l2 rather than going to any other location, thus making the pair (l1, l2) a

two-market equilibrium. On the other hand, the second part of Proposition 3 reveals that for

some pairs of market locations the unique location parameters α̇1, β̇
1
of the indifferent type A

and type B individuals fail to satisfy the conditions for a two-market equilibrium. In such a

case, all type A (or type B) individuals abandon one of the two markets and choose to trade in

just one location. As a result the given two-market structure collapses and, thus, fails to form

a two-market equilibrium.

The following Lemma complements Proposition 3 by demonstrating that in a two-market

equilibrium prices generically diverge. Hence, the "law of one price", namely that in equilibrium
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there is a single price that clears all markets for a commodity, fails to hold. Moreover, Lemma

1 shows an obvious linkage between equilibrium prices in Symmetric market structures.

Lemma 1 For any two-market equilibrium we have that p1 < p2. Moreover, for any Symmetric

two-market equilibrium we have that p1 = 1/p2.

We observe in the above lemma that the price is higher in location l2. This location features

increased demand due to the high concentration of type A individuals and reduced supply

due the low concentration of type B individuals. Similarly, the cheaper market is located

in l1 due to the high concentration of type B individuals and the low concentration of type

A individuals. In our framework, the violation of the "law of one price" is consistent with

equilibrium, as individuals cannot profit from the price difference between the two markets due

to transportation costs. In order to understand why this is so, let us contemplate an individual

of type A with location parameter a > α̇1 (the location of the indifferent type A individual) who

shifts her purchasing orders from the more expensive to the cheaper market. This shift has no

effect on prices, but increases the transportation costs so as to make such a move unprofitable.

Analogous arguments apply for type B individuals. Therefore, there are no opportunities for

profitable deviations despite the observed price disparities across markets10.

We now turn to study the properties of general multi-market equilibria. The next proposi-

tion deals with the maximum number of active markets in equilibrium for Symmetric market

structures.

Proposition 4 For any admissible distribution of type A and type B individuals there exists

a finite number N̂(k) such that no equilibrium exists for a Symmetric market structure with

N > N̂(k) active markets and k → 0+.

The above result exhibits that there is an upper bound on the number of active markets

in a Symmetric equilibrium, with this number being a function of k. Indeed, as the location

10Koutsougeras (2003a,b) proves that of the validitity of the "law of one price" is intimately related to
the degree of competitiveness. Indeed, in imperfectly competitive markets, where individuals may have non-
negligible effects on market outcomes, it is the case that there exist equilibria where commodities are exchanged
simultaneously in two markets at different prices. Our model, provides a ’spatial’ rationale for the observed
price differences even in perfect competition.
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the first active market approximates the left border of the interval, the market structure covers

the whole linear city and more markets can survive in equilibrium. However, there is still a

limitation on the number of active markets. An intuitive explanation for this result comes

directly from the non-uniform equilibrium prices across markets. In brief, more markets imply

greater price divergence, a fact that makes the benefit of a move to the most favorable market

greater than the costs of transportation. In such a case, there is at least one market abandoned

by all type A (or type B) individuals, leading us to a different market structure with less active

markets.

The next result complements Proposition 4 as it uses similar arguments based on price

disparities. In particular, it demonstrates that in order for a multi-market structure to support

an equilibrium there must be suffi cient distance between the locations of markets.

Proposition 5 For any admissible distribution of type A and type B individuals there exists

ε > 0 such that a market structure (l1, l2, ..., lN) with 1
2
− ε < l1 < l2 < ... < lN < 1

2
+ ε cannot

constitute a stable Nash equilibrium for any N > 1.

This result shows that multiple markets appear only at suffi cient distant from each other

so that their existence is purposeful. Survival of two distinct markets which are located very

close to each other implies that the prices in these two markets are almost identical. But if two

nearby markets are expected to have almost identical prices then one market will attract many

type A agents and few type B agents while the other will attract many type B agents and few

type A agents - due to the fact that the distribution of individuals of each type is distinct -

and this will make the prices of the two markets diverge significantly, hence, contradicting our

initial assumption that these two markets will have very similar prices.

4 A representative case

We now focus on a representative case of the general framework presented above. Specifically,

we consider that, FA(z) = z2, uA(xI , xII) = uB(xI , xII) = xIxII and that each agent of type

A (B) has an initial endowment of two units of good I (II), i.e., w = 2. By taking these

assumptions we are able to derive extra results using computational techniques. Our aim is
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to illustrate some of the equilibrium possibilities presented in the previous section in a more

elaborate and detailed manner.

Consider that the [0, 1] interval stands for a unidimensional geographical region. In this re-

gion there is a unit mass of vegetables producers (each producing two units of vegetable stock)

and a unit mass of vegetables consumers (each possessing two euros). If consumers are denoted

as type A individuals and producers as type B individuals then, since, FA(z) = z2 the densities

of their distribution in the linear region should be the ones depicted in Figure 1.

Figure 1. Distribution of vegetable stock producers and consumers.

The high concentration of vegetable producers in the left part of the region and the high

concentration of consumers in the right part of the region allows us to refer to the sub-region

[0, 1
2
) as the rural part of the region and to the sub-region (1

2
, 1] as the urban part of the region.

This split is quite intuitive as in any z ∈ [0, 1
2
) the density of producers is higher than the

density of consumers while in any z ∈ (1
2
, 1] the density of producers is lower than the density

of consumers.
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In our model all consumers and producers are free to strategically decide where and to which

extent they wish to trade. Hence, the locations of the markets, the quantities exchanged in each

market and the prices are determined endogenously. Having specified the exact distribution

that determines how our players are located in the region we can treat most of the general

issues analyzed above in a more specific manner.

Our first observation, which corresponds to Proposition 2, is that one-market equilibria can

be supported for every single location l ∈ [0, 1]. As in the general case the intuition behind this

result is trivial. If a consumer (producer), independently of her location parameter, believes

that all producers (consumers) will bring their vegetables in l ∈ [0, 1] then she is always better

off going to l ∈ [0, 1] too rather than going to any other location. Since the whole mass of

consumers and the whole mass of producers meet in a single market and since all agents have

the same preferences for consumption of vegetable stock and monetary liquidity (each agent -

independently of whether she is a consumer or a producer - she decides to sacrifice exactly one

unit of her initial endowments), it directly follows that the price will be one independently of

the exact location of the market.

But what about social welfare? An agents’ utility does not only depend on the price

but on the distance traveled from her initial location to the market too. If we consider that

social welfare is the unweighted sum of individual utilities we observe that the single-market

equilibrium which maximizes this sum is (as expected) the middle of the region (see Figure 2).

In this case the expression which gives social welfare is

SW =
1∫
0

(1− |l − z|)dFA(z) +
1∫
0

(1− |l − z|)dFB(z) = 1 + 2l − 2l2.

14



Figure 2. Social welfare as a function of market location.

On the other hand if we consider a measure of social welfare biased in favor of the consumers

we see that optimal market location varies accordingly. If we consider that social welfare is a

weighted sum in favor of the consumers for example (we multiply the utility of each consumer

with ϕ and the utility level of each producer with 1 − ϕ for ω ∈ [0, 1]) we can see (Figure 3)

that the optimal market location is increasing in ϕ (it comes deeper in the urban area) and

that it does not approach the region’s edge even if ϕ = 1. That is, for any level of bias the

optimal one-market equilibrium is in a suffi ciently moderate location.

In this case the expression which gives social welfare is

SW = ϕ
1∫
0

(1− |l − z|)dFA(z) + (1− ϕ)
1∫
0

(1− |l − z|)dFB(z) =

= (2
3

+ l − 2l2 + 2l3

3
)(1− ϕ) + (1

3
+ l − 2l3

3
)ϕ.

We observe that the value of this expression is maximized when

l∗ =
(−2 + 2ϕ+

√
2
√

1− 2ϕ+ 2ϕ2)

2(−1 + 2ϕ)
.
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Figure 3. Optimal market location as a function of the social welfare bias.

Notice that ϕ ∈ [0, 1] can take an alternative interpretation. So far, we have assumed that

the measure of consumers is identical to the measure of producers. Consider now that the

cumulative mass of the consumers and the producers is of measure Φ > 0 and that ϕ ∈ [0, 1]

represents the fraction of the measure of consumers over Φ. Then, it is straightforward that

the unweighted sum of individual utilities (unbiased social welfare) is maximized when the

marketplace is located in l∗.

Let us move now to more complicated market structures. As we saw in Proposition 3, a)

there always exist equilibria with two active markets and b) not all pairs of locations can support

a two-market equilibrium. Let us first study the symmetric location pairs (l1, l2) = (s, 1 − s)

and check which values of s ∈ [0, 1
2
) support such two-market equilibria. Our equilibrium

notion dictates that there should be a unique location parameter which defines an indifferent

consumer between the two markets and, equivalently, a unique location parameter which defines

an indifferent producer between the two markets. In general (that is for any number of possible

markets) we denote by ȧj the location parameter of the type A individual who is indifferent

between market lj and market lj+1 and, correspondingly, β̇
j
the location parameter of the type

B individual who is indifferent between market lj and market lj+1. In an equilibrium we know

from the above that both lj < ȧj < lj+1 and lj < β̇
j
< lj+1 should hold.
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Notice that since all agents in this example decide to sacrifice exactly one unit of their

initial endowments and because uA(xI , xII) = uB(xI , xII) = xIxII it must be the case that

uA(1− b̂, b̂
pj

) = 1
pj
and that uB(q̂pj, 1− q̂) = pj. For the (l1, l2) = (s, 1− s) case ȧ1 and β̇1 are,

hence, the values that solve

FA(ȧ1)

FB(β̇
1
)
− |β̇1 − s| = 1− FA(ȧ1)

1− FB(β̇
1
)
− |β̇1 − (1− s)|

and

FB(β̇
1
)

FA(ȧ1)
− |ȧ1 − s| = 1− FB(β̇

1
)

1− FA(ȧ1)
− |ȧ1 − (1− s)|

conditional on s < ȧ1 < 1− s and s < β̇
1
< 1− s.

We observe that if s < ȧ1 < 1 − s and s < β̇
1
< 1 − s holds then the above two equations

reduce to

FA(ȧ1)

FB(β̇
1
)
− β̇1 =

1− FA(ȧ1)

1− FB(β̇
1
)

+ β̇
1 − 1

and

FB(β̇
1
)

FA(ȧ1)
− ȧ1 =

1− FB(β̇
1
)

1− FA(ȧ1)
+ ȧ1 − 1

which are independent of s ∈ [0, 1
2
).

Since FA(x) = x2 and FB(x) = 1 − (1 − x)2 algebraic manipulations give the unique

solution (ȧ1, β̇
1
) ' (0.675, 0.325). So for (l1, l2) = (s, 1 − s) to support a symmetric two-

market equilibrium it should be the case that ȧ1 and β̇
1
are constant in s. This further implies

that such symmetric two-market structures can be supported only when s < 0.325; equilibria

with two symmetric active markets exist only if these two markets are suffi ciently distant from

each other.
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When an equilibrium exists, that is, for s < 0.325, the equilibrium market prices are p1 =
FA(ȧ1)

FB(β̇
1
)
' 0.83 and p2 =

1− FA(ȧ1)

1− FB(β̇
1
)
' 1.19 (Lemma 1); the market located in the rural area

offers vegetables in a lower price compared to the market located in the urban area.

Another issue that we would like to address in the framework of the present example relates

to the maximum number of active markets in an equilibrium (Propositions 4 and 5). Since the

system of equations which characterize an equilibrium is not linear even in this simple example,

an inclusion of an additional market increases the complexity of the problem in several orders

of magnitude. This is why we will address the question in the most symmetric form possible.

That is, considering only market structures which satisfy Full-Spreadness and Symmetry (that

is, market structures such that lj = j−1
N−1) we will try to determine which ones can support an

equilibrium.

Our results are summarized in the following table.

number of active markets locations indifferent consumer indifferent producer prices SW

N = 2
l1 = 0

l2 = 1
ȧ1 ' 0.675 ḃ1 ' 0.325

p1 ' 0.83

p2 ' 1.19
1.423

N = 3

l1 = 0

l2 = 1
2

l3 = 1

ȧ1 ' 0.417

ȧ2 ' 0.875

ḃ1 ' 0.125

ḃ2 ' 0.583

p1 ' 0.748

p2 = 1

p3 ' 1.335

1.656

N = 4

l1 = 0

l2 = 1
3

l3 = 2
3

l4 = 1

ȧ1 ' 0.32

ȧ2 ' 0.67

ȧ3 ' 0.92

ḃ1 ' 0.08

ḃ2 ' 0.33

ḃ3 ' 0.68

p1 ' 0.672

p2 ' 0.847

p3 ' 1.180

p4 ' 1.487

1.713

N ≥ 5 no equilibrium

Table 1: Equilibrium market structures that satisfy Full-Spreadness and Symmetry.

What we observe is that when the number of markets increases an indifferent consumer

(producer) comes closer to the market to her right (left). This is expected as more markets

imply a higher price dispersion between markets in the extremes and markets in the center
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of the region. The dispersion in prices cannot exceed though some thresholds as this would

make a market be abandoned by all consumers (producers). When N = 4 we observe that

ȧ1 ' 0.32 is immensely closer to market l2 = 1
3
than to market l1 = 0. Hence, the inclusion of

an extra market makes the system collapse (its solution can no longer satisfy the equilibrium

constraints).

All these imply that even though we have infinitely many players, at least up to symmetry,

the trading pattern that they will strategically decide to follow is quite predictable and simple.

Not many markets may emerge in equilibrium (in our case at most four) and the prices, though

distinct, cannot diverge immensely. We evaluate social welfare (unweighted sum of individual

utilities) of all these multiple-market equilibria (see Table 1) and we observe that the larger the

number of markets in equilibrium the larger the value of social welfare becomes. This is mainly

driven by the fact that when multiple markets exist consumers and producers need bear low

transport costs to trade.

Finally, we discuss some issues regarding transportation costs. According to the utility

function that we employed each agent loses a unit of utility for every unit of distance travelled.

One could relax this assumption by considering that the travel cost per unit of distance travelled

is c ∈ [0,+∞).11 Under this, more general, assumption one can obtain qualitatively similar

results with the ones above. For example, for the the N = 2 fully-spread and symmetric market

structure we can show that the absolute value of the difference between the two equilibrium

prices is increasing in c and that it converges to zero when c → 0 and to 8
3
' 2.666 when

c→ +∞. Moreover, we observe that the indifferent consumer (who is located at 0.675 for c = 1)

moves towards the right (left) as c decreases (increases) and reaches the location 1√
2
' 0.707

(0.5) when c → 0 (c → +∞). That is, the difference between the equilibrium prices and the

difference between the measure of players trading in each market vary in c but their variation is

bounded by two relatively small numbers. Hence, the qualitative dimension of the equilibrium

trading patterns that we presented in Table 1 is robust to general transportation costs.

11For values of c > 1 one should be very careful to add the assumption that players incur a suffi ciently large
cost in case they decide not to trade so that full participation in equilibrium trading activities is guaranteed.
Otherwise, the equilibrium analysis should be generalized in order to take in account a measure of players
strategically deciding not to participate in trading activities in any active market. For any c ≤ 1 such an
additional assumption is redundant.
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5 Concluding remarks

This work is an attempt to model spatial competition with a vast number of traders or, in other

words, to provide a Walrasian version of location games. We believe that having the great mass

of one type being concentrated near one interval border and the great mass of the other type

near the other interval extreme resembles a real-world situation where production takes place

in the some parts of a region (e.g., rural areas or industrial parks), whereas consumers reside in

the urban areas of the same region. The main results of the paper study the agglomeration of

economic activities in specific locations, and, more specifically, deal with the number and the

distribution of active markets in the linear city. Moreover, by assuming the distinct distributions

of the two populations, the paper offers a justification for price disparities even in perfectly

competitive markets. The present analysis could also be extended to more general settings,

with a general specification of endowments, preferences and transportation costs. Furthermore,

different distributions of traders on the unit interval or models with many commodities could

be attractive topics for further research. Finally, instead of assuming that individuals act

independently without any coordination of actions, it might be attractive to examine settings

that can embody the possibility of coordinated actions among groups of traders.
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6 Appendix

6.1 Proofs

Proof of Proposition 1. Each agent has expectations about the behavior of all the other

agents. Consider a typeA agent who is forced to trade at a location lj such that pj = Bj/Qj > 0;

a positive measure of type A and type B individuals are expected to place there certain bids

and offers. Then the type A agent that we consider faces the problem:

max
b∈[0,1]

uA(1− b, b/pj)

which is equivalent to the programme

maxxI ,xII uA(xI , xII) s.t. xI + pjxII = 1.

By assumption 3 we know that the first part of the solution (x̂, ŷ) of the latter programme

is invariant to changes in pj - the agent’s optimal bid is such that b̂ = max
b∈[0,1]

uA(1 − b̂, b̂/p) for

every p > 0.

To prove the second part of this proposition first observe that a stable Nash equilibrium

cannot be such that only a positive measure of type A agents trades in a market. If in a stable

Nash equilibrium a positive measure of agents trade in in location lj, it must be the case that

positive measures of both type A and type B agents trade in location lj. That is, pj > 0.

Then notice that uA(xI , xII) = uB(xII , xI) along with assumption 3 imply that b̂ = q̂ for

every p > 0 where b̂ = max
b∈[0,1]

uA(1− b, b/p) and q̂ = max
q∈[0,1]

uB(pq, 1− q). Hence, in every market of

any stable Nash equilibrium it should be the case that pj = Bj/Qj = b̂µjA/q̂µ
j
B = µjA/µ

j
B.

To prove the last part of our proposition we notice that in a stable Nash equilibrium in which

a positive measure of agents trade in a market lj we have pj > 0. If pj ≤ 1 then assumptions 2

and 4 along with uA(1, 0) = 0 and the observation that max
b∈[0,1]

uA(1− b, b/p) is equivalent to the

programme max
x,β̇

1 uA(xI , xII) s.t. xI + pxII = 1 indicate that every type A agent is strictly

better off by choosing to trade in lj than not trading at all. That is, a stable Nash equilibrium

in which some agents trade in market lj with pj ≤ 1 is such that all type A agents trade at

some market. If in a stable Nash equilibrium all type A agents trade at some market and not
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all type B agents trade then there must exist at least one market lk such that µkA > µjB. Then

by the second part of this proposition it should be the case that pk = µkA/µ
k
B > 1. Hence,

by assumptions 2 and 4 along with uB(0, 1) = 0 and the observation that max
q∈[0,1]

uB(pq, 1 − q)

is equivalent to the programme maxxI ,xII uB(xI , xII) s.t. 1
p
xI + xII = 1 indicate that every

type B agent is strictly better off by choosing to trade in lk than not trading at all. One can

provide symmetric arguments for the case in which pj > 1 and, thus, prove that any stable

Nash equilibrium which involves trade is such that all agents trade.

Proof of Proposition 2. The proof is straightforward. If all type A and type B individuals

(µ1A = µ1B = 1) place their bids and offers (b̂ units each) in location l1 ∈ [0, 1] then by the second

point of proposition 1 we have that p1 = 1 and, hence, by assumptions 2 and 3 we have that

Uα
A(σ̂′i,α, σ̂) ≥ 0 (Uβ

B(σ̂′′g,β, σ̂) ≥ 0) for every i ∈ [0, 1] and α ∈ [0, 1] (g ∈ [0, 1] and β ∈ [0, 1]);

every agent prefers to trade in l1 than to no trade at all. Notice that, for type A agents for

example, any strategy (l′, b) such that l′ 6= l1 is dominated by no-trade and any strategy (l1, b)

such that b 6= b̂ is dominated by (l1, b̂). Obviously the same holds for type B individuals too.

That is, each agent trading b̂ units of her initial endowment in location l1 is a stable Nash

equilibrium of the game.

Proof of Proposition 3. Consider a strategy profile σ̂ such that a) (l1, l2) = (0, 1), b)

µ1A = FA(z), µ1B = FB(1 − z) and c) µ2A = 1 − FA(z), µ2B = 1 − FB(1 − z). For such a profile

to be an equilibrium it must be the case that the type A individuals with location parameter

a = z should be indifferent between the two markets. That is it should be the case that

uA(1− b̂, b̂

FA(z)/FB(1− z)
)− |z − 0| = uA(1− b̂, b̂

[1− FA(z)]/[1− FB(1− z)]
)− |z − 1|

which can be re-written as

uA(1− b̂, b̂

FA(z)/[1− FA(z)]
)− z = uA(1− b̂, b̂

[1− FA(z)]/FA(z)
)− 1 + z.

Notice that there always exists a unique z∗ ∈ (0, 1) such that the above equality holds. This

is because a) uA(1 − b̂, b̂

FA(z)/[1− FA(z)]
) − z and uA(1 − b̂, b̂

[1− FA(z)]/FA(z)
) − 1 + z are

both continuous for any z ∈ (0, 1), b) uA(1− b̂, b̂

FA(z)/[1− FA(z)]
)−z is strictly decreasing and

uA(1− b̂, b̂

[1− FA(z)]/FA(z)
)− 1 + z is strictly increasing for any z ∈ (0, 1), c) limz→0+ [uA(1−
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b̂,
b̂

FA(z)/[1− FA(z)]
)− z] = +∞ and limz→1− [uA(1− b̂, b̂

FA(z)/[1− FA(z)]
)− z] = −1 and d)

limz→0+ [uA(1− b̂, b̂

[1− FA(z)]/FA(z)
)−1+z] = −1 and limz→1− [uA(1− b̂, b̂

[1− FA(z)]/FA(z)
)−

1 + z] = +∞.

Moreover, for this allocation to be an equilibrium we should further have that the type B

individuals with location parameter β = 1 − z are indifferent between the two markets. That

is, it should be the case that

uB(b̂
FA(z)

FB(1− z)
, 1− b̂)− |(1− z)− 0| = uB(b̂

1− FA(z)

1− FB(1− z)
, 1− b̂)− |(1− z)− 1|

which can be re-written as

uA(1− b̂, b̂

[1− FA(z)]/FA(z)
)− 1 + z = uA(1− b̂, b̂

FA(z)/[1− FA(z)]
)− z.

That is there exists a unique z∗ ∈ (0, 1) such that both relevant equalities hold and hence,

(l1, l2) = (0, 1) is an equilibrium. We finally note that a) for any type A individual with location

parameter a < z∗ we have Uα
A((l1, b̂), σ̂) > Uα

A((l2, b̂), σ̂), b) for any type A individual with

location parameter a > z∗ we have Uα
A((l1, b̂), σ̂) < Uα

A((l2, b̂), σ̂), c) for any type B individual

with location parameter β < 1 − z∗ we have Uβ
B((l1, b̂), σ̂) > Uβ

B((l2, b̂), σ̂) and for any type

B individual with location parameter β > 1 − z∗ we have Uβ
B((l1, b̂), σ̂) < Uβ

B((l2, b̂), σ̂); the

equilibrium is stable.

Now consider that a) (l1, l2) = (s, 1−s), b) µ1A = FA(α̇1), µ1B = FB(β̇
1
), c) µ2A = 1−FA(α̇1),

µ2B = 1 − FB(β̇
1
) and that d) s ∈ (0, 1

2
). We first notice that for this allocation to be an

equilibrium it must be the case that (α̇1, β̇
1
) ∈ (s, 1 − s)2. If for example 0 < α̇1 ≤ s then for

any type A individual with location parameter a ≤ α̇1 we have Uα
A((l1, b̂), σ̂) = Uα

A((l2, b̂), σ̂)

and, thus, the stability condition we have imposed is violated. Moreover, it should be the case

that β̇
1
<< x (by << we mean that there exists a non-degenerate positive number λ such that

α̇1 − β̇1 > λ). This is true because if β̇
1
> α̇1 we should have

uB(b̂
FA(α̇1)

FB(β̇
1
)
, 1− b̂)− |β̇1 − s| = uB(b̂

1− FA(α̇1)

1− FB(β̇
1
)
, 1− b̂)− |β̇1 − (1− s)| and

uA(1− b̂, b̂

FA(α̇1)/FB(β̇
1
)
)− |β̇1− s| < uA(1− b̂, b̂

[1− FA(α̇1)]/[1− FB(β̇
1
)]

)− |β̇1− (1− s)|

which cannot both hold true at the same time.
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This is because

uB(b̂
FA(α̇1)

FB(β̇
1
)
, 1− b̂)− |β̇1 − s| = uB(b̂

1− FA(α̇1)

1− FB(β̇
1
)
, 1− b̂)− |β̇1 − (1− s)|

can be rewritten as

uA(1− b̂, b̂FA(α̇1)

FB(β̇
1
)
)− |β̇1 − s| = uA(1− b̂, b̂1− FA(α̇1)

1− FB(β̇
1
)
)− |β̇1 − (1− s)|

and because β̇
1
> α̇1 implies that FA(α̇1) < FB(β̇

1
).12

The latter suggests that

uA(1− b̂, b̂FA(α̇1)

FB(β̇
1
)
) < uA(1− b̂, b̂

FA(α̇1)/FB(β̇
1
)
)

and that

uA(1− b̂, b̂1− FA(α̇1)

1− FB(β̇
1
)
) > uA(1− b̂, b̂

[1− FA(α̇1)]/[1− FB(β̇
1
)]

)

and hence

uA(1− b̂, b̂FA(α̇1)

FB(β̇
1
)
)− |β̇1 − s| = uA(1− b̂, b̂1− FA(α̇1)

1− FB(β̇
1
)
)− |β̇1 − (1− s)|

which leads to

uA(1− b̂, b̂

FA(α̇1)/FB(β̇
1
)
)− |β̇1− s| > uA(1− b̂, b̂

[1− FA(α̇1)]/[1− FB(β̇
1
)]

)− |β̇1− (1− s)|

and not to the desired

uA(1− b̂, b̂

FA(α̇1)/FB(β̇
1
)
)−|β̇1− s| < uA(1− b̂, b̂

[1− FA(α̇1)]/[1− FB(β̇
1
)]

)−|β̇1− (1− s)|.

Moreover we cannot have α̇1 → β̇
1
because then we should have

uB(b̂
FA(α̇1)

1− FA(1− α̇1)
, 1− b̂)− |α̇1 − s| → uB(b̂

1− FA(α̇1)

FA(1− α̇1)
, 1− b̂)− |α̇1 − (1− s)| and

uA(1− b̂, b̂

FA(α̇1)/[1− FA(1− α̇1)]
)−|α̇1−s| → uA(1− b̂, b̂

[1− FA(α̇1)]/FA(1− α̇1)
)−|α̇1−

(1− s)|
12We have that FB is first-order stochastically dominant over FA if and only if FB(z)− FA(z) ≥ 0 for every

z ∈ [0, 1]. Since FB(z) = 1− FA(1− z) we notice that FB(z)− FA(z) = 1− FA(1− z)− FA(z) takes the value
0 when z ∈ {0, 1} and that it is strictly convex for every z ∈ (0, 1). That is, first-order stochastic dominance is
guaranteed and moreover FB(z) − FA(z) > 0 for every z ∈ (0, 1). The latter suggests that FB(y) > FA(z) for
every y > z.

24



which again cannot both hold at the same time with a reasoning similar as above.

Therefore if (α̇1, β̇
1
) ∈ (s, 1−s)2 characterizes an equilibrium it should be that β̇1 < α̇1 and

max{|1
2
− α̇1|, |1

2
− β̇1|} >> 0. Consider without loss of generality that α̇1 >> 1

2
.We notice that

the conditions that (α̇1, β̇
1
) ∈ (s, 1− s)2 should satisfy are independent of s. This is, because

uA(1− b̂, b̂

FA(α̇1)/FB(β̇
1
)
)− |α̇1− s| = uA(1− b̂, b̂

[1− FA(α̇1)]/[1− FB(β̇
1
)]

)− |α̇1− (1− s)|

and

uB(b̂
FA(α̇1)

FB(β̇
1
)
, 1− b̂)− |β̇1 − s| = uB(b̂

1− FA(α̇1)

1− FB(β̇
1
)
, 1− b̂)− |β̇1 − (1− s)|

can be re-written as

uA(1− b̂, b̂

FA(α̇1)/FB(β̇
1
)
)− α̇1 = uA(1− b̂, b̂

[1− FA(α̇1)]/[1− FB(β̇
1
)]

)− 1 + α̇1 and

uB(b̂
FA(α̇1)

FB(β̇
1
)
, 1− b̂)− β̇1 = uB(b̂

1− FA(α̇1)

1− FB(β̇
1
)
, 1− b̂)− 1 + β̇

1
.

So for any (α̇1, β̇
1
) ∈ (s, 1− s)2 that characterizes an equilibrium for (l1, l2) = (s, 1− s) we

can find (l̂1, l̂2) = (ŝ, 1− ŝ) such that 1
2
< 1− ŝ < α̇1 and therefore (α̇1, β̇

1
) cannot characterize

an equilibrium for (l̂1, l̂2) = (ŝ, 1− ŝ).We have, thus shown that there are two-market structures

which cannot support an equilibrium.

Proof of Lemma 1. Consider the two-market equilibrium with µ1A = FA(α̇1), µ1B = FB(β̇
1
),

µ2A = 1 − FA(α̇1), µ2B = 1 − FB(β̇
1
) and suppose on the contrary that p1 ≥ p2. Consider the

type A individuals with location parameter α̇1 who are indifferent between the two markets.

For these individuals it must be true that uA(1− b̂, b̂
p1

)− |α̇1 − l1| = uA(1− b̂, b̂
p2

)− |α̇1 − l2|.

Given that
1

p1
≤ 1

p2
we have α̇1 − l1 ≤ l2 − α̇1 or α̇1 ≤ l1 + l2

2
.

Consider now the typeB individuals with location parameter β̇
1
, who are indifferent between

the two markets. For these individuals we have that uB(b̂p1, 1 − b̂) − |β̇1 − l1| = uB(b̂p2, 1 −

b̂)− |β̇1 − l2|. Given that p1 ≥ p2 we have β̇
1 − l1 ≥ l2 − β̇1 or β̇1 ≥ l1 + l2

2
.

Hence, β̇
1 ≥ α̇1, with the corresponding prices being p1 =

FA(α̇1)

FB(β̇
1
)

=
FA(α̇1)

1− FA(1− β̇1)
< 1

and p2 =
1− FA(α̇1)

1− FB(β̇
1
)

=
1− FA(α̇1)

FA(1− β̇1)
> 1, which is a contradiction to our initial statement.
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Therefore, p1 < p2.

We now allow for Symmetry by setting α̇1 = 1 − β̇
1
, which satisfies (as shown Proposi-

tion 3) the conditions of a two-market equilibrium. In this case we get p1 =
FA(1− β̇1)
FB(1− α̇1)

=

1− FB(β̇
1
)

1− FA(α̇1)
= 1/p2.

Proof of Proposition 4. Consider a Symmetric market structure with N markets. We

construct upper and lower bounds of the prices in the two extreme markets in an equilibrium.

In market l1 we should have µjA = FA(α̇1) and µjB = FB(β̇
1
) where α̇1 is the location

parameter of a type A individuals who are indifferent between markets l1 and l2 and β̇
1
is the

location parameter of a type B individuals who are indifferent between markets l1 and l2.

An equilibrium is such that all type A individuals with location parameters smaller than α̇1

strictly prefer market l1 to any other market and all type B individuals with location parameters

smaller than β̇
1
strictly prefer market l1 to any other market.

Moreover, by the proof of Proposition 2 we know that (α̇1, β̇
1
) ∈ (l1, l2)2. For a Symmetric

N -market configuration we have that l1 = k and l2 = k + 1
N−1(1 − 2k). Therefore, α̇1 ∈

(k, k + 1
N−1(1− 2k)) and β̇

1 ∈ (k, k + 1
N−1(1− 2k)) too.

This implies that µ1A ∈ (FA(k), FA(k+ 1
N−1(1−2k))) and that µ1B ∈ (FB(k), FB(k+ 1

N−1(1−

2k))) and therefore

p1 ∈ ( FA(k)

FB(k+
1

N−1 (1−2k))
,
FA(k+

1
N−1 (1−2k))
FB(k)

) or p1 ∈ ( FA(k)

1−FA(1−k− 1
N−1 (1−2k))

,
FA(k+

1
N−1 (1−2k))

1−FA(1−k) ).

Using equivalent steps we find

pN ∈ ( 1−FA(1−k)
FA(1−k−N−2N−1 (1−2k))

,
1−FA(1−k−N−2N−1 (1−2k))

FA(k)
).

We observe that as N increases these bounds become narrower and in specific when N →

+∞ we have that

p1 → FA(k)
1−FA(1−k) and that p

N → 1−FA(1−k)
FA(k)

.

We moreover notice that for k → 0+ we have that p1 → 0 and that pN → +∞.
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Continuity of F , and thereafter, continuity of the upper and lower bounds of p1 and pN ,

implies that for high values of N and low values of k an individual of type A would strictly

prefer to place her bid in market l1 rather than in market lN independently of her location

parameter. That is, for high values of N and low values of k an equilibrium for a Symmetric

market structure with N active markets is not possible.

Proof of Proposition 5. To see why this holds consider an N -market structure (l1, l2, ..., lN)

such that 1
2
− ε < l1 < l2 < ... < lN < 1

2
+ ε which is supported by a stable Nash equilibrium.

Then, µ1A ∈ (FA(1
2
− ε), FA(1

2
+ ε)) and µNA ∈ (1 − FA(1

2
+ ε), 1 − FA(1

2
− ε)) and equivalently

µ1B ∈ (FB(1
2
− ε), FB(1

2
+ ε)) and µNB ∈ (1 − FB(1

2
+ ε), 1 − FB(1

2
− ε)). These imply that

for ε → 0 we should have that p1 → FA(
1
2
)

FB(
1
2
)

=
FA(

1
2
)

1−FA( 12 )
<< 1

2
and that pN → 1−FA( 12 )

1−FB( 12 )
=

1−FA( 12 )
FA(

1
2
)
>> 1

2
and therefore a type A individual with any location parameter strictly prefers to

trade in market l1 than in market lN . So given FA and FB there always exist ε > 0 such that

any market configuration (l1, l2, ..., lN) with 1
2
− ε < l1 < l2 < ... < lN < 1

2
+ ε cannot support

an equilibrium.

6.2 Utility functions that do not satisfy Assumption 3

Here we address possible concerns regarding the possibility of extending our results to more

general classes of utility functions. We have assumed that the part of the utility function that

depends on consumption of a bundle of the two goods is such that the optimal consumption

choice of the good one initially possesses is independent of how all other players are expected to

behave. An attempt to generalize the presented results by relaxing this assumption would be,

technically, very challenging - possibly intractable. Regardless of this technical complexity and

of the fact that many popular utility functions (for example Cobb-Douglas utility functions)

actually satisfy this property, it is essential that we study whether our results are relevant

when utility functions do not satisfy Assumption 3. To this end we analyze a certain case that

guarantees a desired degree of genericity.

Specifically, we assume that FA(z) = z2, uA(xI , xII) = uB(xI , xII) = 2(
√
xI+
√
xII) and that

each individual of type A (B) has an initial endowment of one unit of good I (II). In this case

we have that arg max
b∈[0,1]

uA(1−b, b/p) = p
1+p

and hence Assumption 3 does not hold. Existence of a
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one-market equilibrium is straightforward. If we assume that a two-market equilibrium exists in

locations (s, 1−s) for some s < 1
2
then one can show (by the means of computational methods)

that the indifferent type A (B) individual must be situated approximately near location 0.64

(0.36). These locations of the indifferent type A and type B individuals are independent of

the exact value of s. This implies that a two-market equilibrium in locations (s, 1 − s) exists

if and only if s is suffi ciently small (smaller than 0.36). Hence, two-market equilibria exist,

but not all two-market structures support an equilibrium, precisely as in the main part of our

analysis. The price in the market at s will be about 0.82 and the price in the market at 1− s

will be about 1.21. The bids (offers) of type A (B) individuals in the first market (at s) will be

about 0.54 (0.45) of their initial endowment of good I (II) while the bids (offers) of type A (B)

individuals in the second market (at 1− s) will be about 0.45 (0.54) of their initial endowment

of good I (II).

Notice that, as in our main analysis, participation (positive trade) of everybody is guaran-

teed in a two-market equilibrium of this case. This is due to the fact that the smallest level

of total utility (consumption utility minus transportation costs) that an individual may enjoy

here is about 2.3, which is larger than the utility level of the no-trade option. Therefore, we

feel confident to conjecture that our results apply to general classes of utility functions which

fail to satisfy Assumption 3.
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