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Abstract

This paper presents an innovative approach to extract Volatility Factors which predict the VIX, the S&P500 Realized
Volatility (RV) and the Variance Risk Premium (VRP). The approach is innovative along two different dimensions,
namely: (1) we extract Volatility Factors from panels of filtered volatilities - in particular large panels of univariate
ARCH-type models and propose methods to estimate common Volatility Factors in the presence of estimation error
and (2) we price equity volatility risk using factors which go beyond the equity class namely Volatility Factors
extracted from panels of volatilities of short-run funding spreads. The role of these Volatility Factors is compared
with the corresponding factors extracted from the panels of the above spreads as well as related factors proposed in
the literature. Our monthly short-run funding spreads Volatility Factors provide both in- and out-of-sample predictive
gains for forecasting the monthly VIX, RV as well as the equity premium, while the corresponding daily volatility
factors via Mixed Data Sampling (MIDAS) models provide further improvements.
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1 Introduction

This paper presents an innovative approach to extract volatility factors which are shown to predict the VIX,
the S&P500 Realized Volatility (RV) and the Variance Risk Premium (henceforth VRP).1 The approach is
innovative along two different dimensions, namely: (1) we extract factors from panels of filtered volatilities
- in particular large panels of univariate financial asset ARCH-type models and propose methods to estimate
these factors in the presence of estimation/measurement error and (2) we price equity volatility risk using
factors which go beyond the class of equity assets. More specifically we find that the most successful models
feature volatility factors extracted from panels of volatilities of short-run funding spreads, which have both
in- and out-of-sample predictive ability. This is especially useful given that the VIX is widely viewed by
investors as the market gauge of fear (Whaley, 2000) and we provide evidence that our volatility factors
can drive the VIX. In addition, our factors explain the VRP which is the difference between the implied and
expected volatilities and is considered as an indicator of the representative agent’s risk aversion (e.g. Bekaert
and Hoerova, 2014) that is related to long-run risk models (e.g. Drechsler and Yaron, 2011).

Our analysis presents a new approach to extract common volatility factors based on panels of simple ARCH-
type models which function as filters (the ARCH-type model parameter estimates are not of any direct
interest), and Principal Component (PC) methods are applied to such panels of financial assets volatilities.
In particular, even though ARCH-type models can be potentially misspecified, they can still be viewed as
filters and deliver reliable estimates of volatility (see e.g. Nelson and Foster, 1994). Furthermore, we present
methods that address the estimation error of filtered volatilities in extracting volatility factors. One method
orthogonalizes the unsystematic component before extracting the factors, while the other method is based on
the Instrumental Variables (IV ) approach of estimating PCs. Moreover, our analysis studies the impact of
the sampling frequency in extracting volatility factors and the role of high- versus low-frequency volatility
factors as predictors in the context of Mixed Data Sampling (MIDAS) predictive regressions.

A number of papers extract factors from panels of option-based implied volatilities - see e.g. Carr and
Wu (2009), Egloff, Leippold and Wu (2010), Zhou (2018), or from a cross-section of realized volatility
measures, first considered by Anderson and Vahid (2007) who estimate the PC from the daily RVs of
frequently traded stocks, and more recently by Christoffersen, Lunde and Olesen (2019) who also extract the
common factor from the filtered ARMA logRVs of daily commodities, among others. On the other hand,
Connor, Korajczyk and Linton (2006) develop a dynamic approximate factor model for a large panel of
stock returns and estimate the heteroskedasticity in factor returns using a non-parametric local trend model.
Barigozzi and Hallin (2017) develop a two-step general dynamic factor approach which accounts for the
joint factor structure of stock returns and volatilities. On the contrary, some papers base their analysis on
small cross-sections of assets such as Diebold and Nerlove (1989) and Engle, Ng and Rothschild (1990). Our
approach is related, but different from the existing literature. Because we use simple ARCH-type models our

1Whenever we refer to the VIX we use the VIX2 which is the component directly related to VRP.
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analysis is neither confined to asset classes with traded options (since we do not use implied volatilities) nor
restricted to assets with high-frequency intraday data and realized volatilities, given that for many financial
assets high-frequency data may not be available, especially for a long time span. Nevertheless, our analysis
on dealing with the estimation error for volatility factor extraction also applies to panels of RVs.

Traditionally, the extraction of risk factors is typically confined to a particular asset class. Fama-French
factors are extracted from cross-sections of stock returns and are meant to price equity risk (but not say
bonds or commodities returns). Level, slope and curvature factors are extracted from fixed income securities
and are meant to price the term structure. A number of attempts have been made to extract factors jointly
from stocks and bonds using the class of affine asset pricing models, see Bekaert, Engstrom and Grenadier
(2010), Koijen, Lustig and Van Nieuwerburgh (2017), among others. Our approach also crosses asset classes
and can be cast in an underlying affine asset pricing model. In particular, to predict equity volatility we do
not exclusively rely on factors driven by stock returns. One can consider homogeneous panels stratified by
asset class and compute principal components of the ARCH-type model filtered volatilities.

The approach of extracting factors from different subpanels of assets or types of economic indicators is
also pursued in other studies. For instance, Ludvigson and Ng (2007) extract factors from two separate
panels, the financial and macroeconomic indicators panels in an attempt to label factors and provide further
understanding as to the economic driving source of each factor in a different setting from ours. Motivated
by Ludvigson & Ng (2007) as well as the economic arguments that short-run funding spreads and long-run
corporate and government spreads are good predictors of economic activity (e.g. Gilchrist and Zakrajšek,
2012), and indicators of illiquidity and bank credit risk (e.g. the TED and LOIS), especially during the
recent US crisis (e.g. Adrian and Shin, 2010, Bekaert, Ehrmann, Fratzscher and Mehl, 2014 and Taylor and
Williams, 2009), we estimate factors from these two panels. Extracting factors from these two classes/panels
of assets allows us to label the factor and provide a better interpretation of the results as well as crystallize the
driving source of the VIX, S&P500 RV and VRP. Moreover, our results show that by considering the factors
from these two asset classes we can extract different types of volatility factors with different information
content especially during the more volatile periods.2

Using our novel volatility factor approach we revisit the prediction of the VIX, the S&P500 RV and the VRP
at different investment horizons. We find that the short-run funding spreads volatility factors are strongly
significant for forecasting the VIX and the RV (at horizons 3 to 9 months). Furthermore we find that the
VRP is driven by the volatility of the volatility of consumption growth empirical proxy mostly for longer
horizons, which is consistent with the long-run risk models, while our short-run funding spreads volatility
factor also turns out to be a driving factor for the VRP mostly at long horizons (6 and 9 months). In contrast,
the long-run corporate and government bond spreads volatility factors turn out to be mostly insignificant
in-sample predictors for the VIX, RV and VRP. Furthermore, we show using a comprehensive and robust

2An alternative approach is to consider group volatility factor models (e.g. in the spirit of Andreou, Gagliardini, Ghysels and
Rubin, 2019) which is an avenue of future research.
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empirical evidence that our proposed short-run funding spreads volatility factors have additional predictive
ability for the VIX, RV and VRP over the traditional single factor model that focuses on consumption
risk, as well as a number of other factors/indicators in the literature.3 Our findings indicate the existence
of an additional factor beyond the consumption growth volatility uncertainty proposed in Drechsler and
Yaron (2011). Finally, our volatility factors can also predict the excess equity returns beyond some of the
traditional predictors of the equity premium such as the VRP, the log price-dividend ratio, the log earnings-
price ratio, among others. Last but not least, we find that the high-frequency (daily) volatility factors via
MIDAS models provide prediction gains over the corresponding low-frequency (monthly) volatility factors,
in traditional linear LS regression models.

The paper is organized as follows: Section 2 presents the factor analysis of panels of filtered volatilities.
Section 3 provides the Monte Carlo simulations of the propositions in Section 2. Section 4 discusses the
volatility factor estimation results. Section 5 presents the empirical analysis on the driving forces of the VIX,
the S&P500 RV, the VRP and the equity premium and evaluates the role of our proposed factors. Section 6
discusses a number of robustness checks and the last section concludes the paper.

2 Factor Analysis with Panels of ARCH Filters

We start with the widely used class of continuous time affine diffusion (henceforth AD) asset pricing models.
To fix notation, we follow the presentation of Duffie, Pan and Singleton (2000) and consider a filtered
probability space (Ω,F , (Ft)t≥0,P) where the filtration satisfies the usual conditions (see e.g. Protter, 2004)
and P refers to the physical or historical probably measure.4 Moreover, we suppose that the r-dimensional
F-adapted process X f of state variables or factors is Markov in some state space D ⊂ Rr, solving the
stochastic differential equation:

dX ft = µ(X ft )dt+ σ(X ft )dWt (2.1)

where Wt is an Ft-adapted Brownian motion under P in Rr, µ : D→ Rr, and σ : D→ Rr×r. Furthermore:

Assumption 2.1. The distribution of X f , given an initial known X f0 at t = 0, is completely characterized
by a pair (K,H) of parameters determining the affine functions:

µ(x) = K0 +K1x, K ≡ (K0,K1) ∈ Rr × Rr×r

(σ(x)σ(x)′)ij = (H0)ij + (H1)′ijx H ≡ (H0, H1) ∈ Rr×r × Rr×r×r.
(2.2)

3It is important to note that all our empirical analysis controls for lagged VIX and/or lagged S&P500 RV and therefore controls
for information embedded in equity market risk measures. The above results are valid for the period from 1999m01-2016m09, with
or without the period associated with Lehman Brothers bankruptcy and its aftermath.

4Note that our analysis requires continuous path processes, i.e. we exclude jumps. The continuous record asymptotics analysis
for filtered volatilities requires absence of jumps. In principle the realized volatility measures can accommodate jumps, but a host
of issues emerge when we tackle the panel data asymptotics, issues we leave for future research.
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It will be convenient to focus exclusively on orthogonal factor cases. There is a well-known rotational
indeterminacy in latent factor models, see e.g. in the context of affine diffusions the discussion in Dai and
Singleton (2000). The panel data estimation procedures - introduced later - will impose a normalization of
the factors. We assume here without loss of generality that the factors are orthogonal in population.

Assumption 2.2. The r factors X f are assumed orthogonal, and therefore the affine functions satisfy:

K1 = diag(kii1 ) H0 = diag(hii0 )

(H1)′ij = 0 ∀i 6= j (H1)′ii = hii1 1i ∀i
(2.3)

where 1i is a 1× r vector of zeros except for the unit ith element and hii1 is a scalar.

In a generic AD no-arbitrage asset price setting, Duffie et al. (2000) show that the bond, equity and variance
premia at different investment horizons are linear functions of the same risk factors - i.e. state variables
X ft . In the term structure literature it is common to rotate the factors such that they correspond to the
commonly used level, slope and curvature factors. The equity premia literature has instead focused on
factors driven by macroeconomic fundamentals, in particular consumption uncertainty in the context of
long-run risk economies studied by Bansal and Yaron (2004), where agents have a preference for early
resolution of uncertainty and therefore dislike increases in economic uncertainty.5 Suppose any asset i with
(log) price denoted by pit which has exposure to (some of) the risk factors, i.e. for the scalar δi0 and the 1× r
vector δi :

dpit ≡ δi0 + δidX ft δi 6= 0 (2.4)

such as for example the log price of an equity claim, log price of a zero-coupon bond, a risk spread, etc.

Following Duffie et al. (2000) and Carr & Wu (2009), we define the variance risk premium (VRP) as the
difference between the time t expected equity return variance under the historical (P) and under the risk-
neutral (Q) probability measures. Therefore, in an affine setting over horizon τ, the VRP can be written
as:

V RP (t, τ) = EP
t [V r

t,t+τ ]− EQ
t [V r

t,t+τ ] = δvrp(τ) + γvrp(τ)X ft
EJt [V r

t,t+τ ] = µJrv(τ) + γJrv(τ)X ft J = P,Q (2.5)

where the parameters relate to the data generating processes for both Q and P measures (see, for example,
Bollerslev, Tauchen and Zhou, 2009).

For some of the asset classes we need to distinguish spreads factors from volatility factors. Take for example
a short-run credit spread. In such a case spreads factors pertain to credit spreads, whereas the volatility
factors pertain to their volatility. Hence, we denote by ct a credit spread and V c

t its spot volatility. In a linear

5See in particular Eraker and Shaliastovich (2008) for the linear pricing characterization of long-run risk equilibrium models.
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affine setting these can be written as:

ct = µc + γcX ft , V c
t = µcv + γcvX ft . (2.6)

Obviously, the loadings γc and γcv may contain zeros such that the subset of factors which affect credit
spreads may be different from the subset driving credit volatility. We consider a cross-section i = 1, . . . , N,

of asset spreads (and returns) spot volatilities written in a generic way, simplifying the notation, as:

σi(X ft )2 = µiv + γivX ft . (2.7)

Given volatility is latent we need to think about extracting its sample paths from observable data. More
precisely, one can use proxies, i.e. filtered volatilities, to replace the left hand side latent spot volatility in
the above equation. Finally, we assume that the cross-section of volatilities spans the factor space - namely:

Assumption 2.3. Let Xt ≡ (σ1(X ft )2, . . . , σN (X ft )2)′ and γv be an N × r matrix and µv an N × 1 vector.
Then:

Xt = µv + γvX ft

where γv is of rank r.

The above assumption guarantees that we can infer the volatility factor process from the cross-section of
volatilities. Finally, it should also be noted that higher conditional moments of affine diffusions, if they exist,
are also affine functions of the state process, see e.g. Duffie et al. (2000). In our analysis we will require that
X ft has finite fourth unconditional moment, namely:

Assumption 2.4. The process X ft has finite fourth moments, i.e. E ‖ ft ‖4 < M.

This implies that the processes ct and V c
t in (2.6) have finite unconditional fourth moments as well and that

uniformly across t all conditional (given the σ-field of X fτ , τ ≤ t) fourth moments of X ft are finite.

2.1 Panels of Volatility Proxies

There is a long history of modeling co-movements of volatilities via factor models. Early work involving
small cross-sections of assets includes various ARCH factor models, see e.g. Engle et al. (1990), among
others. Diebold & Nerlove (1989) suggest a closely related latent factor model. A number of recent papers
entertain the idea to extract principal components from panels of realized volatilities, see e.g. Aı̈t-Sahalia
and Xiu (2017), Pelger (2019), among others. We do not have the luxury to work with realized volatilities
as the assets we deal with are not traded at ultra-high frequencies such as liquid equities that are typically
chosen (in particular S&P100 stocks). This applies to many financial assets. Hence, our volatility proxies are
ARCH-type discrete time models. Therefore, our analysis is related to Connor et al. (2006) who develop a
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dynamic approximate factor model and rely on large panel data asymptotics to estimate a common volatility
component. Also relevant to our work are Egloff et al. (2010) and Aı̈t-Sahalia, Karaman and Mancini (2012),
among others, who apply principal component analysis (PCA) to panels of variance swap rates. We do not
directly observe volatility (nor X ft ) but have at our disposable, for a large set of assets, some estimates of
volatility.6 We lack continuous time observations pit for asset i but have observations, denoted by pi[t:t+h]

over some discrete time intervals. Formally, we have:

Assumption 2.5. Log price data are sampled discretely at some equidistant frequency h across all i denoted
pi[t+kh:t+(k+1)h], ∀ k ∈ N.

We estimate (univariate) ARCH-type models viewed as filters through which one produces an estimate of
the conditional variance. Hence, we construct a panel of univariate filtered volatilities across assets, denoted
by V̂ i

[t:t+h] for asset i and sampling interval h. The time series of cross-sections are sampled at the fixed time
interval h. This may leave the impression that the underlying affine diffusion setting is detached from the
large panel framework, and therefore irrelevant, for the purpose of our analysis, since in general there is no
straightforward mapping from the continuous time process to a finite time grid discretization, except in a
few special cases. However, the continuous time process is relevant because it provides: (a) the foundations
for the volatility filters and their relationship to X ft , and (b) the stochastic properties of the idiosyncratic
(i.e. measurement) errors in the panel data model, such that they satisfy the so called approximate (using the
terminology of Chamberlain and Rothschild, 1983) panel structure. Our analysis is inspired by Nelson and
Foster (1994) who use continuous record asymptotics, i.e. involving log asset price data at arbitrary small
time intervals, to characterize the distribution of the measurement error of discrete time volatility filters vis-
à-vis continuous time diffusions. We do not entertain h ↓ 0 asymptotics. Instead, we view the Nelson-Foster
asymptotics as a guidance to the distribution of filtering errors, while keeping h fixed. More specifically:

Assumption 2.6. The class of parametric filters that are considered feature the following updating scheme:

V̂ i
[t:t+h] = V̂ i

[t−h:t] + hκ̂it−h + h1/2git (2.8)

κ̂it−h , κ̂i
(
pi[t−h:t], V̂

i
[t−h:t], t, h

)
git , gi

(
υ̂ix,t, p

i
[t−h:t], V̂

i
[t−h:t], t, h

)
µ̂it−h , µ̂i(pi[t−h:t], V̂

i
[t−h:t], t, h)

υ̂ix,t , h−1/2[pi[t:t+h] − p
i
[t−h:t] − hµ̂

i
t−h]

where κ̂i, υ̂ix,t, and git satisfy regularity conditions appearing in Appendix A.

In particular, κ̂i, υ̂ix,t, and git are functions selected by the econometrician. The κ̂i and µ̂i must be continuous

6We are working under the assumption that we can collect volatility data which span the space of all the risk factors, formally
defined later. Alternatively, we can think of estimating a sub-block of factors pertaining to volatility, which we will still denote by
X f

t to avoid further complicating notation.
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in all arguments and git must be differentiable in V̂ i, υ̂i and h almost everywhere and must possess one-
sided derivatives everywhere (for further details see Appendix A as well as Nelson & Foster, 1994). For
instance, standard (E)GARCH models can be employed to filter the conditional volatility (e.g. Nelson,
1992). In practice, either class of models yields the correct filtered conditional volatilities despite the fact
that the models are potentially misspecified. It is for this reason that in our empirical work we choose to
use (E)GARCH models. Next, we need to analyze the properties of ui[t:t+h] in equation (2.9) appearing
below. We expect that there are commonalities across assets, i.e. univariate estimation errors are neither
cross-sectionally nor temporally uncorrelated.

Proposition 2.1. Let Assumptions 2.1 - 2.6 hold and as h ↓ 0, the volatility filter defined in (2.8) satisfies:

V̂ i
[t:t+h] = σi(X ft )2 + ui[t:t+h]

= δi(σ(X ft )σ(X ft )′)δi′ + ui[t:t+h]

= (

r∑
j=1

(δij)
2hjj0 ) +

r∑
j=1

(δij)
2hjj1 X

j
t + ui[t:t+h]. (2.9)

Proof: see Appendix B

The above result involves h ↓ 0. For any finite h we expect ui[t:t+h] to feature discretization errors.7 In
addition, we may also expect that pervasive factors may appear in those errors.

2.2 Digression on Factor Model Assumptions

In the context of standard large scale factor models, some basic assumptions are made about the factors and
the time series and cross-sectional dependence of the idiosyncratic errors. In particular, the aforementioned
notion of an approximate factor model due to Chamberlain and Rothschild (1983) imposes regularity
conditions such that the idiosyncratic errors are allowed to be mildly temporally and cross-sectionally
correlated. To elaborate on this and to keep our analysis as close as possible to the standard large scale factor
models in the literature, we adopt the commonly used notation with some modification and then discuss the
mapping with the framework discussed so far. Moreover, given the nature of the volatility proxies, involving
either spot or integrated volatilities, we adopt the following notation:

Assumption 2.7. Consider the vector form model representation for X[t:t+h] = (V̂ i
[t:t+h], i = 1, . . . , N)′.

We also let F 0
t be the r × 1 vector of true population factors F 0

t = σ(X ft )2. Moreover, for factor loadings
Λ̃0 = (λ0

1, . . . , λ
0
N )′, we have:

X[t:t+h] = Λ̃0F 0
t + u[t:t+h]. (2.10)

7For convenience and to avoid extra notation we do not distinguish between ui
[t:t+h] for finite h versus the limiting process.
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Note that we suppress the intercepts in the above equation, although they appear implicitly because σ(X ft )2

is an affine function ofX ft according to Assumption 2.1. By the same token, the factor loadings λ0
i appearing

in equation (2.10) depend on δi appearing in equation (2.4) and the linear affine slope coefficients appearing
in Assumption 2.2. Finally, u[t:t+h] = (u1

[t:t+h], . . . , u
N
[t:t+h])

′. To address the cross-sectional and temporal
dependence across the elements of u[t:t+h] due to discretization and approximation errors we make the
following assumption:

Assumption 2.8. The vector u[t:t+h] for any h > 0 has the following factor structure, with F 0
t defined in

equation (2.10):
u[t:t+h] = Υ0F 0

t + ũ[t:t+h] (2.11)

Combining equations (2.10) and (2.11) yields:

X[t:t+h] = (Λ̃0 + Υ0)F 0
t + ũ[t:t+h] ≡ Λ0F 0

t + ũ[t:t+h] (2.12)

and the matrix representation of the factor model in (2.12) is:

X = F 0Λ0′ + ũ (2.13)

where X is a T × N matrix of observations on (standardized) volatilities, ũ is a T × N matrix of
idiosyncratic errors, the true factor matrix F 0 = (F 0

1 , . . . , F
0
T )′ is T × r and the loading matrix Λ0 is N

× r.

Several issues emerge when we examine the factor structure appearing in equations (2.12) and (2.13). First,
we may not necessarily expect to find unbiased estimates for the loadings, i.e. estimates of Λ̃0. Indeed,
because we use filtered volatilities, the loadings (Λ̃0 + Υ0) ≡ Λ0 no longer represent the true underlying
loadings, Λ̃0 = (λ0

1, . . . , λ
0
N )′, but instead are contaminated by the estimation noise. If we were interested in

the point estimates of the loadings this would be problematic. This is not our goal, however, as we only seek
to estimate the factors which drive the cross-section of estimated volatilities. Second, we need to be careful
about situations where Λ̃0 and Υ0 (nearly) off-set each other, resulting in a so-called weak factor situation
(Onatski, 2018). There are a number of reasons to think this will not be the case in our particular setting,
but to err on the cautious side we do entertain this possibility.

A general solution is to consider estimators which undo the bias. One such type of estimators we consider
involves instruments assumed to be orthogonal to the volatility proxy errors ui[t:t+h] appearing in equation
(2.9). The idea to use instrumental variables (IV ) in the context of PCA has been entertained in a number
of papers, including Rao (1964), Wang and Qin (2002) and more recently Fan, Liao and Wang (2016). The
issue of course is to find valid instruments, which will be discussed in the next subsection. The use of IV
relies on a projection matrix PZ ≡ Z(Z ′Z)−1Z ′ where Z is a set of instruments with the property:

Assumption 2.9. There is a set of instruments Z ≡ [Z1, . . . , ZT ]′ such that E[Zitu
i
[t:t+h]] = 0 ∀ i and t.
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The procedure is simple, with data X being replaced by the projections PZX, for which standard PCA
is applied. The projected data are void of proxy errors, so that the bias issue is resolved, provided some
additional assumptions apply, to which we turn later. While IV is a possible solution to the aforementioned
bias problem, there are several reasons to believe that the estimation of factors, even with biased loadings,
can be done with standard PCA in our particular application involving panels of volatility proxies. We
discuss next a number of reasons why this is the case.

First, the consistency and asymptotic normality of the principal components estimator when both N and
T go to infinity involves a number of assumptions stated as Bai (2003, Assumptions C-G). They notably
require that the ratio between the ith largest and the (i+1)th largest eigenvalues of the population covariance
matrix of the data, is rising proportionally toN so that the cumulative effects of the normalized factors on the
cross-sectional units strongly dominate the idiosyncratic influences asymptotically. The motivation for the
potential of weak factors, as discussed by Onatski (2018), occurs in practice when the ratio of the adjacent
eigenvalues of the finite sample analog of the population covariance matrix is small, which implies that in
particular Assumption B in Bai (2003) would be violated. The existing literature suggests that this is not the
case with panels of volatility proxies. The panels of realized volatilities, considered by Aı̈t-Sahalia and Xiu
(2017) and Pelger (2019), correspond to a setting similar to ours as the realized measures also feature errors
whose properties are characterized by infill asymptotics. The findings in those papers are that there are only
a few (namely typically one) factors and they explain more than 90 % of the cross-sectional variation. In a
different setting, closer to ours Connor et al. (2006) find a single dominant factor.

Second, we verify some of the assumptions which rule out the presence of weak factors in a simulation
setting discussed in the next section. We simulate discretizations of affine diffusions and study the bias
properties of the loadings as well as the potential for the presence of weak factors in panels of volatility
proxies. We find no simulation evidence for the presence of weak factors.

Third, looking at the simulations and panels used in the empirical section, it appears that none of the
symptoms that might suggest weak factors are present. The ratios of the first-to-second and second-to-third
largest eigenvalues turn out to be much larger than one, whereas all others are close to one. These results
hold not only for the simulation design in Section 3 but also for the empirical analysis, details of which are
discussed in Section 4. These results confirm the previous findings in the literature and are dissimilar to the
maximal ratio of 1.75 across twenty eigenvalues cited by Onatski (2018) as motivation for weak factors of
the Stock and Watson macro panel data.

Finally, in a setting not involving measurement errors, Egloff et al. (2010) and Aı̈t-Sahalia et al. (2012), find
that two factors explain close to 100 % of the variation in panels variance swap rates for the S&P500. This
is important, as it could be argued that the measurement errors lead to a weak third factor, undetected due
to the biased loadings. Another remedy, of course, is the IV -based procedure which will be considered as
well.
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In the remainder of this subsection we discuss the assumptions in order to obtain desirable estimates of the
underlying factors. These assumptions pertain to standard PCA when applied to X or IV -based PCA when
applied to PZX. For the sake of simplicity, we focus on X with the understanding that, ceteris paribus, the
same conditions apply to the instrumented data.

The above equation (2.11) makes the statement that u[t:t+h] are related to the true factors - as expected from
discretization and approximation errors. More important, however, is the fact that there are no factors other
than F 0

t which explain the co-movements among the elements of u[t:t+h].

Assumption 2.10. The factors F 0
t and errors ũ[t:t+h] in equations (2.11) and (2.12) satisfy Bai (2003,

Assumptions C-G). More specifically, the factors F 0
t and the errors are assumed to be weakly dependent

(Assumption D, Bai, 2003) and ũ[t:t+h] are weakly serially and cross-sectionally dependent (Assumption C,
Bai, 2003).

2.3 Volatility Factor: PCA of panels of volatility proxies

With the assumptions discussed so far, we can proceed with the standard method of asymptotic principal
components, initially considered by Connor and Korajczyk (1986) and refined by Bai and Ng (2002), Bai
(2003), as an estimator of the factors in a large N and T setup. As noted before, the subsequent analysis
applies either to X or else PZX. Again for convenience we focus only on X in the subsequent analysis.

We determine the number of factors using consistent selection methods such as those of Bai & Ng (2002)
as well as Ahn and Horenstein (2013). Let r denote the estimated number of factors. Then the principal
components method constructs a T × r matrix of estimated factors and a corresponding N × r matrix of
estimated loadings by solving the following optimization problem:

min
Λ,F

1

NT

N∑
i=1

T∑
t=1

(V̂ i
[t:t+h] − λiFt)

2 (2.14)

subject to the normalization that (F ′F )/T = Ir. The estimated factor matrix F̂ is
√
T times the eigenvectors

corresponding to the r largest eigenvalues of the T × T matrix XX ′. Moreover, Λ̃′ = (F̂ ′F̂ )−1F̂ ′X =
F̂ ′X/T are the corresponding factor loadings.

Finally, it is worth recalling that we do have biased estimates of the loadings, due to the fact that we have
filtered volatilities (unless instrumental variables are being used). It is therefore also worth noting that we
do not impose no-arbitrage conditions across pricing equations.8 Then, Bai (2003, Theorem 1) implies that:

8 The literature in general, and our paper in particular, avoids the often tedious cross-equation restrictions during the estimation
of empirical asset pricing models. Imposing such conditions, which are assumed to hold in the data generating process, is a much
debated topic in the term structure of interest literature (see e.g. Joslin, Le and Singleton, 2013, among others) and may be prone
to misspecification issues. What really matters for our analysis is the extraction of factors.
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Proposition 2.2. Under Assumptions 2.1 – 2.10, as N and T →∞ and
√
N/T → 0, there exists an r × r

rotation matrixHr with rank(Hr) = r, such that for each t :

√
N(F̂t −HrF 0

t ) = V −1
NT

(
F̂ ′F 0

T

)
1√
N

N∑
i=1

λ0
i ũit + op(1)

d→ N(0, V −1QΓtQ
′V −1)

where VNT is a diagonal matrix with the r largest eigenvalues of the matrix (1/NT )XX ′, and
Q = plimN,T→∞(F̂ ′F 0)/T, V is a diagonal matrix with the r largest eigenvalues of the matrix
Σ

1/2
Λ ΣFΣ

1/2
Λ with N−1Λ′Λ

p→ ΣΛ > 0, and ΣF is the variance of the F 0
t process. Finally, Γt =

limN→∞
∑N

i=1

∑N
j=1 λiλ

′
jE(ũitũjt)

Proof: see Appendix B

Note that the limiting distribution of factors involves the loadings. Here we need to distinguish the case of
PCA with the raw data matrixX versus PCA applied to PZX. The former features loadings (Λ̃0+Υ0) while
the latter involves the unbiased Λ̃0. From the perspective of the true loadings, the former can be viewed as
non-pivotal since it involves unknown nuisance parameters pertaining to the contaminated loadings.

Finally, it should also be noted that the analysis in this section is also relevant when panels of realized
volatilities are used to extract factors, as such measures are also affected by measurement noise. The existing
literature has not recognized the potential biases in estimation of loadings and its implications.

2.4 Volatility Factor: PCA of panels of volatility proxies of idiosyncratic errors

Assumption 2.3 tells us that we can recover all the factors using the panel of volatility proxies. By the
same token, we could also consider the factors related to the mean and extract them from a panel of
spreads/returns. Analogous to equation (2.13), we can consider:

Y = F 0Φ0′ + e (2.15)

where Y is a T × N matrix of observations on (demeaned) spreads/returns, e is a T × N matrix of
idiosyncratic errors, the true factor matrix F 0 = (F 0

1 , . . . , F
0
T )′ is T × r and the loading matrix Φ0 is N

× r.9 Ludvigson & Ng (2007) approximate the volatility of the factors by applying PCA to the above
panel and computing the squares of the extracted factors, i.e. F̂ 2

kt, k = 1, . . . , r.10 We pursue an alternative
approach. Consider, for example, the following square root processes in the context of a one- and two-factor

9There is again a discretization error of the affine diffusion model appearing in equations (2.1) through (2.4), which is assumed
to be negligible.

10We avoid further complicating the notation by using the same notation F̂ for estimators based on either (2.13) or (2.15),
although it should be clear that these are different estimators.
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setting, respectively:

dX f1t = a1(b1 −X f1t)dt+ σ1

√
X f1tdW1t (2.16)

and

dX f1t = a1(b1 −X f1t)dt+ σ1

√
X f1tdW1t (2.17)

dX f2t = a2(b2 −X f2t)dt+ σ2

√
X f1t + X f2tdW2t

Our approach builds on the idea of volatility factors extracted from panels of volatilities and is related to
the fact that the panel of spreads/returns, Y , in (2.15) involves not just the common mean returns/spreads
component/factor, but it also involves the idiosyncratic errors, for which one can again think about how
to define and estimate the volatilities of the panel of e in (2.15). In this context a two-step approach
can be applied to extract first the common returns factor F̂ and the corresponding estimated idiosyncratic
components of returns or residuals, ê. In the second step the Volatility Factor (V F ) can be extracted from
the panel of univariate volatilities of ê.

In addition, we employ two alternative IV approaches to address the estimation/measurement error issue.
One method extracts the common factors from the panel of fitted values obtained from the regressions of
the variable of interest e.g. VIX or RV or VRP or excess returns, on each univariate AR-(E)GARCH filtered
volatility pertaining to each financial asset in the panel. It therefore attempts to extract the volatility factor
from the systematic component of the model with the filtered volatilities and orthogonalize the unsystematic
error component, and hence it is denoted by V Fe. The other approach is based on the IV projection
discussed in Assumption 2.9. The Volatility Factor Instrumental Variable (V FIV ) approach uses lags
of the cross-sectional average of filtered volatilities as IV s. In particular, we extract the V FIV as the
principal component/common factor from the panel of fitted values of each univariate AR-(E)GARCH
filtered volatility regressed on their cross-sectional average using lags of the cross-sectional average as
instruments. This method is inspired by Fan et al. (2016) and is a simple version of Projected-PCA approach
which attempts to remove the estimation/filtering error. The choice of lag length is based on the moment
selection criteria of Andrews (1999) and Hall, Inoue, Jana and Shin (2007). Based on the Cragg and Donald
(1993) statistic and the associated Stock and Yogo (2005) critical values, we find that 98% of our empirical
panel series reject the null hypothesis of weak instruments, whilst the instruments orthogonality condition
gains empirical evidence for 84% of these panel series, evaluated by using the Eichenbaum, Hansen and
Singleton (1988) instrument orthogonality test. Further details on the empirical analysis are discussed in
Sections 4.
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3 Monte Carlo simulations

We evaluate the results of Propositions 2.1 and 2.2 via Monte Carlo simulations to study the effects of
different sample sizes (N,T ), sampling frequencies (or aggregation) and ARCH-type filters in extracting
the Volatility Factors (V F ) as well as the alternative volatility type factors that deal with the estimation error
(V Fe and V FIV ), as described in the previous section. Moreover, we evaluate the performance of Bai &
Ng (2002) information criteria (IC) as well as the Ahn & Horenstein (2013) estimators, the Eigenvalue Ratio
(ER) and the Growth Ratio (GR), to estimate the number of volatility type factors.

3.1 Simulation Design

We start from the following single factor affine diffusion DGP for a cross-section of N asset returns:

dpit =
r∑
j=1

δijdX
f
jt +

 r∑
j=1

γijX
f
jt

1/2

dW i
t (3.1)

dX f1t = a1(b1 −X f1t)dt+ σ1

√
X f1tdW

f
1t

...
...

dX frt = ar(br −X frt)dt+ σr

√
X frtdW

f
rt

where W i
t and W f

jt for i = 1, . . . , N, j = 1, . . . , r, are mutually uncorrelated Brownian motions and pit are
log prices of asset i. Simple Euler discretization of the above diffusions may pose problems with regards to
the positivity constraint of the volatility factor process (see e.g. Deelstra and Delbaen, 1998). To that end
we simulate for a time-step of size 1/n, the approximating processes for k ∈ N :

p
(n)i
k+1 = p

(n)i
k +

r∑
j=1

δij(X
(n)f
j,k −X (n)f

j,k−1) +

 r∑
j=1

γij(X
(n)f
j,k )+

1/2

εik+1 (3.2)

X (n)f
1,k+1 = X (n)f

1,k +
a1

n
(b1 −X (n)f

1,k ) +
σ1ε

(n)f
1,k√
n

√
(X (n)f

1,k )+

...
...

X (n)f
r,k+1 = X (n)f

r,k +
ar
n

(br −X (n)f
r,k ) +

σrε
(n)f
r,k√
n

√
(X (n)f

r,k )+

where (x)+ = max (0, x).Deelstra and Delbaen (1998) establish the strong convergence of the discretization
scheme in (3.2) to the diffusion process in (3.1) as the step size decreases to zero. Following the estimates
of the AFF1V model in Chernov, Gallant, Ghysels and Tauchen (2003), we pick the following parameters
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for the simulation design. For the single factor model, r = 1, we select δi1 and γi1 as NIID(1, 1), ∀ i, and a1

= 4.5, b1 = 0.02, σ1 = 1.11 As the parameters pertain to annual sampling, we set n = 250 for daily returns.
Lower-frequency realizations are obtained by aggregating the above high- or daily-frequency process to a
low-frequency one such as weekly and monthly. All the errors are N(0, 1/n). First, we simulate a cross-
section of returns with N = 50, 100 and T = 3780 where T is adjusted according to the aggregation
frequency, n(f) = 1, 5, 21 referring to the daily, weekly and monthly frequencies, respectively. Hence
we have T/n(f) sample sizes. Some of the choices of N and T are based on the empirical sample sizes
considered in the empirical application. Then we create a panel of demeaned and standardized returns and
construct a panel with the estimated idiosyncratic components of returns (or residuals) from the regression
of each return on the principal component extracted from the panel of returns. We estimate univariate AR-
(E)GARCH models with errors that follow the Normal or Generalized Error Distribution (GED) (Nelson,
1991) and create the corresponding panels of volatilities (AR (E)GARCH Norm and AR (E)GARCH GED,
respectively) from which we extract the volatility type factors (V F , V Fe and V FIV ).12 The Monte Carlo
experiment is performed using 10000 simulations.

3.2 Simulation Results

The true/simulated factor from the discretized DGP at high frequency generated by (3.2) is obtained from a
single factor affine diffusion for the cross section of N assets over a time-series sample, T . For the single
factor model the DGP parameters described in the previous section represent the high-frequency (daily)
process. The simulated daily process is then aggregated to represent weekly and monthly frequencies using
n(f) = 5, 21, respectively. For each of the simulated processes, at different frequencies, we follow the three
approaches described in subsection 2.4 to obtain V F , V Fe and V FIV . Note that as a proxy for the variable
of interest in the second approach (for the extraction of V Fe) we used the V F which also matches some of
the properties of VIX and RV.

First, we evaluate the ability of Bai & Ng (2002) ICp2 criterion and the Ahn & Horenstein (2013) ER and
GR estimators to determine the number of factors. We find that the ER and GR estimators perform well
by estimating a single factor as generated by the single factor affine diffusion model in (3.1). In contrast,
while the ICp2 criterion performs well for the PC which is estimated from the panel of the true/generated

11 We checked if a truncation comes into play and if it influences the results for which we have not found any evidence.
Nevertheless, we also used the CIR specification to simulate our model which turned out to give very similar results, albeit more
computationally burdensome. We also simulated the two factors model and the simulation results are qualitatively the same and
hence not reported for conciseness.

12The Skewed GED (SGED) (Theodossiou, 1998), Student’s t (Bollerslev, 1987) and Skewed Student’s t (Hansen, 1994) are
also used as error distributions and the results are robust and similar to those of the GED (Nelson, 1991). The volatility type
factors extracted from all these filters are highly correlated, ranging from 0.74 − 0.99. In addition, the unconditional mean and
unconditional variance of the simulated data are taken as the initial values for our AR-(E)GARCH models. Our results are also
robust to different initial values based on estimating an AR-(E)GARCH model for a subset of the simulations as well as choosing
as initial values the unconditional moments (mean and variance) based on the estimated parameters of the AR-(E)GARCH models.
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volatilities, it seems to overestimate the number of factors, hitting always the maximum bound of factors,
rmax, for the panels with the estimated AR-(E)GARCH volatilities that correspond to V F and V Fe factors,
except in the V FIV case. This suggests that the ICp2 may be more sensitive to the estimation error which
can be solved by adopting the V FIV approach. These simulation results (found in Table A.1.1 in the Online
Appendix (OA)) provide additional evidence that the Ahn & Horenstein (2013) estimators are not sensitive
to the choice parameter, rmax.

Second, we evaluate the correlation of the simulated/true factors with the estimated volatility type factors in
order to examine how the latter are affected by (a) the alternative approaches described above for extracting
volatility type factors and (b) the effects of the sampling frequency in extracting the volatility type factors,
and evaluate Propositions 2.1 and 2.2. The correlations of the simulated and estimated volatility type factors
(V F , V Fe and V FIV ) are higher for the high-frequency (daily) DGP vis-à-vis the aggregated processes
and the corresponding factors estimated from low-frequency data (shown by the correlations in Table A.1.1
in the OA). As the aggregation horizon increases (and the frequency of the true process becomes lower), the
correlations of the simulated and estimated types of volatility factors are decreased especially for the AR-
(E)GARCH Norm models. This result provides support for Proposition 2.1 according to which volatility
type factors are more accurately estimated with higher-frequency data. Moreover, we find that the volatility
type factors extracted from AR-(E)GARCH GED models yield higher correlations with the true volatility
factor and are less sensitive to the sampling frequency. This is explained by the fact that the GED is a
more flexible distribution to capture the heavy tail behavior (Nelson, 1991) found in different sampling
frequencies.

Third, we evaluate the effect of the estimation error, denoted by eeit, which is the difference between the
true/simulated and estimated volatilities, using the auxiliary regression eeit = a+ bV F Tt +uit, where V F T

denotes the true volatility factor, for the different panels of volatility filters and find that as the sampling
frequency increases, the Σb2/N → 0, as the theory suggests. Moreover, we evaluate the relative Mean
Squared Errors (MSE) of the estimated factors which account for the estimation error, i.e. V Fe and V FIV ,
vis-à-vis the V F and find that both V Fe and V FIV are relatively more efficient than V F in MSE terms. In
addition, the V FIV is relatively more efficient than V Fe especially for the AR-(E)GARCH GED models.
Regarding the MSEs of loadings, there are no substantial differences between the three volatility type factors.
Last but not least, we investigate the variance signal of the first factor as a percentage of the first five factors.
We find that V F and V Fe factors yield variance signal ranging from 70%-100% while the variance signal
of V FIV appears to be always 100%, providing evidence of the strong factor case. These results are also
found in Table A.1.1 in the OA.

Within our simulation design for the single factor affine diffusion model we also evaluate the properties of
the residuals from volatility factor models. Following Bai (2003) Assumptions C, E and H we evaluate the
time and cross-sectional dependence and heteroskedasticity. Using auxiliary regressions we find that the
panel residuals from the volatility factor models have weak and insignificant temporal dependence for the
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V F and V Fe factors, while there is no evidence of temporal dependence for the V FIV factors. Related
is the assumption of weak cross-sectional dependence in the errors of factor models for which we find
weak evidence. We also examine the dynamic heteroskedasticity using auxiliary regressions for the squared
residuals and find that their corresponding coefficients range from 0.3 to 0.4 for V F and V Fe and are
negligible for V FIV . Similarly, there is weak evidence of static heteroskedasticity in the residuals of the
V F and V Fe factor models, while there is no evidence of static heteroskedasticity for the V FIV factor
model. Finally, regarding the assumption of weak dependence between factors and idiosyncratic errors
(Assumption D, Bai, 2003) we find that the regression coefficient of the panel model residuals and the
estimated volatility type factors is very close to zero in almost all cases. Hence, all the above residuals
tests provide simulation evidence which suggests that the error assumptions satisfy the approximate factor
structure assumptions in Bai (2003).

Last but not least, we consider the size of the ratios of the largest eigenvalues for the various types of
estimated volatility factors following Onatski (2018) in order to check if there is an indication of weak factor
structure in the simulations. We find that the largest ratios are as high as 6.5 and 2.8 (found in Table A.1.1 of
the OA) suggesting that there is no evidence of weak factor structure. Moreover, Lettau and Pelger (2018)
state that for the loadings in a strong factor model Λ′Λ/N → Σ, where Σ is a full-rank, diagonal matrix.
Evaluating this assumption we find supportive evidence for both simulation designs. We also get zero mean
and low variance values for the difference between the true V F and the estimated types of volatility factors
indicating “strong factor” case.

4 Empirical analysis of extracting volatility factors

We extract factors from panels of asset spreads and volatilities beyond equity and show how these help
price equity volatility risk, the VIX, the RV of S&P500 stock market returns and the VRP. In our empirical
analysis we control for the volatility of the S&P500 returns directly by including the lagged VIX and lagged
RV, and therefore we can focus on the role of volatilities beyond equities. Motivated from the work of
Bekaert, Ehrmann, Fratzscher and Mehl (2014), Gilchrist and Zakrajšek (2012) and Taylor and Williams
(2009), among others, we extract common factors from financial assets risk panels of: (1) Short-run Funding
(denoted by SRFUN ) spreads and volatilities and (2) Long-run corporate and government Bond (denoted
by LRBON ) spreads and volatilities. It is worth mentioning at the outset that the SRFUN factors turn
out to be relatively more significant predictors than the LRBON factors. The acronyms and the names of
our factors and other variables employed in the empirical analysis are summarized in Table 1. While the
analysis reported here focuses on SRFUN and LRBON spreads, it should be noted that we did examine
other financial asset classes, including commodities returns and their spot and futures prices spreads and
their volatilities, as well as the foreign exchange returns and volatilities, but did not find much evidence of
predictability.
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Traditionally factors are extracted from the returns and spreads of financial assets. Hence, the
common (mean) factors of the short-run funding and the long-run corporate and government bond
spreads, SRFUN SF and LRBON SF , respectively, are extracted from the corresponding panels of
spreads/returns. We also estimate monthly volatilities using AR-(E)GARCH models for the idiosyncratic
components (residuals) obtained from the regression of each spread on the corresponding common spreads
factor from the aforementioned panels.13 We consider three different distributions for the AR-(E)GARCH
models, the Normal, the GED and SGED, and report the volatility type factor results for all three
distributions in order to examine the robustness of our empirical results.14 We consider the GED being
a more flexible distribution and SGED capturing skewness and the effects of large extreme events related
to crises. The choice of the AR-(E)GARCH models is based on the fact that they are often considered
as spot volatility benchmarks in many financial asset volatility empirical studies. Given that our results
are robust to the GARCH type filters in this section we report results mainly for the AR-EGARCH filter
(while Section 6 summarizes a comprehensive robustness analysis). Last but not least, we also estimate
the corresponding daily volatility type factors from the daily AR-(E)GARCH models for a subset of the
cross-section of the indicators for SRFUN and LRBON (listed in Tables A.1.2 and A.1.3) given the
unavailability of a small number of series at daily frequency.15 Our sample period refers to 1999m01 -
2016m09 (T = 213 monthly observations) and 06/01/1999 - 20/09/2016 (T = 3497 daily observations).
We consider 1999 as the starting period due to the fact that the number of series in the cross-section, N ,
increases significantly in the aforementioned panels as opposed to having a starting period in 1990 where
we have roughly half of the cross-section in these two classes of assets.

We extract both spreads/mean factors (SF ) and volatility type factors for each panel. We consider the three
different volatility type factors. The Volatility Factors (V F ) are based on the estimated volatilities (AR-
EGARCH fitted values) of the idiosyncratic component/residual of each spread regressed on the spreads
factor (SF ). The other two volatility type factors, namely the V Fe and the V FIV , deal with the estimation
error of filtered volatilities. We extract V Fe from the panel of fitted values obtained from the regressions of
the variable of interest (e.g. VIX, RV, VRP or returns) on each univariate AR-(E)GARCH filtered volatility
for each idiosyncratic component in the panel. The V FIV is based on the IV approach and uses lags of
the cross-sectional average of the panel of the N filtered volatilities as instruments. In particular, we extract

13The following transformations are applied to the series before extracting the factors. First we define the spreads of interest rates
and bond rates (found in Tables A.1.2 and A.1.3). To ensure stationarity we take the first difference of the above spreads, following
e.g. Ludvigson & Ng (2007), which are thereby demeaned and standardized. Second, we estimate the univariate AR-(E)GARCH
models for the panel of idiosyncratic components of spreads (residuals) from the regression of each spread on the common spreads
factor and create the panel of the corresponding estimated volatilities which are then standardized before extracting the principal
components or volatility type factors. We do not demean the fitted volatilities in order to ensure positivity of the extracted volatility
factor.

14We also consider Student’s t distribution for the volatility model panels which is highly correlated (0.97) with the corresponding
factors using the GED and SGED. In addition, the factors are almost identical (0.99 correlation) whether using Student’s t or Skewed
Student’s t GARCH type filters.

15Although our methods apply to RVs we do not pursue this approach in the empirical analysis due to unavailability of intraday
data for most of the financial series in our panels. Resorting to the monthly RVs yields imprecise estimates because of the small
number of observations/days aggregated within a month.
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the common factors or principal components, V FIV , from the panel of the fitted values of each univariate
AR-(E)GARCH filtered volatility regressed on their cross-sectional average using lags of the cross-sectional
average as simple instruments.

We turn to evaluating the number of principal components for each of the two panels, the SRFUN and
LRBON , using the Bai & Ng (2002) information criteria (ICp1, ICp2, ICp3, BIC3) and the Ahn &
Horenstein (2013) estimators (ER and GR). We find that the ICp criteria hit the boundary of the maximum
number of factors, rmax = 5, whereas the Ahn & Horenstein (2013) estimators choose one factor in most
cases. These results are reported in the OA, Table A.1.4, for conciseness. While the BIC3 performs better
than ICp criteria, in the sense that it does not hit the boundary of rmax, it still estimates a large number
of factors being four in most cases. Interestingly, while the ICp and BIC3 estimate a large number of
factors for all types of factors (SF , V F , V Fe), this is not the case for the V FIV approach, according
to which all Bai & Ng (2002) criteria as well as Ahn & Horenstein (2013) estimators choose one factor
(Table A.1.4). This evidence suggests that the IV estimation of volatility factors alleviates the problem of
the ICp criteria that hit the boundary of rmax. While alternative criteria can often yield different number
of factors empirically, given the difference in their penalty terms, it is worth mentioning that the choice of
factors based on this approach follows an unconditional setup (i.e. does not condition on the explanatory
or predictive power of each factor for the VIX or RV or VRP). Hence we also consider the complementary
method which selects factors in a predictive regression using a hard thresholding approach (e.g. Bai and
Ng, 2008). We find that for the VIX using the SRFUN factors, only one factor, namely the first volatility
factor, is selected among alternative volatility and spreads factors and their lags using the Bai and Ng (2008)
approach. Thus the results based on the Bai & Ng (2008) hard thresholding targeted predictor approach,
the Ahn & Horenstein (2013) as well as our predictive regressions in Tables 2-4 (which include additional
variables too) provide empirical support for a single factor for each panel and especially the SRFUN
factors. In addition, the first common volatility type factor explains the largest variation in each panel and
also provides a framework to label each of the factors, referring to the subpanel being used to construct it.
For instance, the first volatility factor, SRFUN V F , explains 81% of the variation of this panel, while the
LRBON V F explains 87% of the cross-sectional variation of the panel. Similar results apply to the rest of
the volatility type factors (V Fe and V FIV ).

Next we empirically evaluate the properties of the residuals extracted from volatility factor models.
Following Bai (2003) we evaluate the existence of weak temporal and cross-sectional dependence and
heteroskedasticity (Assumptions C, E and H). Using auxiliary regressions we find that the panel residuals
from the volatility type factor models have weak and insignificant temporal dependence. Similarly, using
auxiliary regressions for the squared residuals we find weak evidence of heteroskedasticity. Finally,
regarding the assumption of weak dependence between factors and idiosyncratic errors (Assumption D in
Bai, 2003) we find that the regression coefficient of the panel model residuals and each of the corresponding
alternative estimated volatility factors (V F , V Fe and V FIV ) is insignificant and close to zero.
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Following Lettau & Pelger (2018) a strong factor affects a very large number of underlying assets in the
panel. Hence, we examine if the first volatility type factor (V F , V Fe, V FIV ) affects each filtered volatility
in the panel and find that all spreads volatilities in the panel are significantly explained by the first factor.
These results are robust using both parametric and non-parametric (the Kendall’s tau and Spearman’s rank)
correlation tests. We also investigate the variance signal of the first factor as a percentage of the first five
factors and find that V F and V Fe yield variance signal close to 50% while the variance signal of V FIV
appears to be 100%, providing evidence of a strong factor. Last but not least, we also examine the estimated
loadings regarding the strong factor case. According to Lettau & Pelger (2018) under the strong factor
assumption, Λ′Λ/N → Σ, where Σ is a full-rank, diagonal matrix. We evaluate this assumption and find
supportive evidence for the volatility type factors for both the SRFUN and LRBON .

Turning to the volatility type factors we examine more closely the cross-section of each panel and which
series drive each factor. The short-run funding spreads volatility panel (N = 45) comprises volatilities of
short-run funding spreads indicators such as the TED, the LIBOR, the Eurodollar, the (Non) Commercial
(Non) Financial papers of different short-run maturities (of 7 Days,1,3,6,12 months) spreads with respect
to the Federal Funds rate (FF). The list of short-run funding variables and spreads definitions for this panel
as well as their data source is found in the OA Table A.1.2. The spreads considered in this panel have a
shorter horizon of less than one year relative to those from the long-run corporate and government bond
spreads panel below. The R2 of each series with the first volatility factor, SRFUN V F (which explains
81% of the variation of this panel) is also reported. The SRFUN V F loads heavily on the volatility of
(a) the spread of the 7- and 15-day A2/P2/F2 nonfinancial commercial paper with respect to FF with R2

≈ 0.70, (b) the 3-month/1-week AA financial commercial paper spread with R2 ≈ 0.65 and (c) the 3-month
financial commercial paper spreads with respect to Treasury bill spread as well as the LIBOR and Eurodollar
spreads with R2 ≈ 0.60. Similar results can be obtained for SRFUN V Fe and SRFUN V FIV .

The long-run bond spreads panel (N = 55) involves volatilities of relatively long-run corporate and
government bond spreads (longer than one year) from different industries, indices, maturities, rating
categories vis-à-vis the corresponding government bond maturity (e.g. 1,5,7,10 years). The list of long-
run bond spreads series definitions of this panel and their data source is found in the OA Table A.1.3.
The first LRBON V F (which explains 87% of the variation of this panel) loads heavily on the following
types of volatility spreads vis-à-vis the corresponding maturity government bond: the Merrill Lynch (ML)
US high yield (BB) option-adjusted as well as the ML US high yield semi-annual yield to worst, the ML
high yield corporate master II: effective yield, the ML US corporate master (A) option-adjusted. These
individual volatilities have an R2 ≈ 0.80 with the LRBON V F . The volatility of one of the benchmark
corporate spreads, namely the Moody’s bond spread Baa-Aaa, also yields a high R2 ≈ 0.65 with the factor,
LRBON V F . Similar results apply to LRBON V Fe and LRBON V FIV .

In Figure 1 we plot the two monthly volatility factors, namely the short-run funding spreads volatility factor
(SRFUN V F ) and the long-run corporate and government bond spreads volatility factor (LRBON V F )
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during the monthly period 1999m01 - 2016m09. We note the spike during the global financial crisis in
our factors - a spike which also appears in the VIX, RV and the VRP. This will prompt us to also look
at samples with and without the financial crisis as well, to examine the sensitivity of our results to the
crisis period. In Figure 1 we observe the relatively different behavior of SRFUN V F from the other two
volatility factors during the crisis. The SRFUN V F starts increasing in September 2007 well before the
long-run corporate and government bond spreads volatility factor. In fact the first peak of the SRFUN V F

is much higher relative to the other volatility factor in Figure 1. This first peak of SRFUN V F in February
2008 is associated with diminished liquidity in the interbank funding rates and the announcement of the
Fed to reduce its target for the federal funds rate as well as the primary credit rate. The second peak in
SRFUN V F is of the same size and coincides with the peak in the LRBON V F in September 2008
due to the bankruptcy of Lehman Brothers. Another interesting feature from Figure 1 is that SRFUN V F

reverts to its low historical mean level shortly after the Lehman crisis whereas the level of the LRBON V F

remains at a relatively higher level in the post-Lehman period and up to the end of 2016. The correlation,
ρ, between LRBON V F and SRFUN V F is 0.40 since they refer to different classes of risky assets.
Interestingly some of the well known US broader economic conditions factors/indices based on spreads
(as opposed to volatilities), such as the Chicago Fed National Conditions Index (NFCI) also correlates
highly with LRBON SF (ρ = 0.90), LRBON volatility type factors (ρ ≈ 0.70) and with SRFUN SF

(ρ = 0.80).

In addition, we compare our spreads factors with other related factors such as the Gilchrist & Zakrajšek
(2012) spread, GZ SPR, the NFCI and its subcomponents (credit, leverage and risk) as well as the St
Louis Financial Stress Index (FSI). Figure 2 shows the time series behavior of our long-run corporate and
government bond spreads factor (LRBON SF ) with the aforementioned factors, GZ SPR, FSI and NFCI.
It is evident how highly correlated these factors are. TheLRBON SF is highly correlated with the GZ SPR
(ρ = 0.95), the FSI (ρ = 0.85) and NFCI (ρ = 0.90), due to the large number of common long-run corporate
and government bond spreads series. In contrast, SRFUN SF is relatively less but still highly correlated
with these well-known factors given its correlation with GZ SPR is ρ = 0.67 and with NFCI is ρ = 0.80.
Similarly our corresponding volatility type factors e.g. SRFUN factors also correlate with some of the
traditional spreads factors such as FSI (ρ ≈ 0.80) and NFCI (ρ ≈ 0.60). It is worth mentioning at the outset
that our volatility type factors perform relatively better empirically than the corresponding spreads factors
in explaining the VIX, the RV and the VRP. Hence we focus our discussion on the volatility type factors,
but also provide some results for comparison purposes with the corresponding spreads factors at the end of
subsection 5.1 and in Section A.2 in the OA. The correlation matrix of our factors with the aforementioned
established factors in the literature can be found in Table A.1.5 in the OA. Finally, we mention that our
factors provide improved in- and out-of-sample results vis-à-vis the aforementioned factors in the literature
for the VIX, RV and VRP, as summarized in the empirical Section 5 and in the robustness Section 6 (and
detailed in the OA).

Furthermore, we repeat our analysis extracting factors from the returns, spreads and volatilities of the series
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at daily frequency. The daily cross-section is smaller due to the fact that some variables have a shorter
time-series sample. Hence for the daily analysis the long-run corporate and government bond spreads panel
includes a cross-section of N = 54 and the short-run funding spreads panel includes N = 39 (and the
unavailable daily series are marked with a (+) in Tables A.1.2-A.1.3 of the OA). The daily vis-à-vis the
monthly frequency plays an important role for volatility factor estimation as implied by Proposition 2.1 and
the simulation evidence in Section 3, which we further investigate empirically using linear - Least Squares
(LS) and MIDAS - Nonlinear Least Squares (NLS) predictive regressions both in- and out-of-sample in
Section 5.

5 What drives the VIX, RV and VRP?

The objective of this section is threefold: First, to examine the ability of our spreads and volatility type
factors extracted from the short-run funding spreads and the long-run corporate and government bond
spreads panels, to explain the monthly VIX, the S&P500 RV and the VRP at different horizons, and to
compare our factors with existing factors in the literature, such as the GZ SPR, the FSI, the NFCI, among
others. We evaluate the alternative specifications of extracting volatility factors based on the panels of (i) the
volatilities of the idiosyncratic components (residuals) of the spreads factors (denoted by V F ) and (ii) the
alternative volatility type factors which deal with the estimation error (denoted by V Fe and V FIV , defined
in the previous section) for explaining and predicting the VIX, RV and VRP. Second, we assess whether
the higher-frequency (daily) factors provide additional information both in- and out-of-sample vis-à-vis the
corresponding low-frequency (monthly) factors in explaining the VIX, RV and VRP. The higher sampling
frequency can be quite relevant when extracting volatility type factors and when using these as predictors
of other volatility benchmark indicators such as the VIX or the RV of S&P500. Third, given our factors can
explain the VRP we examine whether they are also relevant predictors for the equity risk premium.

Our monthly RV of the S&P500 is the summation of the 78 within day five-minute squared returns covering
the normal trading hours from 9:30am to 4:00pm plus the close-to-open overnight squared returns. For a
typical month with 22 trading days, this leaves us with a total of T = 22 × 78 = 1716 five-minute returns
augmented with 22 overnight squared returns. The variance risk premium, VRP, is not directly observable
and therefore an empirical proxy can be constructed. Following Bollerslev, Tauchen and Zhou (2009), Zhou
(2018) and Drechsler & Yaron (2011) we assume that Et(RVt+1) = RVt, i.e. RVt follows a random walk,
such that the VRPt = VIXt - RVt becomes directly observable at time t. For comparison purposes we follow
their definition of VRPt in this section. Different methods and models can also be adopted to approximate the
conditional expectation of RVt such that, for instance, the conditional expectation is replaced by the forecasts
of different reduced-form model specifications for RV. Indeed, Bekaert and Hoerova (2014) emphasize this
point and show that alternative RV forecasts not only affect the VRP but also have implications on the role
of the VRP in predicting stock returns, economic activity and financial instability. The robustness Section
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6 also revisits our empirical analysis using one of the VRP measures in Bekaert & Hoerova (2014) for their
best performing RV model. Our robustness results (in Section 6 and in the OA subsection A.2.1 and Table
A.2.1) show that our SRFUN volatility type factors are robust and significant predictors for the Bekaert &
Hoerova (2014) VRP measure.

5.1 Do the volatility factors explain the VIX, RV and VRP?

In-sample predictive regressions results are reported for the monthly VIX, RV and VRP using our volatility
type factors as predictors at monthly and daily frequencies. It is worth mentioning from the outset that over
this period there is no empirical evidence of reverse Granger causality of the volatility type factors related
to the short-run funding spreads (discussed in detail in the OA Section A.2 and summarized in Section 6).

Table 2 presents the estimated monthly linear predictive regression models for the VIX during the period
1999m01 - 2016m09 for forecasting horizons ofH = 3, 6 and 9 months, which aim to evaluate if the monthly
SRFUN volatility type factors are significant predictors of the VIX. The choice of H is motivated by the
CBOE VIX futures contracts. The following models are specified: In the first model the VIX depends
on its own lag, VIX(−H). In the second model the VIX is driven by the volatility of consumption growth
following Drechsler & Yaron (2011) and by VIX(−H). Following Drechsler & Yaron (2011) and Bollerslev
et al. (2009), we proxy the volatility of consumption using the AR-GARCH fitted values of the monthly per
capita consumption on non-durables and services which is denoted by DLC V. The corresponding single
factor model specification for the VIX which is closer to the consumption-based asset pricing theory of,
e.g. Bansal & Yaron (2004), Drechsler & Yaron (2011), and includes only the DLC V(−H) is presented
only when this factor turns out to be significant in models for the VRP in Table 4. The remaining models
considered in Table 2 incorporate the SRFUN volatility type factors which are based on the panels of the
volatilities of the residuals from the regression of spreads on the common factor of spreads. We consider
AR-(E)GARCH panels of the residuals to extract these common volatility factors. For the monthly V F ,
V Fe and V FIV predictors we report the LS estimates of linear regression models and the corresponding
Newey West (NW) Heteroskedastic and Autocorrelation Consistent (HAC) errors. Our predictive models
are also estimated using the IV method, instead of LS, to address the generated regressor issue. Longer lags
of (H+1) up to (H+3) of these factors are used as instruments and the choice of lag length is based on the
moment selection criteria of Andrews (1999) and Hall et al. (2007). Overall, we find that the IV approach
of estimating the predictive regressions yields robust empirical results compared to the LS approach.

In order to investigate further Proposition 2.1 and the role of high-frequency data in extracting volatility
factors we also examine the role of daily (as opposed to monthly) factors in predictive regressions for the
monthly VIX, RV and VRP (in Tables 2, 3 and 4, respectively). Hence we present the empirical results
of MIxed-DAta Sampling (MIDAS) predictive regression models, introduced by Ghysels, Santa-Clara and
Valkanov (2006), according to which the dependent variable is either the low-frequency (monthly) VIX or
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RV or VRP and the predictors are either low-frequency variables such as the volatility of consumption
or high-frequency (daily) volatility type factors. The MIDAS model estimated by NLS is given by:
YM
t = β0 + βMX

M
t−H + βH

∑ND
i=1wi(θ

D)FDt−H,i + εt, where YM
t refers to VIX or RV or VRP, XM

t

represents the monthly volatility of consumption, FDt refers to the daily-frequency factors and wi(θ
D)

is a parsimonious and data-driven aggregation scheme of the high-frequency data using, e.g. polynomial
functions such as the exponential Almon or simpler step functions. The actual step size is chosen based on
minimizing the AIC. In Tables 2-4 the adjusted R2 (adjR2) for the MIDAS regressions are reported in the
last column for comparison with the linear LS adjR2 that use the common (monthly) frequency predictors.

Three broad empirical results can be inferred from Table 2: First, all types of volatility factors for the panel
of short-run funding spreads are statistically significant (at least at the 5% level) for all forecast horizons,
H = 3, 6, 9 months, and model specifications considered for the VIX (except of SRFUN V Fe with
Normal distribution which appears significant only for H = 6 and 9 months) over the period 1999m01-
2016m09. SRFUN volatility type factors predict a positive impact on the VIX which increases with
H , for a given model. While most SRFUN volatility type factors are significant predictors of the
VIX at all horizons, it appears that SRFUN V F is relatively a more noisy predictor and in particular
SRFUN V FIV (given the relatively higher standard errors). These empirical results are consistent with
the simulation evidence related to the ratios of MSE of V Fes and V FIV s versus V F s (found in Table
A.1.1 and discussed in subsection 3.2). The effect of lagged VIX appears significant mostly in shorter
horizons of H = 3 and 6 while the volatility of consumption turns out to be insignificant for all H . Second,
the adjR2 of the monthly LS predictive models are relatively similar across the different volatility type
factors, except the monthly SRFUN V Fe with the Normal volatility filter distribution, which yields lower
adjR2 in LS models relative to the other distributions (GED and SGED). This evidence is also consistent
with the simulation results. What is worth noting is that the monthly SRFUN volatility type factors yield
an improvement of almost 60% in terms of adjR2 for longer horizons of H = 6 and 9 months vis-à-
vis the benchmark models which include the lagged VIX (and the volatility of the consumption growth).
In addition, the adjR2 gains from the MIDAS regression models which use the daily information of the
volatility type factors are higher vis-à-vis the corresponding linear LS monthly models for H = 6 and 9

months. Interestingly, for longer forecasting horizons (e.g. H = 9) the adjR2 of the MIDAS regression
models yield almost 50% gains vis-à-vis the corresponding adjR2 of the LS models for explaining the VIX.
This result provides empirical support for the MIDAS regression analysis according to which the relatively
higher-frequency (daily) sampling scheme of regressors combined with a data-driven aggregation scheme
can yield improved in-sample fit. These results are consistent with Proposition 2.1 according to which
higher sampling frequency yields more accurate PCs. The corresponding MIDAS models in Table 2 with
the daily factors are estimated using either the step function or the exponential Almon lag polynomial which
yield similar adjR2’s and the choice of step size is based on the AIC. The daily SRFUN V Fe provides the
highest in-sample adjR2 gains and statistical significance for long horizon (H = 9) vis-à-vis the other factors
and the benchmark models for the VIX, while the daily SRFUN V F and SRFUN V FIV outperform
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SRFUN V Fe in shorter horizons.

Table 3 turns to the role of our volatility type factors in forecasting S&P500 RV at different horizons H for
the same sample period. It has a similar structure to that of Table 2. The difference in Table 3 is that the
models control for the lags of both the RV and the VIX following e.g. Bekaert, Hoerova and Duca (2013).
Two broad results follow from Table 3: First, all SRFUN volatility type factors are statistically significant
at all forecasting horizons (H = 3, 6, 9, except of SRFUN V Fe with Normal distribution). As expected
all volatility type factors have a positive impact on the RV. The lagged RV is significant only for the short
horizon of H = 3 whereas the VIX and DLC V are insignificant at all horizons considered. These results
are robust to the IV estimation of the linear predictive regressions due to generated regressors. Second,
the adjR2 gains in models with our monthly factors are similar across all H and the volatility type factors
considered. On the other hand, the adjR2 of the MIDAS regression models with the daily SRFUN volatility
type factors show substantial gains vis-à-vis those of the monthly LS regression models especially as the
horizon increases, given by H = 9 months. These results provide further empirical support of Proposition
2.1 which extend the relative gains from higher-frequency volatility type factors in the context of MIDAS
predictive regressions.

Table 4 turns to the corresponding predictive regression models for the VRP for the period 1999m01 -
2016m09. For the VRP we consider the benchmark model which includes the lagged VIX, the second
model which is related to the single factor long-run risk model of e.g. Bansal & Yaron (2004) and Drechsler
& Yaron (2011) including only the consumption growth volatility, and the third model which includes both
variables. The reported results in Table 4 yield the following interesting conclusions: First, in accordance
with the theory the VRP can be explained by the single factor model namely the volatility of the volatility
of consumption which is approximated by the DLC V that turns out to be significant in all horizons
(H = 3, 6, 9 months). For the longer horizon H = 9 the DLC V is also significant in the presence of
the lagged VIX and our volatility type factors. Second, our SRFUN volatility type factors are significant
and have a positive impact for longer horizons of H = 6, 9 months while they are insignificant for shorter
horizons (except of SRFUN V FIV with Normal distribution which appears to be significant for H = 3).
These results are robust to the IV estimation approach. Third, the VRP MIDAS regression models show
that the daily frequency of all the SRFUN volatility type factors provide better in-sample fit, given the
relatively higher adjR2, vis-à-vis the monthly frequency of factors, for longer horizons of H = 6 and 9

months. The adjR2 of the MIDAS models redoubles vis-à-vis the corresponding linear models. Overall the
SRFUN volatility type factors with GED and SGED distributions at H = 6 and 9 months yield stronger
in-sample results in terms of the statistical significance of these factors (relative to the volatility type factors
with Normal distribution) and the SRFUN V Fe factors yield the highest adjR2 in MIDAS models.

The results in Tables 2-4 refer to the sample period that ends in 2016m09 and include a binary/dummy
variable in the constant of the models to capture the mean shift effect of the bankruptcy of Lehman Brothers
and its aftermath during September and October 2008. We therefore re-examine our results, not controlling
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for the unusual nature of the global financial crisis in the OA Table A.2.4. We also consider an alternative
approach in dealing with the Lehman Brothers period by trimming the sample and we obtain similar
results.16 Additional robustness checks for the results in Tables 2-4 are reported in Section 6.

So far, we focused exclusively on discussing the effects of volatility type factors and in particular those
extracted from the volatilities of short-run funding spreads. Our empirical analysis does not deal exclusively
with panels of volatility filters but it also extracts factors from various panels of the spreads and returns.
Hence, we also consider the spreads factors LRBON SF and SRFUN SF from the long-run corporate
and government bond spreads and the short-run funding spreads panels, respectively. Established factors in
the literature that have some common information in terms of the actual spreads series with our factors are
the FSI, the NFCI, among others. Hence, we consider the aforementioned factors and their corresponding
volatilities obtained from the estimated AR-EGARCH models denoted as FSI V and NFCI V, and NFCI
sub-indices which refer to series classified in three categories: Risk, Credit and Leverage. The correlations
of these factors are also reported in Table A.1.5. The FSI and NFCI are highly correlated with the
LRBON SF (with ρ ≈ 0.90).17 The volatilities of FSI and NFCI, FSI V and NFCI V, are relatively
less correlated with all our SRFUN and LRBON volatility type factors with correlation coefficients
ranging from 0.30 − 0.65. This is expected given that our volatility type factors are extracted from panels
of volatilities. Interestingly, the SRFUN SF as well as all our volatility type factors are different from
existing factors in the literature, given their relatively low correlation of 0.53− 0.80. Last but not least, it is
worth mentioning that both the FSI and NFCI incorporate equity market indices and most importantly the
VIX, which is not the case for our factors.

Turning to the predictive models with the aforementioned alternative factors, (including the Lehman
Brothers dummy variable), one can evaluate the significance of these established factors to explain the VIX,
the RV and the VRP. The overall result from these predictive models (reported in Table A.1.6 of the OA) is
that for H = 6, 9 the SRFUN V F , SRFUN V Fe and SRFUN V FIV provide the highest adjR2 and
the strongest significance (at 1%-5% level) relative to the other factors, in explaining the VIX, the RV and the
VRP. The corresponding volatility type factors from the LRBON panel turn out to be insignificant in most
models of the VIX and RV. Our SRFUN volatility type factors still perform better than the alternative
volatility factors, however, the financial indices, FSI and NFCI, yield similar adjR2 for the VIX and RV
models for H = 3 and VRP models for H = 6, 9. Concluding, the SRFUN V F , SRFUN V Fe and
SRFUN V FIV turn out to be the relatively most significant factors across different model specifications
followed by the FSI and NFCI.

16Using a trimming of 2% and 2.5% removes many of the outliers including the Lehman Brothers bankruptcy period. In particular
2008m10, 2008m11 and 2009m02 are excluded using a trimming of 2% while the 2.5% additionally trims 2008m09. Our results
remain robust when trimming the sample.

17The FSI and our LRBON SF have 9 series in common which are related to all corporate and government bond spreads, as
opposed to the SRFUN SF which has only 3 series in common, namely the TED, the LOIS and the 3-month financial commercial
paper minus the 3-month Treasury bill.
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5.2 Out-of-sample predictability for the VIX and RV

This section examines the out-of-sample (OOS) performance of our volatility type factors in predicting the
VIX and the S&P500 RV, given that the in-sample results showed that these factors are relatively more
significant for these variables as opposed to VRP.18 For our out-of-sample exercise we estimate the factors
recursively by the principal component method prior to forecasting (i.e. at each forecast origin) following
e.g. Goncalves, McCracken and Perron (2017). It is also important to mention that our approach also re-
estimates the volatility models updating their estimation accordingly before the recursive estimation of the
factors, so that we consider a fully recursive scheme. Hence this OOS approach tries to avoid the look-
ahead bias criticism often posed in financial applications. In addition, we also consider two OOS prediction
periods, before and after the Lehman Brothers crisis starting in 2007m01 and 2009m01, respectively. Since
we are dealing with evaluating the predictive ability of nested models with estimated factors we apply the
recent techniques in Goncalves et al. (2017). To examine the relative out-of-sample forecasting performance
of the factors we evaluate (i) the relative MSE of the models with our alternative monthly factors vis-à-vis
the benchmark models (which exclude all factors) reported in Table 5 as well as (ii) the relative MSE of
the daily factors using the MIDAS-NLS models vis-à-vis the monthly factors via the traditional linear LS
models reported in Table 6.

In Table 5 we evaluate the out-of-sample forecasting performance of the monthly volatility type factors
(V F , V Fe and V FIV ) extracted from the panels of LRBON and SRFUN , for H = 3, 6, 9 months
for the two OOS periods. The top Panel A of Table 5 reports the MSE ratios for the VIX using the AR
benchmark model with and without the DLC V, while the second Panel B reports the MSE ratios for the
RV using the Distributed Lag benchmark model with the lags of RV and VIX with and without DLC V. All
MSE ratios are reported with the competing factor model in the numerator. Reported MSE ratios being less
than one imply that the models with our factors yield statistically significant OOS MSE gains vis-à-vis the
aforementioned benchmark models. The (*) denotes the rejection of the null hypothesis of equal predictive
ability of the corresponding benchmark model and the competing model which also includes the alternative
factors (at 5% significance level) using the MSE-F test statistic and the McCracken (2007) critical values.19

The overall results in Table 5 suggest that the factors extracted from the panel of the volatilities of short-
run funding spreads yield MSE gains vis-à-vis the benchmark models for both OOS forecasting periods
and each forecasting horizon, H = 3, 6, 9 months. In contrast, the factors extracted from the panel of the
volatilities of long-run corporate and government bond spreads yield MSE gains mainly for the pre-Lehman
Brothers crisis period while the results become weaker for post-Lehman Brothers crisis period especially for
predicting VIX. The MSE ratios for SRFUN volatility type factors perform better than LRBON volatility
type factors for forecasting VIX while the results for RV using LRBON volatility type factors appear

18The OOS results for the VRP are also relatively more weak than those of the VIX and RV and therefore are not reported.
19 We treat the MSE-F test of equal predictive ability as a one-sided to the right test, following Clark and McCracken (2015),

because under the forecasting principle a more parsimonious model is preferred.
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to be unstable across forecasting horizons.20 Moreover the SRFUN volatility type factors with SGED
distribution in most cases provide greater gains for the OOS forecasts relative to other distributions for both
out-of-sample periods. Interestingly, in the post-Lehman forecasting period the SRFUN volatility type
factors perform relatively better. The MSEs of the models with the SRFUN V F and SRFUN V Fe show
gains up to 40% vis-à-vis the benchmark AR model of the VIX for both forecasting periods, for H = 9.
Similarly, for forecasting the RV, the SRFUN V Fe, but especially the SRFUN V F , can yield MSE
gains up to 30% vis-à-vis the benchmark model, which is more pronounced in the post-Lehman forecasting
period (as shown in Panel B of Table 5). Overall, the OOS results show that our SRFUN volatility type
factors are robust and significant predictors of the VIX and RV (vis-à-vis those from LRBON ).

In Table 6 we turn to the evaluation of the out-of-sample forecasts for the VIX and the RV comparing the
performance of the daily vis-à-vis the monthly volatility type factors via the MSE ratio of the MIDAS-
NLS versus the traditional linear LS regression models, for the post-Lehman period. For each predictive
regression model the predictor used (one at a time) refers to the volatility type factors, SRFUN V F

and SRFUN V Fe, using the AR-EGARCH model with Normal, GED and SGED distributions.21 The
forecasts of the models are evaluated using the MSE from the MIDAS model with the daily factors
vis-à-vis the LS model with the corresponding monthly factors via the MSE ratio of the two models,
MSE(MIDAS)/MSE(LS). We report results for both the recursive and fixed sample forecasting schemes.
The overall picture from the results reported in Table 6 suggests that in most cases both the SRFUN daily
factors (V F and V Fe) improve upon the corresponding monthly factors in forecasting the VIX and RV, for
most forecasting horizons using the recursive method. These results provide additional empirical evidence
related to the fact that the higher sampling frequency in financial assets can yield volatility type factors
which along with MIDAS model can improve the OOS predictive ability of traditional linear regression
models with lower frequency factors.

5.3 Equity premium predictability

So far we have focused on pricing volatility risk with volatility factors. An affine asset pricing model implies
that risk pricing for each asset class is linear in X f , including expected excess log returns (on the market
portfolio). In particular, the equity risk premium - in analogy with the variance risk premium in equation
(2.5), can be written as:

EP
t [rt,t+τ ]− EQ

t [rt,t+τ ] = γer(τ)X ft . (5.1)

Bollerslev et al. (2009) find that the VRP is a significant predictor of the expected stock returns. Given that
the empirical evidence above, shows that some of our factors can predict the VIX, the RV and the VRP,
we can therefore examine if our factors can also predict excess returns. Specifically within the traditional

20For H = 6 there are no gains using LRBON volatility type factors while for H = 3 and H = 9 there are substantial
improvements in terms of MSE.

21The V FIV results are similar with V F and V Fe and not reported for conciseness.
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equity predictability literature we evaluate both the in- and out-of-sample forecasting ability of our spreads
and volatility factors and examine if they have any additional predictive ability beyond that of the VRP
as well as some of the most popular predictors of returns (e.g. the log Price-Dividend ratio, log(P/D), the
Moody’s bonds default spread Baa-Aaa, the log Price-Earnings ratio, log(P/E) and the term spread, TMSP).

Table 7 presents the in-sample monthly S&P500 excess returns LS predictive regression results for H = 1

and 3 months with robust standard errors based on the Newey West HAC estimator for the period 1999m01-
2016m09, excluding the Lehman Brothers period. The corresponding results without the Lehman Brothers
dummy variable are reported in the OA Table A.1.7. The VRP is taken as the benchmark predictor in the first
model (first column) as well as the rest of the models in Table 7 given the results in Bollerslev et al. (2009).
Hence, all models in the first panel in Table 7 control for the VRP and include the following factors one at a
time in order to address the relative role of each factor as a predictor: our short-run funding spreads factors
(SRFUN SF ) as well as the volatility type factors, SRFUN V F and SRFUN V Fe. By analogy, and
because it is related to some of the traditional predictors (e.g. Baa-Aaa, TMSP), we also consider the long-
run corporate and government bond spreads factor (LRBON SF ) and the corresponding volatility type
factors, LRBON V F and LRBON V Fe.22 We also consider the GZ credit spread (GZ SPR) given as an
alternative corporate risk spread and its volatility GZ SPR V. The in-sample results for H = 1 in the first
panel of Table 7 show that VRP is significant in all models which is consistent with the evidence in Bollerslev
et al. (2009). Interestingly our risk factors and in particular the SRFUN V F and SRFUN V Fe and the
spreads factor SRFUN SF are always statistically significant even in the presence of VRP. In addition, the
spreads factors, LRBON SF and GZ SPR, are also significant but their corresponding volatility predictors
turn out to be insignificant. In addition, the SRFUN volatility type factors provide higher adjR2 compared
to the corresponding models which include only the VRP as predictor. In particular, these gains can be as
high as around 20% when adding the monthly SRFUN V F or SRFUN V Fe as a predictor vis-à-vis the
benchmark model with only the VRP predictor. The MIDAS models which employ the daily frequency of
the factors (and the monthly VRP benchmark) provide additional gains in terms of adjR2 which can reach
up to 55% vis-à-vis the benchmark model with just the VRP(-H).

Turning to the second panel of Table 7 the models include both the VRP and the Baa-Aaa default spread as
well as our factors. We find that the Moody’s long-run spread turns out to be an insignificant predictor
in the presence of the VRP and our short-run funding spreads volatility type factors (SRFUN V F

and SRFUN V Fe) are always significant predictors with almost 20% adjR2 gains in the common-
frequency LS models vis-à-vis the benchmark model which includes both the VRP and Baa-Aaa. Using
the corresponding MIDAS model with the daily SRFUN volatility predictors the gains in terms of adjR2

can go almost 45%. Similar results are obtained for the term spread, TMSP, which is another popular
predictor of the excess market returns considered in the third panel of Table 7.

Last but not least, we show that all SRFUN volatility type factors are still significant in the presence of
22The V FIV factor results as well as the results for all the volatility type factors are similar with the reported ones.
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both the VRP and log price-dividend ratio (log (P/D)), which is also one of the strong predictors of the
equity premium. Similarly, the three spreads factors (SRFUN SF , LRBON SF and GZ SPR) are also
strong predictors of excess returns. In the monthly linear LS models the SRFUN SF and LRBON SF

yield the relatively higher adjR2’s. Interestingly, while the adjR2’s gains of spreads factors (SRFUN SF

and LRBON SF ) are also supported by the daily MIDAS models with even higher corresponding adjR2,
it is the daily SRFUN volatility type factors in MIDAS models that yield the highest relative in-sample
adjR2 gains. Performing the same analysis with log price-earnings ratio (log(P/E)) we find weaker results,
only the SRFUN V F with the SGED distribution is significant. The second part of Table 7 repeats the
in-sample equity predictability analysis for H = 3 months and the SRFUN volatility type factors appear
to perform even better in some cases while the other factors’ results become weaker.

The out-of-sample (OOS) predictive ability of our factors for forecasting the S&P500 excess returns for 1

and 3 months ahead using the recursive method is evaluated for the pre- and post-Lehman Brothers crisis
OOS periods. Using the traditional constant or historical mean/average benchmark model for excess returns
we report the corresponding MSE ratio of each model vis-à-vis this benchmark. The MSE ratios of our
volatility type factors yield OOS relative forecasting improvements in both periods but especially in the
longer OOS since 2007m01 for the VRP. These results are reported in the OA, Table A.1.8. In fact, it is
mostly the MIDAS models with daily volatility type factors that yield out-of-sample significant MSE gains
in both periods.

6 Robustness checks

In this section we summarize the main findings of an extensive robustness analysis. The detailed discussion
and corresponding tables are found in the OA, Section A.2.

We examine the robustness of our results using an alternative measure of the VRP. Following Bekaert
& Hoerova (2014) we use the VRP based on their best performing RV forecasting model, denoted by
VP8, which is correlated with our VRP measure (in the previous sections) with simple (rank) correlation
coefficient being 0.52 (0.76). Re-estimating the VRP models in Table 4 using the VP8, we find that the
significance of SRFUN volatility type factors is not only robust for the longer horizons H = 6 and 9, but
also turns out to be significant for a shorter horizon of H = 3 (found in subsection A.2.1, Table A.2.1 in the
OA). Similarly, the in-sample S&P500 excess returns results are also robust when using VP8, i.e. SRFUN
volatility type factors remain significant (Table A.2.2).

Turning to different AR-(E)GARCH filters, for extracting volatility type factors we find that our in-sample
results are robust with and without the Lehman Brothers dummy (found in subsection A.2.2, Tables A.2.3-
A.2.5 in the OA). Our results are also robust to volatility type factors extracted from the panels of log
volatility filters as well as to the log specification of our predictive regressions, following the literature on
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logRV type models. In general, the log predictive regressions for the VIX and RV models are robust to the
results in Tables 2 and 3, while the results for the VRP are stronger in terms of significance for the non-
log transformation in Table 4 vis-à-vis the logVRP specifications (found in subsection A.2.3, Tables A.2.6
and A.2.7 in the OA). Moreover, evaluating the reverse Granger causality, we find that during 1999m01 -
2016m09, there is no empirical evidence that the VIX, the RV and the VRP Granger cause the SRFUN
volatility type factors. Additional results are reported in the OA, subsection A.2.4 and Table A.2.8.

Some studies acknowledge that the volatility of volatility of consumption is difficult to measure empirically
and approximate consumption volatility by monthly industrial production (IP) volatility (DLIP V) or the
Chicago Fed National Activity Index volatility (CFNAI V) instead of the DLC V (e.g. Bollerslev et al.,
2009, Zhou, 2018). Using these alternative proxies we find that, in general, the volatility per capita
consumption DLC V is more significant than that of the other two proxies and do not affect the significance
of our proposed volatility factor e.g. SRFUN V F (in subsection A.2.5 in the OA).

Turning to other financial indicators and factors we evaluate their predictive ability vis-à-vis our proposed
factors. The CBOE Skewness index is an insignificant predictor in our models and does not affect the
significance of the other volatility factors (subsection A.2.6, Table A.2.11 in the OA). Similar results apply
using the Chang, Christoffersen and Jacobs (2013) Realized Skewness factor (for the sample ending in
2008m12). We also consider various alternative indicators of liquidity in order to establish whether these
are also predictors of the VIX, RV and VRP and to what extend these are related to our SRFUN volatility
factor. Employing the three measures of liquidity proposed by Pastor and Stambaugh (2003) and a CDS
factor in the spirit of Adrian and Shin (2010) we find that these are insignificant predictors of the VIX, RV
and VRP and do not affect the significance of our SRFUN volatility factors. Further details of these results
can be found in subsection A.2.7 of the OA (and Tables A.2.12 and A.2.13).

Finally, some individual series in our three cross-sections of financial assets have been monitored as recent
indicators of financial distress and as leading indicators of economic activity. Examples of these indicators
are the TED and the Baa-Aaa as well as various energy and precious metals futures returns indicators.
We address the predictive ability of many of these indicators and their volatilities (one at time) vis-à-vis
the SRFUN V F . Two interesting results can be extracted from the short-run funding spreads indicators,
shown in Table A.2.14, subsection A.2.8 in the OA. First we find that the volatilities of the 7-day A2/P2/F2
nonfinancial commercial paper minus the Fed funds rate and the TED spreads yield the relatively highest
adjR2 and statistical significance among the rest of the predictors for explaining the VIX and the RV but
lower than our SRFUN V F , except of the case of H = 9 in explaining the RV. Second, the volatility of
the spread of the 3-month financial commercial paper minus treasury bill yields similar adjR2 with that of
the SRFUN V F in explaining the VRP and higher statistical significance only for H = 6.
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7 Conclusions

We propose a procedure which consists of collecting a large panel of asset returns or spreads, monthly and
daily in our case, or possibly any other (higher) frequency. For each series in the panel one fits a standard
ARCH-type volatility model on the estimated idiosyncratic component of spreads which takes into account
the common spreads factors. Therefore a panel of filtered volatilities is obtained from which principal
components are extracted to represent common volatility factors. We study the theoretical properties of
such a procedure, in particular how the combination of volatility filtering and principal component analysis
relate to the class of affine diffusions often used in theoretical and empirical asset pricing models, the role
of sampling frequency and the role of estimation error in filtering volatilities. Monte Carlo simulation
evidence shows that our proposed procedures have the expected sampling properties that fall in line with the
asymptotic theory.

The literature emphasizes almost exclusively on estimating parametric models for the S&P500 involving
both cash and options data (e.g. Chernov and Ghysels (2000) and Pan (2002) and many subsequent papers)
or some type of non-parametric procedure combining high-frequency cash market data and options on the
market index (see Bollerslev et al. (2009) and many subsequent papers). Most studies find that either
volatility risk or more specifically a disaster fear affecting consumption and the overall economy are the
driving forces of the VIX and the VRP. Our analysis goes beyond the confines of the market index. The
empirical analysis takes as given that volatility risk is pervasive and interconnected across different asset
classes. There are at least two interpretations of our empirical findings. First, it is fair to say that the panel
data setting allows us to estimate volatility risk more precisely. There is in fact a theoretical justification for
this argument, although it is not explicitly exploited in the current paper. Hence, we can take for granted that
the panel-based approach yields better estimates of volatility factors. Are these improved estimates telling us
indirectly something about consumption volatility risk - which is hard to pin down using either conventional
aggregate consumption or activity related series? Is this fundamental volatility risk also related to common
volatility factors of short-run funding spreads volatilities or the volatility factor? Our empirical analysis
provides supportive evidence for these. A second interpretation of our results is that we uncover drivers
of the VIX and VRP that relate to a different asset pricing model, not necessarily driven by consumption
volatility risk. Should we think of production-based asset pricing models? A default risk interpretation
of our short-run funding spreads factor would surely not rule this out. Note that here too the argument of
more efficient estimation of volatility risk factors through panel data methods, as advocated in this paper,
equally applies. Should we think of our results as given more credence to models which rely on financial
intermediation risk channels? It surely may, and perhaps we are also better at capturing this risk channel
with our novel approach, compared to say looking at the aggregate balance sheets of intermediaries or the
CDS spreads of their parent companies. Our robustness analysis suggests that in terms of capturing the
dynamics of the VIX and VRP we do better than the direct measures of financial intermediaries balance
sheet constraints. Hence, our empirical findings provide challenges and food for thought for future research.
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Appendices

A Regularity Conditions for Volatility Proxies

The filter appearing in (2.8) satisfies:

Assumption A.1. For all i = 1, . . . , N the functions κ̂i, µ̂i and git satisfy:

• κ̂i and µ̂i are continuous in all arguments

• git is differentiable in υ̂ix,t, V̂
i
[hi:t−hi]

and hi almost everywhere and must possess one-sided derivatives
everywhere.

We proceed with a high-frequency data sampling uniform across all i = 1, . . . , N, namely:

Assumption A.2. Let h , (sup1≤i≤N hi) ↓ 0, where N is the number of assets in the cross-section. Moreover, let ∀
i : qi[hi:t]

, h−1/4 V̂ i
[h:t] - V i

t , which satisfies for all i = 1, . . . , N, uniformly on every bounded (x, q, t) set:

h−1/2E[qi[h:t+h] − q
i
[h:t]|p

i
t = x,X f

t = X , qi[h:t] = q]→ qB(x, y, t),

h−1/2V ar[qi[h:t+h] − q
i
[h:t]|p

i
t = x,X f

t = X , qi[h:t] = q]→ C(x, y, t),

as h ↓ 0 where:

Bi(x, y, t) = lim
h↓0

E[∂gi
(
υ̂ix,t, p

i
[h:t−h], V̂

i
[h:t−h], t, h

)
/∂V i|pi[h:t−h] = x, V̂ i

[h:t−h] = y]

Ci(x, y, t) = lim
h↓0

E[(gi
(
υ̂ix,t, p

i
[h:t−h], V̂

i
[h:t−h], t, h

)
)2|pi[h:t−h] = x, V̂ i

[h:t−h] = y] (A.1)

Further Bi(x, y, t) and Ci(x, y, t) are twice continuously differentiable in x and y.

Assumption A.3. For some d > 0 and for all i = 1, . . . , N then both:

E[h−1/2|xit+h − xit|2+d|xit = x, V i
t = y]

E[h−1/2|V i
t+h − V i

t |2+d|xit = x, V i
t = y]

are bounded as h ↓ 0, uniformly on every bounded (x, y, t) set, and

lim sup
h↓0

E[gi
(
υ̂ix,t, p

i
[h:t−h], V̂

i
[h:t−h], t, h

)2+d

|xit = x, V i
t = y, qt = q]

is bounded uniformly on every bounded (x, y, q, t) set.
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B Proof of Propositions 2.1 and 2.2

We start with the proof of Proposition 2.1. As stated in equation (2.4) suppose any asset i with (log) price pit which
has exposure to (some of) the risk factors, i.e.:

dpit = δi0 + δidX f
t (B.1)

where X f
t is an affine diffusion which satisfies Assumption 2.1. Combining equation equations (2.1) and (B.1) implies

that pit satisfies the diffusion:
dpit = µi(X f

t )dt+ σi(X f
t )dWt (B.2)

where by Itô’s lemma: µi(X f
t ) ≡ δiµ(X f

t ) and σi(X f
t ) ≡ (δiσ(X f

t ).

For each hi > 0 (we allow the sampling scheme to differ across assets) the discrete time Markov process pi[hi:t]
satisfies

for each ∆ > 0 and integer l,

• µi
∆,hi

(x) = h−∆
i E[pi[hi:lhi+1] − p

i
[hi:lhi]

|pi[hi:lhi]
= x]

• σi
∆,hi

(x) = h−∆
i V ar[pi[hi:lhi+1] − p

i
[hi:lhi]

|pi[hi:lhi]
= x]

where: µi
∆,hi

(x)→ µi(x), σi
∆,hi

(x)→ σi(x) and for some d > 0, h−∆
i E[(pi[hi:khi+1] − p

i
[hi:khi]

)2=d|pi[hi:khi]
= x]

→ 0, where→ refers to convergence uniform on every bounded x set.

Then following Stroock and Varadhan (1979) and Nelson & Foster (1994), pi[hi:t]
⇒ pit, where ⇒ denotes weak

convergence. Moreover, let F i be the cumulative distribution of the starting point x0, and F i
hi

be the cumulative
distribution of the starting point pi[hi:0]. If pi[hi:0] sets pi0 with probability one for all hi, then the weak convergence is
uniform on every bounded pi0 set. The result in equation (2.9), in particular:

V̂ i
[t:t+h] = (

r∑
j=1

(δij)
2hjj0 ) +

r∑
j=1

(δij)
2hjj1 X

j
t + ui[t:t+h]

then follows from Theorem 3.1 in Nelson & Foster (1994) who establish that as h ↓ 0 : h−1/4ui[t:t+h]

d→
N(0, Ci(x, y, t)/2Bi(x, y, t)), uniformly (the so called unbiased large M case) withBi(x, y, t) andCi(x, y, t) defined
in equation (A.1).

The proof of Proposition 2.2 follows largely along the lines of Bai (2003, Theorem 1). Bai (2003, Assumptions
A-B) follows from Assumptions 2.3 and 2.4, implying bounded non-random loadings and finite fourth moments of
the factors. Assumptions 2.8 and 2.10 guarantee that the remaining conditions hold such that the asymptotic result
follows. �
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Figure 1: The short-run funding spreads volatility factor (SRFUN V F ) and the long-run corporate and
government bond spreads volatility factor (LRBON V F ) during 1999m01 - 2016m09.
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Figure 2: The long-run corporate and government bond spreads factor (LRBON SF ), the Gildchrist and
Zakrajšek spread factor (GZ SPR), the Chicago Fed National Financial Index (NFCI) and the St Louis Fed
Financial Stress Index (FSI) during 1999m01 - 2016m09.
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Table 1: Acronyms and names of variables and factors
The list of variables definitions for the short-run funding (SRFUN ) and long-run corporate and government bond (LRBON ) spreads panels used
to extract the factors are found in the OA, Tables A.1.2 and A.1.3, respectively. This table lists the acronyms and names of factors and some series
used in the empirical analysis.

Acronym Long Name
Baa-Aaa Moody’s Baa- and Aaa-rated long-run industrial bond spread
CDS First principal component of the credit default swaps extracted from 6 primary dealers listed in Bloomberg
CFNAI V Fitted volatility from an AR-EGARCH of Chicago Fed National Activity Index
DLC V Fitted volatility from an AR-EGARCH of consumption (Services and Non-durables) growth rate
DLIP V Fitted volatility from an AR-EGARCH of industrial production growth rate
FSI St Louis Fed Financial Stress Index
FSI V Estimated volatility from an AR-EGARCH of St Louis Fed Financial Stress Index
GZ SPR Gilchrist & Zakrajšek (2012) Spreads factor
GZ SPR V Estimated volatility from an AR-EGARCH of Gilchrist & Zakrajšek (2012) Spreads factor
log(P/D) log Price-Dividend ratio
log(P/E) log Price-Earnings ratio
LRBON V F Common factor of the panel of AR-EGARCH estimates of the residuals obtained from the regression of each long-run

bond spread with LRBON SF
LRBON V Fe Common factor of the panel of the fitted values of VIX/RV/VRP/returns when regressed on AR-EGARCH volatilities of residuals

obtained from the regression of each long-run bond spread with LRBON SF
LRBON V FIV Common factor of the panel of the fitted values of AR-EGARCH volatilities of the residuals obtained from the regression of each

long-run bond spread with LRBON SF when regressed on lags of the cross-sectional average of these AR-EGARCH volatilities
LRBON SF long-run corporate and government bond spreads Factor
NFCI Chicago Fed National Financial Conditions Index
NFCI Credit NFCI subindex which refers to the Credit series
NFCI Leverage NFCI subindex which refers to the Leverage series
NFCI Risk NFCI subindex which refers to the Risk series
NFCI V Estimated volatility from an AR-EGARCH of Chicago Fed National Financial Conditions Index
PrecMet S&P GSCI Precious Metals Total Excess Return Index
SRFUN V F Common factor of the panel of AR-EGARCH estimates of the residuals obtained from the regression of each short-run funding

spread with SRFUN SF
SRFUN V Fe Common factor of the panel of the fitted values of VIX/RV/VRP/returns when regressed on AR-EGARCH volatilities of residuals

obtained from the regression of each short-run funding spreads with SRFUN SF
SRFUN V FIV Common factor of the panel of the fitted values of AR-EGARCH volatilities of the residuals obtained from the regression of each

short-run funding spreads with SRFUN SF when regressed on lags of the cross-sectional average of these AR-EGARCH
volatilities

SRFUN SF Short-run funding spreads factor
TED 3-Month London Interbank Offered Rate minus the 3-Month Treasury Bill
TMSP Term spread
7DayNonFinCP-FF 7-Day A2/P2/F2 Nonfinancial Commercial Paper-FedFunds rate (FF)
3mFinCP-Tbill 3-Month Financial commercial paper-Treasury bill
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Table 6: Out of Sample Forecasting relative MSE results for the VIX and S&P500 RV using daily vs monthly
Volatility Factors in MIDAS vs LS predictive models
The models of the VIX and RV are estimated using the predictors reported in each row for the estimation period up to 2008m12 (and OOS period
2009m01 - 2016m09). For each predictive regression model the predictor used in each column (one at a time), refers to the Volatility type Factors
(V F , V Fe and V FIV ) using the AR-EGARCH model (with the Normal, GED, SGED distributions). The forecasts of the models are evaluated
using the Mean Squared Error (MSE) from the MIDAS model with the daily factors vis-à-vis the LS model with the corresponding monthly factors,
which is calculated as the relative MSE = MSE(MIDAS)/MSE(LS). The MIDAS models are estimated using the exponential Almon lag polynomial.
The (*) denotes the rejection of the null hypothesis of equal predictive ability of the benchmark and competing models at the 5% significance level
using the MSE-F test statistic based on the McCracken (2007) critical values. Results are reported for both Fixed and Recursive OOS methods.

Recursive OOS Fixed OOS

MSE(MIDAS)/MSE(LS) MSE(MIDAS)/MSE(LS)

H=3 H=6 H=9 H=3 H=6 H=9

Panel A: Regression models for VIX SRFUN V F Norm SRFUN V F Norm

VIX(-H),FACTOR(-H) 0.87* 0.77* 0.81* 0.90* 0.80* 0.80*
VIX(-H),DLC V(-H),FACTOR(-H) 0.85* 0.76* 0.85* 0.88* 0.80* 0.89*

SRFUN V F GED SRFUN V F GED

VIX(-H),FACTOR(-H) 0.98* 0.92* 1.04 0.89* 0.79* 0.81*
VIX(-H),DLC V(-H),FACTOR(-H) 0.90* 0.91* 1.05 0.89* 0.79* 0.88*

SRFUN V F SGED SRFUN V F SGED

VIX(-H),FACTOR(-H) 0.99* 0.92* 0.99 0.84* 0.90* 0.86*
VIX(-H),DLC V(-H),FACTOR(-H) 0.92* 0.93* 1.06 0.89* 0.90* 0.88*

SRFUN V Fe Norm SRFUN V Fe Norm

VIX(-H),FACTOR(-H) 0.95* 0.92* 0.91* 0.98* 1.01 1.07
VIX(-H),DLC V(-H),FACTOR(-H) 0.99* 0.92* 0.91* 1.08 1.01 1.08

SRFUN V Fe GED SRFUN V Fe GED

VIX(-H),FACTOR(-H) 1.05 1.02 0.97* 0.97* 0.97* 1.12
VIX(-H),DLC V(-H),FACTOR(-H) 1.08 0.99* 0.84* 1.05 1.00 0.97*

SRFUN V Fe SGED SRFUN V Fe SGED

VIX(-H),FACTOR(-H) 1.13 0.97* 0.99* 1.29 1.00 1.04
VIX(-H),DLC V(-H),FACTOR(-H) 1.16 0.98* 0.97* 1.35 1.09 1.05

Panel B: Regression models for RV SRFUN V F Norm SRFUN V F Norm

RV(-H),VIX(-H),FACTOR(-H) 0.74* 0.61* 0.61* 0.93* 0.74* 0.85*
RV(-H), VIX(-H),DLC V(-H),FACTOR(-H) 0.75* 0.62* 0.66* 0.96* 0.75* 0.99*

SRFUN V F GED SRFUN V F GED

RV(-H),VIX(-H),FACTOR(-H) 1.06 0.83* 0.55* 0.85* 0.72* 0.99*
RV(-H), VIX(-H),DLC V(-H),FACTOR(-H) 0.96* 0.84* 0.60* 0.94* 0.72* 1.10

SRFUN V F SGED SRFUN V F SGED

RV(-H),VIX(-H),FACTOR(-H) 1.09 0.84* 0.59* 0.75* 0.90* 2.35
RV(-H), VIX(-H),DLC V(-H),FACTOR(-H) 1.01 0.87* 0.64* 0.93* 0.89* 2.43

SRFUN V Fe Norm SRFUN V Fe Norm

RV(-H),VIX(-H),FACTOR(-H) 0.71* 0.73* 0.88* 0.87* 0.81* 1.41
RV(-H), VIX(-H),DLC V(-H),FACTOR(-H) 0.78* 0.72* 0.91* 1.05 0.86* 1.47

SRFUN V Fe GED SRFUN V Fe GED

RV(-H),VIX(-H),FACTOR(-H) 0.82* 0.76* 0.72* 1.01 0.88* 0.98*
RV(-H), VIX(-H),DLC V(-H),FACTOR(-H) 0.85* 0.75* 0.75* 1.14 0.90* 1.04

SRFUN V Fe SGED SRFUN V Fe SGED

RV(-H),VIX(-H),FACTOR(-H) 0.79* 0.73* 0.82* 0.97* 0.85* 1.22
RV(-H), VIX(-H),DLC V(-H),FACTOR(-H) 0.83* 0.72* 0.86* 1.10 0.86* 1.30
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Table 7: In sample results for the S&P500 excess returns predictability models using monthly and daily factors
The LS estimation results of the linear regression model are reported and (***), (**), (*) refer to rejecting the null hypothesis of insignificant predictors
at 1%, 5% and 10% respectively. The variables are defined in Table 1. The predictive models refer to H = 1 and 3 for the monthly S&P500 excess
returns during 1999m01 - 2016m09. Standard errors (SE) found in the parentheses refer to the NW HAC estimator with 12 lags. The Lehman Brothers
bankruptcy dummy variable enters as constant and excludes the following observations: 2008m09 up to 2008m10. Reported are also the adjR2 from
the LS model with monthly factors as well as the adjR2 from the MIDAS model which specifies daily instead of monthly factors. All the estimated
models include a constant which is not reported in the tables below for conciseness. The reported results for the Volatility Factors refer to V F and V Fe
type factors. The results for V FIV are relatively weaker and therefore unreported.

H = 1 month

SRFUN LRBON
V F V Fe V F V Fe SRFUN SF LRBON SF GZ SPR GZ SPR V

SGED GED SGED GED SGED GED SGED GED

VRP(-H) 0.45 0.49 0.49 0.48 0.51 0.50 0.50 0.50 0.50 0.44 0.46 0.45 0.46
(0.13)*** (0.16)*** (0.15)*** (0.14)*** (0.15)*** (0.14)*** (0.14)*** (0.14)*** (0.14)*** (0.14)*** (0.15)*** (0.15)*** (0.14)***

FACTOR(-H) -1.59 -1.40 -3.92 -2.81 -1.03 -0.96 -4.19 -2.45 -0.48 -0.45 -4.64 -8.29
(0.56)*** (0.45)*** (1.63)** (1.02)*** (0.86) -0.73 (2.93) (1.61) (0.23)** (0.22)** (2.66)* (3.28)**

R2 LS 0.11 0.13 0.13 0.12 0.12 0.11 0.11 0.12 0.12 0.12 0.12 0.11 0.11
R2 MIDAS 0.17 0.17 0.17 0.17 0.12 0.12 0.18 0.14 0.15 0.14

VRP(-H) 0.45 0.50 0.50 0.48 0.51 0.54 0.55 0.53 0.55 0.43 0.48 0.46 0.45
(0.13)*** (0.15)*** (0.15)*** (0.14)*** (0.15)*** (0.16)*** (0.16)*** (0.14)*** (0.15)*** (0.14)*** (0.15)*** (0.16)*** (0.13)***

Baa-Aaa(-H) -0.24 0.59 0.42 0.14 0.17 0.82 1.04 0.80 1.11 1.01 2.38 1.76 0.43
(0.55) -0.57 (0.55) (0.54) -0.54 (0.94) -0.99 (0.83) (0.90) (0.80) (0.89)*** (1.06)* (0.71)

FACTOR(-H) -1.84 -1.56 -4.04 -2.92 -1.80 -1.83 -6.76 -4.66 -0.81 -1.38 -12.25 -11.57
(0.58)*** (0.49)*** (1.70)** (1.02)*** (1.33) -1.18 (4.24) (2.54)* (0.45)* (0.36)*** (5.02)** (6.25)*

R2 LS 0.11 0.13 0.12 0.12 0.12 0.11 0.11 0.11 0.12 0.12 0.13 0.12 0.11
R2 MIDAS 0.18 0.18 0.18 0.18 0.12 0.12 0.17 0.14 0.16 0.15

VRP(-H) 0.46 0.50 0.50 0.49 0.51 0.50 0.50 0.50 0.50 0.43 0.46 0.45 0.46
(0.13)*** (0.16)*** (0.16)*** (0.14)*** (0.15)*** (0.14)*** (0.14)*** (0.14)*** (0.14)*** (0.15)*** (0.15)*** (0.15)*** (0.14)***

TMSP(-H) -2.23 -4.67 -5.46 -3.29 -1.97 3.56 3.90 -0.26 2.38 4.25 0.57 5.43 -1.39
(23.88) -22.44 (22.54) (21.62) -23.06 (24.52) -24.38 (22.55) (23.87) (24.14) (22.89) (23.40) (24.32)

FACTOR(-H) -1.60 -1.41 -3.93 -2.81 -1.07 -0.99 -4.19 -2.48 -0.49 -0.45 -4.84 -8.23
(0.57)*** (0.45)*** (1.64)** (1.03)*** (0.92) -0.79 (3.06) (1.73) (0.24)** (0.23)* (2.93)* (3.38)**

R2 LS 0.11 0.13 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
R2 MIDAS 0.17 0.17 0.17 0.17 0.12 0.12 0.18 0.14 0.14 0.13

VRP(-H) 0.50 0.52 0.52 0.51 0.52 0.58 0.58 0.56 0.57 0.47 0.52 0.51 0.49
(0.14)*** (0.14)*** (0.14)*** (0.14)*** (0.13)*** (0.14)*** (0.15)*** (0.14)*** (0.14)*** (0.15)*** (0.16)*** (0.17)*** (0.15)***

log(P/D)(-H) -3.51 -3.18 -3.22 -3.18 -3.17 -4.20 -4.31 -4.04 -4.21 -6.03 -5.34 -5.03 -4.55
(1.68)** (1.25)** (1.38)** (1.49)** (1.54)** (1.33)*** (1.31)*** (1.33)*** (1.27)*** (1.41)*** (1.42)*** (1.19)*** (1.44)***

FACTOR(-H) -1.34 -1.13 -2.73 -1.90 -1.71 -1.60 -6.06 -3.77 -1.16 -0.96 -9.77 -17.94
(0.51)*** (0.56)** (1.71) (1.07)* (0.73)** (0.62)** (2.80)** (1.50)** (0.34)*** (0.22)*** (1.89)*** (5.18)***

R2 LS 0.14 0.15 0.15 0.14 0.14 0.15 0.15 0.15 0.15 0.18 0.17 0.16 0.15
R2 MIDAS 0.21 0.21 0.21 0.21 0.17 0.17 0.18 0.18 0.20 0.19

VRP(-H) -1.37 -0.26 -0.60 -0.84 -0.81 -1.38 -1.29 -1.18 -1.19 -1.09 -1.12 -1.25 -1.22
(1.14) -1.40 (1.43) (1.25) -1.45 (1.31) -1.32 (1.33) (1.40) (1.37) (1.45) (1.34) (1.25)

log(P/E)(-H) 0.53 0.50 0.51 0.52 0.53 0.53 0.53 0.53 0.53 0.50 0.52 0.52 0.53
(0.15)*** (0.18)*** (0.17)*** (0.16)*** (0.16)*** (0.15)*** (0.15)*** (0.16)*** (0.16)*** (0.18)*** (0.18)*** (0.17)*** (0.17)***

FACTOR(-H) -1.42 -1.05 -2.43 -1.69 0.03 -0.11 -1.25 -0.62 -0.31 -0.16 -0.97 -4.26
(0.81)* (0.73) (1.92) -1.55 (0.99) -0.83 (3.43) (2.02) (0.32) (0.30) (2.69) (5.01)

R2 LS 0.12 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
R2 MIDAS 0.17 0.17 0.17 0.17 0.12 0.13 0.17 0.15 0.15 0.14
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Table 7 - Continued

H = 3 months

SRFUN LRBON

V F V Fe V F V Fe SRFUN SF LRBON SF GZ SPR GZ SPR V
SGED GED SGED GED SGED GED SGED GED

VRP(-H) 0.34 0.37 0.38 0.37 0.40 0.38 0.38 0.37 0.37 0.33 0.35 0.34 0.33
(0.12)*** (0.11)*** (0.12)*** (0.12)*** (0.11)*** (0.11)*** (0.11)*** (0.11)*** (0.11)*** (0.13)** (0.12)*** (0.12)*** (0.12)***

FACTOR(-H) -1.50 -1.38 -4.15 -3.49 -0.76 -0.67 -2.23 -1.29 -0.24 -0.26 -2.99 -5.03
(0.72)** (0.66)** (1.33)*** (1.49)** (0.91) (0.81) (3.37) (2.01) (0.38) (0.37) (3.43) (4.25)

R2 LS 0.10 0.11 0.11 0.11 0.12 0.10 0.10 0.09 0.09 0.10 0.10 0.09 0.09
R2 MIDAS 0.18 0.18 0.16 0.13 0.13 0.13 0.12 0.14 0.13 0.15

VRP(-H) 0.35 0.40 0.40 0.38 0.42 0.48 0.49 0.44 0.45 0.32 0.37 0.35 0.33
(0.13)*** (0.11)*** (0.11)*** (0.12)*** (0.11)*** (0.12)*** (0.12)*** (0.12)*** (0.12)*** (0.13)** (0.11)*** (0.10)*** (0.12)

Baa-Aaa(-H) 0.51 1.46 1.30 0.98 1.07 2.13 2.36 1.67 2.08 1.78 3.83 3.42 1.43
(0.49) (0.52)*** (0.56)** (0.45)** (0.49)** (0.73)*** (0.78)*** (0.71)** (0.81)** (0.72)** (0.99)*** (0.93)*** (0.69)***

FACTOR(-H) -2.14 -1.88 -4.99 -4.19 -2.80 -2.68 -7.65 -5.47 -0.81 -1.73 -17.74 -16.04
(0.59)*** (0.65)*** (1.49)*** (1.32)*** (1.05) (0.96) (3.56) (2.35) (0.39)** (0.46)*** (4.45)*** (5.84)**

R2 LS 0.09 0.13 0.12 0.11 0.12 0.11 0.11 0.10 0.11 0.11 0.13 0.12 0.10
R2 MIDAS 0.17 0.17 0.17 0.14 0.13 0.13 0.13 0.15 0.13 0.16

VRP(-H) 0.34 0.37 0.37 0.36 0.40 0.38 0.37 0.37 0.36 0.32 0.34 0.33 0.32
(0.13)*** (0.12)*** (0.12)*** (0.12)*** (0.11)*** (0.11)*** (0.11)*** (0.11)*** (0.11)*** (0.14)** (0.13)*** (0.12)*** (0.13)***

TMSP(-H) 9.06 8.49 7.64 9.78 10.97 15.03 14.95 10.91 12.54 13.80 11.79 14.66 12.36
(24.18) (22.48) -22.53 -20.95 (22.71) (23.88) (23.90) (23.12) (23.67) (24.83) (23.69) (24.31) (24.62)**

FACTOR(-H) -1.49 -1.36 -4.13 -3.49 -0.90 -0.79 -2.38 -1.47 -0.28 -0.28 -3.54 -5.54
(0.72)** (0.67)** (1.38)*** (1.49)** (0.94) (0.83) (3.32) (2.02) (0.39) (0.37) (3.67) (4.44)

R2 LS 0.09 0.11 0.11 0.11 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
R2 MIDAS 0.17 0.17 0.15 0.13 0.13 0.13 0.12 0.14 0.13 0.15

VRP(-H) 0.38 0.40 0.40 0.39 0.42 0.45 0.45 0.43 0.43 0.36 0.40 0.39 0.37
(0.11)*** (0.11)*** (0.11)*** (0.11)*** (0.11)*** (0.11)*** (0.11)*** (0.11)*** (0.11)*** (0.12)*** (0.11)*** (0.11)*** (0.11)

log(P/D)(-H) -3.19 -3.02 -3.03 -2.94 -2.78 -3.83 -3.90 -3.61 -3.72 -5.02 -4.63 -4.41 -4.24
(1.18)*** (1.01)*** (1.02)*** (1.01)*** (1.08)** (1.14)*** (1.15)*** (1.14)*** (1.15)*** (1.38)*** (1.33)*** (1.09)*** (1.16)***

FACTOR(-H) -1.26 -1.12 -3.04 -2.65 -1.40 -1.27 -3.95 -2.50 -0.80 -0.70 -7.58 -14.06
(0.51)** (0.54)** (1.57)* (1.33)** (0.62)** (0.54)** (2.12)* (1.30)* (0.35)** (0.28)** (2.13)*** (4.24)***

R2 LS 0.12 0.13 0.13 0.12 0.13 0.12 0.12 0.12 0.12 0.14 0.13 0.13 0.12
R2 MIDAS 0.18 0.18 0.18 0.15 0.17 0.17 0.14 0.17 0.16 0.18

VRP(-H) -0.62 1.12 0.71 0.48 1.09 -0.33 -0.33 -0.47 -0.47 -0.47 -0.37 -0.36 -0.55
(0.95) (0.93) -0.96 -1.09 (0.94) (1.08) (1.04) (0.97) (0.94) (0.96) (0.99) (1.06) (1.05)

log(P/E)(-H) 0.38 0.33 0.35 0.35 0.37 0.39 0.39 0.38 0.38 0.36 0.37 0.36 0.36
(0.11)*** (0.12)*** (0.12)*** (0.11)*** (0.12)*** (0.11)*** (0.11)*** (0.11)*** (0.11)*** (0.12)*** (0.12)*** (0.12)*** (0.11)***

FACTOR(-H) -2.24 -1.81 -5.03 -5.08 -0.50 -0.45 -1.04 -0.56 -0.17 -0.17 -1.93 -3.21
(0.75)*** (0.72)** (2.18)** (1.81)*** (0.91) (0.77) (3.24) (1.84) (0.38) (0.35) (3.27) (4.90)***

R2 LS 0.09 0.11 0.11 0.11 0.12 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
R2 MIDAS 0.17 0.17 0.15 0.12 0.14 0.14 0.11 0.14 0.13 0.14
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