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Abstract

A vote-buying mechanism is such that each agent buys a quantity of votes
x to cast for an alternative of her choosing, at a cost c(x), and the outcome is
determined by the total number of votes cast for each alternative. In the context of
binary decisions, we prove that the choice rules that can be implemented by vote-
buying mechanisms in large societies are parameterized by a positive parameter ρ,
which measures the importance of individual preference intensities on the social
choice: The limit with ρ = 0 is majority rule, ρ = 1 is utilitarianism, and ρ −→∞
is the Rawlsian maximin rule. We show that any vote-buying mechanism with
limit cost elasticity limx→0

c′(x)x
c(x) = 1 + 1/ρ implements the choice rule defined by

ρ. The utilitarian effi ciency of quadratic voting (Lalley and Weyl, 2016) follows as
a special case.
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itarianism; quadratic voting.
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1 Introduction

Consider a binary collective choice problem: a society must choose one of two alternatives.

Which alternative is socially preferable depends on the value system we have in mind.

According to Dahl (1989), each citizen’s vote must be weighed equally. Specifically,

political philosophers such as Locke (1689) and Spitz (1984), argue that society should

follow majoritarianism: it should choose the alternative preferred by a majority of voters,

disregarding the intensity of individual preferences. In contrast, the maximin principle

(Rawls 1971) declares that the socially preferred alternative is the one that maximizes

the utility of the individual who is most affected by the social choice. Majoritarianism

and Rawlsian maximin are the two extremes of a class composed of a continuum of

intermediate value systems, including utilitarianism (Bentham 1789, Stuart Mill 1863).

Each value system in this class takes intensity of individual preferences into account to

a different degree.

Economic theory has developed mechanisms to make social decisions that follow some

of these value systems. In particular, majoritarianism (axiomatized by May 1952) is

implemented by a majority voting rule; Rawlsian outcomes can be implemented by vote-

trading (Casella, Llorente-Saguer and Palfrey 2012); and utilitarianism by “quadratic

voting”(Lalley and Weyl 2016).1

To the extent that different societies embrace different value systems, each society

needs a mechanism tailored to its own values. We address this need: for each value system

in a large axiomatized class of such systems, we propose a mechanism that chooses the

socially preferred alternative with a probability converging to one, as the society becomes

large. The class of mechanisms that we study are “vote-buying”mechanisms: each agent

can express her intensity of preference by acquiring any quantity of votes x for either

alternative, at a pre-announced monetary amount c(x) that is evenly redistributed to the

1We say that a mechanism implements a value system if its equilibrium outcome is socially preferred
according to the given value system.
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rest of the players, and the social choice is determined by the total number of votes cast

for each alternative.

Besides designing a vote-buying mechanism for every value system in our class, we

also prove that vote-buying mechanisms only implement value systems within this class.

These results establish a two-way mapping between a simple class of transferable utility

mechanisms and an intuitive class of value systems, which range from the majority rule

all the way to the Rawlsian optimum and which differ in the weight that they assign to

individuals’preference intensities.

To gain an intuition over our results, consider the following formalization. Suppose

that each subject i would trade vi units of real wealth to change the social choice from

a random coin toss to A with certainty; that is, the valuation vi measures how intensely

subject i cares that society chooses A and not B (agents who prefer B have a negative

valuation). Then, a possible value system for a given ρ ∈ R++, is to declare that alterna-

tive A is socially preferable if
n∑
i=1

sgn(vi)|vi|ρ > 0, and alternative B if
n∑
i=1

sgn(vi)|vi|ρ < 0;

where sgn(vi) is the sign (positive or negative) of the valuation vi. The class, indexed by

ρ ∈ R++, of all such value systems is characterized by a collection of appealing axioms

(Bergson 1936, Roberts 1986, Moulin 1988, Eguia and Xefteris 2018).2

The majoritarian principle is the lower limit of this class, ρ = 0. Utilitarianism corre-

sponds to parameter ρ = 1: it declares alternative A socially preferred if
n∑
i=1

vi > 0. At the

higher limit of the class, the alternative socially preferred given ρ =∞ is the alternative

preferred by the agent whose valuation has the highest absolute value. Throughout the

class of value systems, the social preference according to a small ρ is highly influenced by

the number of agents who support each alternative, and less so by their intensity, while

if ρ is large the social preference better reflects the preferences of the individuals whose

well-being is greatly affected by the decision.

A mechanism asymptotically implements a given value system if the probability that

2The axioms are: anonymity, neutrality, monotonicity, continuity, separability, and scale-invariance.
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the mechanism chooses the socially preferred alternative —according to this value system—

is arbitrarily close to one in arbitrarily large societies. For each value system in our class,

we find a vote-buying mechanism that asymptotically implements it. Further, we char-

acterize the class of social choice correspondences that are asymptotically implementable

by vote-buying mechanisms: we show that any vote-buying mechanism with limit cost

elasticity limx→0
c′(x)x
c(x)

= 1 + 1/ρ asymptotically implements the social choice correspon-

dence that asymptotically follows the value system with intensity parameter ρ; and any

correspondence that does not follow any of these value systems is not asymptotically

implementable.3

We stress that the vote-buying mechanisms that we consider are robust in the sense

that at the time she designs the mechanism, the designer does not need to know the

particular features of the society, such as the number of individuals, the exact distri-

bution of types from which individual preferences are drawn, or the importance of the

choice under consideration. Hence, we interpret the proposed vote-buying mechanisms as

institutions which implement in large societies the choice rule corresponding to society’s

value system, regardless of changes in distributional parameters.

Literature Review

Our work builds on Lalley and Weyl (2016) and on the literature on quadratic voting

that has developed around it, including limit and heuristic approximations (Goeere and

Zhang 2017; Lalley and Weyl 2018), and the special issues 1 and 2 of Volume 172 of the

journal Public Choice, edited by Weyl and Posner (2017), in their entirety.4 Like this lit-

erature, we propose vote-buying mechanisms to implement social choice correspondences

in binary collective choice problems. Unlike it, we look beyond utilitarianism: we let

3We bring attention to a limitation of this implementation result: the asymptotic optimality of
vote-buying mechanisms hinges on the assumption that agents are risk-neutral. If agents are risk averse,
wealthier agents acquire more votes, and the equilibrium outcome fails to respect the axiom of anonymity.
We discuss this limitation and a solution in Section 4.

4Of particular interest to us are the entries on robustness to collusion (Weyl 2017), agenda-setting
(Patty and Penn 2017) and turnout (Kaplov and Kominers 2017).
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the mechanism designer embrace any of a large class of value systems axiomatized by

Roberts (1980) and Moulin (1988), and we offer a mechanism that asymptotically chooses

the alternative that is socially preferred according to the designer’s value system.

Our work, like all the literature on vote-buying mechanisms, has deeper roots in

classic mechanism design. The VCG mechanism (Vickrey 1961, Clark 1971 and Groves

1973) satisfies utilitarian effi ciency, but is not budget-balanced. We want a budget-

balanced mechanism. The mechanisms by Arrow (1979) and AGV (D’Aspremont and

Gerard-Varet 1979) are budget-balanced and attain utilitarian effi ciency by requiring

each agent to pay the expected externality of her choices, but to calculate this expected

externality, the designer must know population parameters such as the distribution from

which individual preferences are drawn. The designer we have in mind does not have this

information. Put differently: the AGV mechanism works when it is designed specifically

for a particular society with known population parameters at a specific point in time;

whereas, we propose mechanisms that work for societies that differ in their population

parameters, so that each mechanism is robust as the values of exogenous parameters

change across societies in space or time.

Related approaches to gauge intensity of preferences through voting involve majority

voting with heterogenous turnout costs, or vote trading in a competitive market for votes.

Majority rule with heterogeneous turnout costs asymptotically implements utilitarianism

(Krishna and Morgan 2015).5 Whereas, a competitive equilibrium in a decentralized

market for votes is very similar to our special case with parameter ρ = ∞ : the cost of

votes is linear, and the agent who cares most about the decision buys most votes (Dekel,

Jackson and Wolinski 2008; Casella, Llorente-Saguer and Palfrey 2012).

While our results generalize Lalley and Weyl’s (2016) finding that quadratic voting

asymptotically attains utilitarian effi ciency, the two models are not nested: to obtain

simpler and shorter proofs, we make assumptions on the payoff function that are sub-

5See as well Krishna and Morgan (2011).
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stantially similar, but technically distinct. A greater conceptual difference between Lalley

and Weyl (2016)’s approach and ours is that they study the properties of a particular

mechanism; whereas, our theory is an exercise in Bayesian implementation (Jackson

1991): for any desired social choice correspondence, we seek a mechanism such that in

any equilibrium, in any society, the outcome coincides with the desired social choice, for

any realization of preferences.6

2 The Formal Framework

Summary. A set of agents must make a binary social choice. The decision is made via a

vote-buying mechanism: agents purchase votes, and the alternative with the most votes is

chosen. We characterize the set of social choice correspondences that are asymptotically

implementable by these vote buying mechanisms.

Sequence of societies. Let Nn denote a society with n ∈ N\{1} agents. We consider

a sequence of societies {Nn}∞n=2, where, for each n ∈ N\{1}, Nn+1 ≡ Nn ∪ {n + 1}. For

each n ∈ N\{1}, and for any arbitrary variable z, let zNn ≡ (z1, ..., zn). We will establish

results for suffi ciently large societies.

Social choice set. For each n ∈ N\{1}, society Nn must make a binary choice over

{A,B}. Let the social decision dn ∈ {A,B} denote the alternative chosen by society Nn.

Wealth. Each agent i ∈ N\{1} is endowed with initial wealth wIi ∈ R+. Let wi ∈ R

denote the final wealth of agent i in nominal terms, after the social decision is made. Let

6

Lalley and Weyl (2016) provide a more extensive discourse of quadratic voting, its precedents and
related literature, its heuristic intuition, and potential challenges to its roll-out in real world applications;
which broadly applies to all vote-buying mechanisms. We refer the interested reader to their insightful
discussion, which we do not replicate here.
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p ∈ R++ be a price parameter, an exogenously given characteristic of the society. Let
wIi
p

and wi
p
denote the real initial wealth and real final wealth of agent i.

Assumption 1. Agents face no budget constraints (final wealth can be negative).

Equivalently, we could assume that the initial wealth of each agent is suffi ciently large

relative to the importance of the social choice that no undominated expense related to

the social choice would hit the budget constraint.7

Outcomes. The set of outcomes in society Nn is {A,B}×Rn, where the first component

is the social decision dn, and the second is the vector wNn
p
of real final wealth. Let

M({A,B}×Rn) denote the set of probability measures over the set of outcomes, allowing

us to consider stochastic outcomes.

Individual preferences. For each n ∈ N\{1}, each agent i ∈ Nn has a (complete,

transitive) preference order%i overM({A,B}×Rn). Let∼i be the associated indifference

relation and note that %Nn≡ (%1, ...,%n) denotes the preference profile.

We assume that for each i ∈ Nn, the preference order %i is continuous and it satisfies
independence over decomposition of lotteries, so that it can be represented by a contin-

uous utility function in expected utility form (von Neumann and Morgernstern 1944).

Further, we assume that each i ∈ Nn cares only about the social decision dn ∈ {A,B},

and about her final real wealth wi
p
, (and not about the wealth of other agents), that %i

is separable (Debreu 1960) and strictly monotonic on real final wealth, and that agent

i is risk neutral with respect to final real wealth. For convenience, we provide formal

statements of these standard assumptions in the Appendix (Assumptions 2-6).

Together, these assumptions on preferences imply that %i is representable by an
additively separable, quasilinear expected utility function (Fishburn 1970), in which the

7This assumption is not restrictive, because —as we will show—if the society is large, the amount voters
spend to purchase votes converges to zero, so for any given positive budget constraint, in a suffi ciently
large society, the constraint would not bind.
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first term of the summation is the expected utility from the social decision, and the

second term is the expected final wealth.

Distribution of attitudes toward the alternatives. Let [−1, 1] denote the set of

possible attitudes toward choice A, from least favorable (-1) to most favorable (+1).

Let F be the set of all cumulative distributions over [−1, 1] that are continuously dif-

ferentiable, have strictly positive density over the domain, and no mass at any point.

Let F ∈ F denote one such arbitrary distribution, and let f denote its density. Let

F∗ ≡ {F ∈ F : F (x) = 1− F (1− x) for any x ∈ [−1, 1]} ⊂ F denote the set of neu-

tral distributions. F is neutral if the strategic environment is identical up to relabeling

alternatives.

Let θ̄ be a random variable that follows distribution F. Assume that for any n ∈

N\{1}, for each i ∈ Nn, attitude θi is an independent draw of θ̄. Assume that for each

n ∈ N\{1} and for each i ∈ Nn, θi is privately observed.

Valuation of the Social Choice. Let γ ∈ R++ be a parameter that represents the

importance to society of the social choice under consideration. This is a society-wide

parameter, observed by all agents.

Assumption 7. For any n ∈ N\{1}, for any i ∈ Nn and for anywi ∈ R,
(
A, wi

p
− γθi

)
∼i(

B, wi
p

+ γθi

)
.

That is, each agent is indifferent between an outcome with the most preferred social

choice and a real wealth loss of γθi and an outcome with the least preferred social choice

and a real wealth gain of γθi. Put differently, the social choice is worth 2γθi units of real

wealth to agent i.We say γθi is the “valuation”of alternative A for agent i, and we refer

to γθ as a “valuation profile.”The valuation of alternative B is then −γθi.

Actions. For any n ∈ N\{1}, each agent i ∈ Nn chooses an action ai ∈ R. Strictly
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positive actions are interpreted as in favor of A, and strictly negative ones, as against A

(or, equivalently, in favor of B).

Vote-buying mechanisms. A vote-buying mechanism is defined by a cost function

c : R −→ R+, such that for any n ∈ N\{1}, and for any x ∈ R, any agent i ∈ Nn who

chooses action ai = x pays a cost c(x). All payments are redistributed equally among all

other agents, so given a vector of actions aNn ∈ Rn, each agent i ∈ Nn obtains a net

nominal wealth transfer −c(ai) +
∑

j∈Nn\{i}

c(aj)

n−1
.

Let C denote a class of admissible mechanisms. A perfect execution of a mechanism

c ∈ C would entail society choosing dn = A if
∑
j∈Nn

aj > 0 and dn = B if
∑
j∈Nn

aj < 0.

However, we assume that the execution of any mechanism entails some element of uncer-

tainty, so that the mapping from actions to outcomes is stochastic: while the probability

that dn = A is increasing in
∑
j∈Nn

aj, it is not a step function.

Formally, we assume that there exists an outcome function G : R −→ [0, 1] such that

for any n ∈ N\{1} and any aNn ∈ Rn, the probability that dn = A is G

( ∑
j∈Nn

aj

)
.

Let G be the class of strictly increasing, twice continuously differentiable functions from

R −→ [0, 1] such that for any G̃ ∈ G with density g̃ and derivative of the density g̃′ :

i) G̃(x)− 1
2

= 1
2
− G̃(−x) for any x ∈ R++;

ii) lim
x−→−∞

G̃(x) = 0 and lim
x−→−∞

g̃(x) = 0;

iii) ∃ε̂ ∈ R++ such that limx→∞
g̃′(x+ε)
g̃(x)

∈ R ∀ε ∈ (−ε̂, ε̂).

Condition (i) is neutrality. Condition (ii) is a responsiveness condition: if the vote

margin is suffi ciently large, the outcome is the one with the vote advantage with proba-

bility arbitrarily close to one. Condition iii) requires the tails of the density not to drop

to zero too steeply. The set G contains, among others, all Student-t distributions.

We assume that G ∈ G, but G is not known to the mechanism designer, and hence

we will propose mechanisms whose results are robust for any G ∈ G, including those that

are arbitrarily close to a step function with discontinuity at zero, as in Figure 1.
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Figure 1: An outcome function G.

Strategies. Each agent i in society Nn with size n ∈ N\{1}, with price index p ∈ R++,

with wealth distribution wINn ∈ Rn+, facing a social decision of importance γ ∈ R++

to be decided according to mechanism c ∈ C under uncertainty G ∈ G, and taking

into account that the ex-ante distribution of attitudes toward the decision is given by

distribution F ∈ F , chooses an action ai ∈ R as a function of the realization θi ∈ [−1, 1] of

her own attitude toward the decision. We assume actions are taken simultaneously, that

n, p, wINn , γ, F, c and G are common knowledge, and that the θi is private knowledge to

agent i. Therefore, for any given tuple (n, p, wINn , γ, F, c,G), a pure strategy is a mapping

s : [−1, 1] −→ R. Let S be the set of all feasible pure strategies. For each s ∈ S and

each θ ∈ [−1, 1], let s(θ) ∈ R be the action taken given θ according to strategy s, always

given n, p, wINn , γ, F, c and G. For each s ∈ S, for each n ∈ N\{1}, and for each i ∈ Nn,

let si = s denote that agent i chooses strategy s.

Definition 1 We say that a strategy s is neutral if s(−θ) = −s(θ) for any θ ∈ [−1, 1].

We say s is monotone if ∂s
∂θ
≥ 0.
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Utilities. Given a society Nn with (n, p, wINn , γ, F,G) ∈ N\{1} × R++ × Rn+ × R++ ×

F × G and given a mechanism c ∈ C, for any agent i ∈ Nn with preference order

%i over M({A,B} × Rn), we can compute the expected utility of agent i as a func-

tion of her attitude θi, her strategy si and the strategy profile of every other player

s−i. Let EUi : [−1, 1] × Sn −→ R denote the expected utility of agent i. Then, given

(n, p, wINn , γ, F, c,G), for any θi ∈ [−1, 1] and sNn ∈ Sn, EUi[θi, sNn ] is equal to expected

utility from the social decision (γθi Pr[dn = A] − γθi Pr[dn = B]), plus the expected

wealth transfer in real terms. The precise expression of EUi[θi, sNn ] is

γθi

2

∫
θ−i∈[−1,1]n−1

 ∏
j∈Nn\{i}

f(θj)

G

si(θi) +
∑

j∈Nn\{i}

sj(θj)

 dθ−i − 1


+

1

p

wIi − c(si(θi)) +
1

n− 1

∑
j∈Nn\{i}

∫
θj∈[−1,1]

f(θj)c(sj(θj))dθj

 . (1)

Game. For each tuple (n, p, wINn , γ, F, c,G) ∈ N\{1}×R++×Rn+×R++×F×C×G, let

Γ(n,p,wINn ,γ,F,c,G) denote the game played by the n players in society Nn, with strategy set

S for each agent, and expected utility given by EUi in Expression (1) for each n ∈ N\{1}

and each i ∈ Nn.

Equilibrium. For any tuple (n, p, wINn , γ, F, c,G) ∈ N\{1} × R++ × Rn+ × R++ × F ×

C×G, let BNE(n,p,wINn ,γ,F,c,G) ⊆ Sn denote the set of pure Bayes Nash equilibria of game

Γ(n,p,wINn ,γ,F,c,G).We are interested in the subset of symmetric pure Bayes Nash equilibria,

in which each player plays the same pure, monotone strategy s ∈ S. Let E(n,p,γ,F,c,G) ⊆ S

denote the set of pure and monotone strategies that constitute a symmetric Bayes Nash

equilibrium of game Γ(n,p,wINn ,γ,F,c,G).8

8We drop the superindex wINn because the equilibria, as we show below, will not depend on wINn .
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Social preferences. For each n ∈ N\{1}, let Rn denote a complete and transitive

relation over Rn, interpreted as preference over valuation profiles: for any γ ∈ R++

and for any θNn , θ̃Nn ∈ [−1, 1]n, we interpret (γθNn)Rn(γθ̃Nn) to mean that according

to preference Rn, valuation profile γθNn is preferable to valuation profile γθ̃Nn . We can

interpret this preference as a preference held by the mechanism designer, or as an abstract

preference relation over valuation profiles. Let R ≡ {Rn}∞n=2 denote an infinite sequence

of such preferences over valuation profiles, and let R denote the set of all such sequences.

For each n ∈ N\{1}, define as well the strict preference P n by γθNnP n(γθ̃Nn) ⇐⇒

¬(γθ̃Nn)Rn (γθNn) , where ¬ denotes the negation of a logical statement.

A sequence R of preferences over valuation profiles determines a social preference over

{A,B} as a function of n, γ and θNn : for any γ ∈ R++, and for any n ∈ N\{1}, since

the valuation profile of A is γθNn and the valuation profile of B is −γθNn , we say that

alternative A is socially weakly preferred to B if and only if (γθNn)Rn (−γθNn) , and

socially strictly preferred if (γθNn)P n (−γθNn).

Welfare representation. If the preference relation Rn over valuation profiles is con-

tinuous, then it can be represented by a continuous function (Debreu 1954). We refer

to this utility representation as a “welfare” function and we represent it by the map-

ping W : R++ ×
∞⋃
n=2

[−1, 1]n −→ R. For any R ∈ R, we say that the welfare function

W represents R if for any n ∈ N\{1}, any γ ∈ R++ and any θNn , θ̃Nn ∈ [−1, 1]n,

W (γ, θNn) ≥ W (γ, θ̃Nn) if and only if (γθNn)Rn(γθ̃Nn).

Let sgn : R −→ {−1, 0, 1} be the sign function, defined by sgn(x) = −1 if x < 0,

sgn(x) = 0 and sgn(x) = 1 if x > 0. For each ρ ∈ R++, define the Bergson welfare

function Wρ (Burk 1936) by

Wρ(γ, θNn) ≡
∑
i∈Nn

sgn(θi)|γθi|ρ.

12



Value system. A value system is a collection of normative axioms over the set R of all

sequences of preferences over valuation profiles. For each sequence R ≡ {Rn}∞n=2 ∈ R,

and for each n ∈ N\{1}, we say that preference Rn follows a given value system if Rn

satisfies the system’s axioms. Denote by V the value system composed of the axioms

of continuity, anonymity, neutrality, monotonicity, separability, and scale invariance (de-

fined formally in the Appendix).

Any R ∈ R is representable by a Bergson welfare function Wρ for some ρ ∈ R++

if and only if Rn follows value system V for each n ∈ N\{1} (Eguia and Xefteris 2018,

based on Roberts 1980 and Moulin 1988).9

Therefore, for each n ∈ N\{1}, the class of preferences over valuation profiles char-

acterized by value system V is parameterized by a single parameter ρ ∈ R++. This

parameter ρ measures how much the preference over valuation profiles responds to inten-

sity of individual preferences over alternatives. Each value ρ ∈ R++ can be interpreted

as a distinct normative axiom on preferences over valuations. Under this interpretation,

for each ρ ∈ R++, the collection of axioms {V , ρ} is a primitive that fully characterizes

a specific R ∈ R : for each n ∈ Rn, and for each ρ ∈ R++, let Rn
ρ denote the prefer-

ence relation over valuation profiles that follows value system {V , ρ}. Preference Rn
ρ is

represented by the Bergson welfare function Wρ. Define Rρ ≡ {Rn
ρ}∞n=2.

Optimality. Given a sequence of preference profiles R ∈ R, and given a society

size n ∈ N\{1}, a social decision dn ∈ {A,B} is optimal according to R for society

Nn if the decision dn is the socially preferred alternative according to Rn; that is, if

(γθNn)P n(−γθNn), then dn is optimal according to R if and only if dn = A; whereas, if

9Roberts’s (1980) Theorem 6 axiomatically characterizes the set of welfare functionals (mappings
from strictly positive utility profiles to social preferences over alternatives) that are representable by
Bergson welfare function. Moulin’s (1988) Theorem 2.6 applies Roberts’axioms to characterize the set
of preferences over strictly positive utility profiles that are representable by Bergson welfare functions.
It is only a small corollary to extend Roberts’and Moulin’s result to allow for negative valuations.
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(−γθNn)P n(γθNn) then dn is optimal according to R if and only if dn = B. Equivalently,

if W is a welfare function that represents R, then a social decision is optimal if the deci-

sion is A if W (γ, θNn) > W (γ,−θNn) and B if W (γ,−θNn) > W (γ, θNn). In particular,

we define ρ−optimality as optimal according to parameter ρ.

Definition 2 For each ρ ∈ R++, for each n ∈ N\{1} and for each θNn ∈ [−1, 1]n, we

say that a social decision dn ∈ {A,B} is ρ−optimal if it is optimal according to Rρ.

Equivalently (by definition of Rρ), a decision is ρ−optimal if it follows value system

(V , ρ), or again equivalently, if it maximizes the Bergson welfare function Wρ.

Without further ado, we anticipate a first result. For any ρ ∈ R++, we find a mech-

anism that is asymptotically ρ−optimal over all neutral attitude distributions. All the

proofs are in the appendix.

Proposition 1 For any ρ ∈ R++, and for any F ∈ F∗, given the vote-buying mechanism

c defined by c(a) = |a|
1+ρ
ρ for any a ∈ R, and given any sequence of neutral equilibria

{sn}∞n=1, the probability that the social decision is ρ−optimal converges to one as n −→∞.

We present Proposition 1 only as an illustrative example of a possibility result of

vote-buying mechanisms. Three questions arise from this partial result.

First: what about societies with non-neutral, functional forms of the cumulative dis-

tribution F from which attitudes are drawn? Particularly challenging are distributions

in which, with probability converging to one, the ρ−optimal decision is A but a majority

of voters have a negative valuation, or the ρ−optimal decision is B but a majority of

voters have a positive valuation. These distributions are substantively important, and

likely to arise in any social decision involving concentrated gains (as in Figure 2), such as

any targeted spending, paid with general taxation; or concentrated losses (for instance,

consumer-friendly industry regulations, or NIMBY projects). We will show that the

result is largely robust to a generalization to these non-neutral cumulative distribution

functions.
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Figure 2: A density function f with concentrated gains.

Reinterpreting Proposition 1 in the language of implementation theory leads to an

additional two dual questions (and answers). The implementation problem starts with a

desired mapping from the realization of valuations for any society, to the subset of alter-

natives that are deemed desirable for this society and these valuations. This mapping is a

social choice correspondence. A mechanism implements this social choice correspondence

if all its equilibrium outcomes are in the social choice correspondence. So Proposition 1

says that for any positive real number ρ, any sequence of social choice correspondences

that consist of selecting the maximizer of a Bergson welfare functionWρ is asymptotically

implemented across societies with neutral distributions over attitudes, by a vote buying

mechanism with cost function c(a) = |a|1+ 1
ρ .

We may wonder: which other social choice correspondences are asymptotically im-

plementable by vote-buying mechanisms, and how? Conversely, for each vote-buying

mechanism, which social choice correspondence is implemented by this mechanism?

To formalize and answer these queries, we precisely define the set of vote-buying

mechanisms under consideration, social choice correspondences, and asymptotic imple-

mentability. We then align the set of social choice correspondences with the set of vote-

buying mechanisms, by characterizing for each social choice correspondence the subset of

mechanisms that asymptotically implement it; and by characterizing for each mechanism

the subset of social choice correspondences that it asymptotically implements.
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Admissible vote-buying mechanisms. We specify the set of admissible cost functions

C. Let Ĉ be the set of continuously differentiable functions defined over R that are

twice continuously differentiable over R\{0}. For any c ∈ Ĉ, define the elasticity of c

as ηc(x) ≡ xc′(x)
c(x)

for any x ∈ R\{0}. Assume that C ≡ { c ∈ Ĉ : c(0) = 0, c′(0) = 0,

lim
x−→0

ηc(x) ∈ (1,∞), c′(x) > 0 for any x′ ∈ R++, lim
x−→∞

c(x) = ∞, and c(x) = c(−x) for

any x ∈ R}. The intuition on C is that, in addition to continuity and differentiability,

an admissible cost functions has the following properties:

i) a zero action, interpreted as abstention, is free;

ii) to encourage positive participation, the marginal cost of taking a positive action

(interpreted as acquiring a quantity of votes) at zero is zero, so for any strictly positive

willingness to pay, some strictly positive quantity of votes can be acquired at that price;

iii) but the elasticity of the cost function near zero is greater than one (so c is strictly

convex) near zero, and thus the marginal cost of votes becomes immediately positive;

iv) and while elsewhere the cost function need not be convex, this marginal cost is

always positive for all positive quantities;

v) and very high quantities of votes are prohibitively expensive; and

vi) neutrality: votes for A cost the same as votes against A.

All power functions with exponent greater than one (and their sums), among other

functions, are included in the set C.

Social Choice correspondences. For any n ∈ N, a social choice correspondence

SCn : R++ × [−1, 1]n ⇒ {A,B} maps a pair (γ, θNn) into the subset of normatively

desirable social decisions SC(γ, θNn). Let SC ≡ {SCn}∞n=1 denote a sequence of social

choice correspondences, and let SC denote the set of all possible such sequences.

For each ρ ∈ R++, and for each n ∈ N, define the Bergson choice correspondence SCn
ρ
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by

SCn
ρ (γ, θNn) ≡


B if

∑
i∈Nn

sgn(θi)|γθi|ρ < 0

{A,B} if
∑
i∈Nn

sgn(θi)|γθi|ρ = 0

A if
∑
i∈Nn

sgn(θi)|γθi|ρ > 0.

.

Note that SCn
ρ is the social choice correspondence that chooses the alternative(s) that

are socially preferred given the Bergson preference over valuation profiles Rn
ρ (which is

represented by the Bergson welfare function Wρ). Define the sequence of Bergson social

choice correspondences SCρ ≡ {SCn
ρ }∞n=2. Define SCρ ≡ {SCn

ρ }∞n=1 and SCV≡
⋃

ρ∈R++

SCρ.

In other words, SCρ is the sequences of correspondences of optimal choices according to

value system {V , ρ}, and SCV is the set of all such sequences of optimal correspondences

that satisfy value system V (one sequence for each intensity parameter ρ).

For any n ∈ N, for each J ∈ {A,B, {A,B}}, for any γ ∈ R++, and for any social

choice correspondence SCn : R++ × [−1, 1]n ⇒ {A,B}, define

Θγ
J(SCn) ≡ {θNn ∈ [−1, 1]n : SCn(γ, θNn) = J},

and let (Θγ
J(SCn))c ≡ ([−1, 1]n) \Θγ

J(SCn) denote the complement of Θγ
J(SCn). Note

Θγ
J(SCn) ⊆ [−1, 1]n is the set of attitude profiles for which social choice correspondence

SCn declares J the normatively desirable alternative(s).

Convergence of Social Choice correspondences.

We say that two sequences of social choice correspondences SC and S̃C converge

to each other if the probability that they select the same outcome converges to one, as

n −→ ∞. We say a property holds generically if it holds in an open dense subset of the

set under consideration. To formally define convergence of SC and S̃C to each other

generically over F , we need to define more structure on F .

Let C[−1, 1] denote the set of all continuous functions over [−1, 1] and let d∞ be the
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sup-metric overC[−1, 1], so that for any ϕ, ϕ̂ ∈ C[−1, 1], d∞(ϕ, ϕ̂) ≡ sup
θ∈[−1,1]

{|ϕ(θ)− ϕ̂(θ)|}.

We consider the metric space (F , d∞,∞) with distance function d∞,∞ : F × F −→ R+

defined by d∞,∞(F, F̂ ) ≡ d∞(F, F̂ ) + d∞(f, f̂).10 A subset FD ⊂ F is dense in F if the

closure of FD is equal to F (so any cumulative distribution F ∈ F\FD is the limit of a

sequence of distributions in FD). We can now precisely define the desired convergence

notion.

Definition 3 For any F ∈ F and any SC, S̃C ∈ SC, we say that SC and S̃C converge

to each other with respect to F if lim
n−→∞

Pr
[
SC(γ, θ̄Nn) 6= S̃C(γ, θ̄Nn)

]
= 0. We say that

SC and S̃C converge to each other generically if they converge to each other for any F

in an open dense set FD ⊆ F .

Implementability.

We say that a vote buying mechanism c asymptotically implements a sequence of so-

cial choice correspondences SC over a given subdomain of possible distribution functions

from which attitudes are drawn if two conditions hold: i) an equilibrium (symmetric,

monotonic and pure) exists for any large society; and ii), the probability that the so-

cial decision coincides with the alternative chosen by SC converges to one. The formal

definition is as follows.

Definition 4 For any F̃ ⊆ F , a vote-buying mechanism c ∈ C asymptotically imple-

ments a sequence of social choice correspondences SC over F̃ in symmetric, monotone

and pure equilibria if for any (p, {wIk}∞k=1, γ, F,G) ∈ R++ × R∞+ × R++ × F̃ × G,

i) there exists n̂ ∈ N such that the set of equilibria E(n,p,γ,F,c,G) is non-empty for any

n ≥ n̂; and

10This is the standard distance to metricize the set of continuously differentiable functions; we follow
Ok (2007); see Chapter C, Example 2[3].
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ii) for any ε ∈ (0, 1) and for any sequence of strategies {st}∞t=2 such that s
t ∈

E(t,F,γ,p,c,G) for each t ∈ N\{1}, there exists nε,γ,F,p,G ∈ N such that for any n > nε,γ,F,p,G,
∫

θNn∈ΘγA(SCn)

(
n∏
i=1

f(θi)

)
G

(
n∑
i∈1

sn(θi)

)
dθNn

+
∫

θNn∈ΘγB(SCn)

(
n∏
i=1

f(θi)

)(
1−G

(
n∑
i∈1

sn(θi)

))
dθNn

 > 1− ε.

We say that a sequence of social choice correspondences SC is asymptotically im-

plementable if there exists a mechanism c ∈ C that asymptotically implements SC in

symmetric, monotone and pure equilibria.

Since our implementation results are always asymptotic, and always in symmetric,

monotone and pure equilibria, if a mechanism c implements asymptotically SC over F̂

in symmetric, monotone and pure equilibria, we say simply that c “implements SC over

F̂ .”

This implementation notion requires that, if the society is suffi ciently large, the out-

come in every equilibrium of the game induced by the mechanism must be the outcome

desired by the social choice rule with probability arbitrarily close to one, for any distri-

bution parameters. Depending on the domain of distributions F̂ under consideration,

such robustness across societies may not be attainable. We then seek, as a second best,

a mechanism that works for most societies in the domain under consideration.

We define generic asymptotic implementability accordingly.

Definition 5 A vote-buying mechanism c ∈ C asymptotically implements a sequence of

social choice correspondences SC generically in symmetric, monotone and pure equilibria

if there exists an open FD dense in F such that c implements SC over FD.

We say that a sequence of social choice correspondences SC is generically asymptot-

ically implementable if there exists a mechanism c ∈ C that generically asymptotically

implements SC in symmetric, monotone and pure equilibria.
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Once again, if a mechanism c asymptotically implements a sequence of social choice

correspondences SC generically in symmetric, monotone and pure equilibria, we say

simply that c “implements SC generically.”For any ρ ∈ R++, we say that a mechanism

c implements value system (V , ρ) if it implements SCρ, .

3 Main Result

We provide a characterization of the set of sequences of social choice correspondences

that are implementable by vote-buying mechanisms, generically over all possible distri-

bution functions from which attitudes are drawn. We also provide, for each sequence of

social choice correspondences that is generically implementable, a class of vote-buying

mechanisms that generically implements it. In particular, we show that the set of social

choice correspondences implemented by any given vote-buying mechanism are entirely

determined by the elasticity ηc(a) of the mechanism, evaluated at the limit with zero

acquisition of votes.

Theorem 2 A sequence SC of social choice correspondences is generically implementable

by a vote-buying mechanism in C if and only if there exists ρ ∈ R++ such that SC and

SCρ converge to each other generically, in which case, any vote-buying mechanism c ∈ C

such that lim
a−→0+

ηc(a) = 1+ρ
ρ
generically implements SC.

That is, only sequences of social choice correspondences that converge toward choos-

ing optimally according to value system (V , ρ) for some ρ ∈ R++ are generically imple-

mentable by vote-buying mechanisms, and specifically, any vote-buying mechanism with

limit elasticity κ ∈ (1,∞) generically implements value system (V , 1
κ−1

).

Since, for any κ ∈ (1,∞) the vote-buying mechanism with power cost function c(a) =

|a|κ has lim
a−→0+

ηc(a) = κ, we obtain as a corollary that c(a) = |a|κ implements value

system (V , 1
κ−1

); quadratic voting is the special case with κ = 2 and value system (V , 1),

i.e. utilitarianism. Goeree and Zhang (2017) and Lalley and Weyl (2018) provide a
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Figure 3: A non-polynomial mechanism ĉ that implements utilitarianism.

heuristic intuition for this special case: if agents (incorrectly) assume that their marginal

benefit of acquiring votes is constant in the quantity of votes acquired, then agents

infer that their marginal benefit of acquiring votes is linear in their attitude. Given a

mechanism c(a) with derivative c′(a) that is linear in a, agents equate perceived marginal

benefit and marginal cost by acquiring votes in proportion to their attitude, which leads

to utilitarian effi ciency.

This heuristic intuition is useful as far as other power cost mechanisms are concerned,

but beyond these functions, it does not generalize well: what matters for asymptotic

implementation is the limit elasticity lim
a−→0+

ηc(a) of the cost function c(a), and not the

shape of the derivative c′(a). Consider, for example, the mechanism ĉ ∈ C depicted in

Figure 3, and defined by ĉ(a) = (cos(|a|) − 1)(2 ln(|a|) − 3) for any a ∈ [−1, 1] (and

increasing arbitrarily for higher quantities).

Notice that ĉ(a) and c(a) = |a|2 are generically unequal. In fact, lim
a−→0+

ĉ(a)
c(a)

=

lim
a−→0+

ĉ′(a)
c′(a)

= +∞, (c converges to zero arbitrarily faster than ĉ). The marginal cost

ĉ′(a) is a (cumbersome) trigonometric function, suggesting that if the heuristic intuition

based on the marginal cost were correct, mechanism ĉ would implement a social choice

correspondence that maximized some trigonometric welfare function. But this is not the
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case: It is easy to check that lim
a−→0+

ηĉ(a) = 2, so ĉ implements utilitarianism as well. Put

differently: quadratic voting implements utilitarianism not because its marginal cost is

linear, but rather, because its limit elasticity at zero is 2, and any other mechanism with

limit elasticity of 2 also implements utilitarianism.

To grasp the intuition why the limit elasticity is the significant element here, we sketch

the most relevant steps of the proof. In line with the heuristic intuition we find that in a

sequence of equilibria, the ratio of the marginal costs corresponding, for instance, to two

distinct types of alternative A supporters, must converge to the ratio of the attitudes of

these types. That is, for every (θ, θ̂) ∈ (0, 1]2, we get:

limn→∞
c′(sn(θ))

c′(sn(θ̂))
= θ

θ̂
⇒ limn→∞ ln c′(sn(θ))

c′(sn(θ̂))
= ln θ

θ̂
.

Moreover, we can show that the function J : R2
++ → R given by:

J(x, y) =


yc′′(y)
c′(y)

if x = y

ln
c′(x)
c′(y)

ln x
y

if x 6= y

converges to lim
a−→0+

ηc(a)− 1 as (x, y)→ (0, 0). Hence,

limn→∞
ln
c′(sn(θ))
c′(sn(θ̂))

ln
sn(θ)

sn(θ̂)

= lim
a−→0+

ηĉ(a)− 1 =⇒ limn→∞ ln c′(sn(θ))

c′(sn(θ̂))
=

limn→∞ ln
(
sn(θ)

sn(θ̂)

) lim
a−→0+

ηc(a)−1

,

and thus substituting the left hand side according to limn→∞ ln c′(sn(θ))

c′(sn(θ̂))
= ln θ

θ̂
, we get

ln θ

θ̂
= limn→∞ ln

(
sn(θ)

sn(θ̂)

) lim
a−→0+

ηc(a)−1

⇒ limn→∞
sn(θ)

sn(θ̂)
=
(
θ

θ̂

) 1
lim

a−→0+
ηc(a)−1

.

That is, the equilibrium vote acquisitions become proportional to the ratio of the

attitudes raised to a power that depends on the limit cost elasticity; and this leads to

the implementation of the value system
(
V , 1

lim
a−→0+

ηc(a)−1

)
.

22



4 Discussion

Given a binary collective choice problem, a mechanism implements a value system if for

any ex ante distribution and any ex post realization of individual preferences, and for any

equilibrium induced by the mechanism, the probability that the social decision is socially

preferred according to the value system converges to one in the size of the society.

A particular class of value systems, characterized by a set of normative axioms, is

indexed by a parameter ρ that measures the degree of caring about intensity of preference.

At one end of this class, majoritarianism assigns equal importance to each individual

ordinal preference, entirely disregarding intensity. At the opposite end of the class, the

maximin notion cares maximally about intensity and equates welfare with the utility of

the agent with the most intense preference. Utilitarianism is an interior principle, caring

for all agents’preferences in linear proportion to their intensity.

For any value system in this axiomatized class, we find a vote-buying mechanism

that implements it. In particular, for each value system with attention ρ to intensity of

individual preferences, any vote-buying mechanism given by a cost function with limit

elasticity 1+ρ
ρ
at zero (for example, a power function c(a) = |a|

1+ρ
ρ ), generically imple-

ments the value system parameterized by ρ.11

We characterize the set of social choice correspondences that are generically imple-

mentable by a vote-buying mechanism in suffi ciently large societies: a sequence of social

choice correspondences is generically implementable if and only if it asymptotically fol-

lows a given value system in our axiomatized class (Theorem 2).

The standard relative majority voting rule that assigns one vote to each person for

free is equivalent to the limit ρ = 0 of our range of parameters: as the limit cost elasticity

lim
a−→0+

ηĉ(a) = 1+ρ
ρ
diverges to lim

ρ→0

1+ρ
ρ

= +∞, the marginal cost of an extra vote becomes

arbitrarily larger compared to the average one, so everyone converges toward acquiring

11Note that these vote-buying mechanisms are “bounded” in the sense of Jackson (1992), but they
are not “strategically simple”in the sense of Börgers and Li (2017). Nor are they robust to coalitional
deviations (Bierbrauer and Hellwig 2016).
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the same amount of votes.12

A decentralized, competitive market for votes, similar to the ones proposed for in-

stance by Dekel, Jackson and Wolinski (2008) and Casella, Llorente-Saguer and Palfrey

(2012), implements the opposite extreme, ρ =∞: as the limit cost elasticity converges to

lim
ρ→∞

1+ρ
ρ

= 1, the marginal cost of an extra vote becomes identical to the average one —as

in a competitive market—and the agent or agents with most intense preferences purchase

most votes and determine the social decision.

Casella, Llorente-Saguer and Palfrey (2012) interpret the outcome with a market

for votes as a social welfare loss, because they judge welfare according to an utilitarian

perspective. We interpret the finding differently: the outcome is optimal according to

a welfare notion in which we care overwhelmingly more about the agent with the most

intense preference. For that welfare criterion, a market for votes with linear pricing, be

it a centralized one as in our mechanism, or a decentralized one as in Casella, Llorente-

Saguer and Palfrey (2012), is optimal. If that is not the welfare criterion we have in

mind, then we should not choose linear pricing for votes. Rather, we should choose the

pricing that corresponds to our welfare notion. For utilitarian welfare, corresponding to

a parameter value of ρ = 1, quadratic pricing is optimal (Lalley and Weyl 2016). For

any other welfare notion corresponding to parameter value ρ ∈ R++, an optimal pricing

of votes is any c with limit elasticity 1+ρ
ρ
at zero.

We address two important substantive limitations.

Wealth inequality.

A common criticism of vote-buying mechanisms that rely on linear or quadratic pric-

ing is that in practice they would favor the rich, effectively disenfranchising the poor.

In our theory, as in previous theories of vote-buying mechanisms, agents are risk neutral

and preferences over wealth are separable, so the utility representation is quasilinear and

12For instance, if c(a) = |a|∞, any quantity of votes smaller than one is free, while any quantity of
votes above one is infinitely expensive, leading all players to acquire exactly one vote.
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there are no wealth effects: agents’actions are independent of their wealth.

Concerns about the effects of wealth inequality arise if we assume that agents are risk

averse, so that their utility over wealth is concave. If so, for any given preference intensity

over the social choice, a wealthier agent would acquire more votes than an agent with

the same intensity of preference and lesser wealth. If the planner cares only about the

social decision, and not about wealth redistribution, the optimality of the mechanisms

we have studied is lost: since the cost function conditions only on the number of votes,

the preferences of wealthier votes are overweighed, so the axiom of anonymity is violated.

Optimality with respect to a value system that includes anonymity can be restored by

allowing for vote-buying mechanisms such that the cost function conditions on wealth

and on the number of votes acquired (this result is available from the authors).

Multiple alternatives.

We have identified mechanisms to make binary social decision. If the set of alternatives

under consideration contains multiple alternatives, the welfare properties of these vote-

buying mechanisms are weakened. As in elections with multiple candidates, coordination

can result in only two alternatives being competitive, so agents purchase and cast votes

for only these two. These two alternatives may be any pair, and not necessarily the

best two. Our result, in this case, only implies that the least desirable alternative will

be defeated with probability converging to one. This limitation is not intrinsic to vote-

buying mechanism; it is a feature shared by standard voting practices in which each agent

has one vote.

We have shown that binary social choice correspondences that choose the optimal

alternative according to a value system representable by a Bergson welfare function with

parameter ρ, can be generically implemented in large societies by a vote-buying mecha-

nism with any cost function whose elasticity converges to 1+ρ
ρ
at zero votes.
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5 Appendix

5.1 Assumptions and Axioms

Recall that for any n ∈ N\{1} and for any i ∈ Nn, %i is a complete and transitive
relation over the set of probability measuresM({A,B} × Rn). For any n ∈ N\{1}, and
for any i ∈ Nn, we assume the following on %i .
Assumption 2. The preference relation %i is continuous and satisfies independence

over decomposition of lotteries.
From Assumption 2, it follows that each preference relation %Nn is representable by

a continuous utility function in expected utility form (von Neumann and Morgernstern
1944).

Assumption 3. For any
(
dn, wNn

p

)
∈ {A,B} × Rn and

(
dn,

w′Nn
p

)
∈ {A,B} × Rn

such that wi = w′i, agent i is indifferent between
(
dn, wNn

p

)
and

(
dn,

w′Nn
p

)
.

Assumption 3 means that each agent cares only about the social decision, and about
her own real final wealth. With a slight abuse of notation we can then refer %i to a
preference order over ∆({A,B} × R).

Assumption 4. For any
(
dn, wNn

p

)
∈ {A,B} × Rn and

(
dn,

w′Nn
p

)
∈ {A,B} × Rn

such that wi > w′i, agent i strictly prefers
(
dn, wNn

p

)
to
(
dn,

w′Nn
p

)
.

Assumption 4 means that each agent has strictly monotonically increasing preferences
over final real wealth.
Let L denote a simple lottery over {A,B} × Rn (a probability measure that assigns

strictly positive probability only to finitely many outcomes).
Let a 50-50 lottery be a probability distribution over {A,B} ×Rn that assigns prob-

ability 0.5 to exactly two outcomes. For any probability measure µ ∈ M({A,B} × Rn),
and in particular for any simple lottery L, let µd and µwi/p be the marginal probability
measures over {A,B} and over R (respectively), derived from µ.
Assumption 5. (Fishburn’s (1970) Separability) For any two 50-50 lotteries L,L′

such that Ld = L′d and Lwi/p = L′wi/p, L ∼i L
′.

This means that preferences over lotteries are driven only by the marginal probability
distributions, and not by their correlation. This is a separability condition, because it
implies that the preferences over lotteries in one dimension do not change with changes
in the other dimension.
Assumptions 1-3 and 5 jointly imply that the preferences of agent i can be represented

by an additively separable function of the outcome and the final real wealth of i in
expected utility form (Fishburn 1970, Theorem 11.1).
Assumption 6. Agent i is risk neutral with respect to final real wealth.
Note that for each n ∈ N\{1}, for each probability measure µ overM({A,B} × Rn)

and for each J ∈ {A,B}, µd({J}) = Pr[dn = J ], while for each x ∈ R, µwi/p ({x}) =
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Pr
[
wi
p

= x
]
. For any x ∈ R such that µwi/p is differentiable at x, let µ′wi/p(x) ≡ ∂

∂
µwi/p(x)

denote the derivative of µwi/p at x, so that µ
′
wi/p

is the density function associated to the
marginal probability measure µwi/p. Hence, for any interval I ⊂ R,

Pr

[
wi
p
∈ I
]

=
∑

wi
p
∈I:µ({wip })>0

µ

({
wi
p

})
+

∫
x∈I

µ′wi/p ({x}) dx,

where the first term captures the probability mass points, and the second the integral
over the density, wherever defined.
Assumptions 1-6 jointly imply that %i is representable by an additively separable,

quasilinear utility function ũi such that for each µ ∈M({A,B} × Rn),

ũi(µ) =
∑

J∈{A,B}

µd({J})uid(J) +
∑
wi∈R

µwi/p

({
wi
p

})
wi
p

+

∫
x∈R

µ′wi/p ({x})xdx

where uid : {A,B} −→ R is a function that represents the preferences over the social
choice.

We next list the six axioms on the set R of sequences of social preferences over
valuation profiles that constitute the value system V . For any n ∈ N\{1}, for any ε ∈ R++

and for any x ∈ Rn, let Nε(x) the open ε−neighborhood around x.

Axiom 1 (Continuity) A sequence R ≡ {Rn}∞n=1 ∈ R is continuous if for any n ∈
N\{1}, and for any x, y ∈ Rn such that xP ny, ∃ε ∈ R++ such that x′P ny′ for any
x′ ∈ Nε(x) and any y′ ∈ Nε(y).

By continuity, suffi ciently small changes in individual utilities do not reverse a strict
order relation between two net utility profiles.

Axiom 2 (Anonymity) A sequence R ≡ {Rn}∞n=1 ∈ R is anonymous if for any n ∈
N\{1}, and for any x ∈ Rn and any y ∈ Rn such that x and y are a permutation of each
other, xRny and yRnx.

Anonymity guarantees that the social welfare ordering does not care about voters’
names, and pays attention only to the set of individual valuations.

Axiom 3 (Neutrality) A sequence R ≡ {Rn}∞n=1 ∈ R is neutral if for any n ∈ N\{1},
and for any x ∈ Rn and any y ∈ Rn, xRny ⇐⇒ −yRn(−x).

Neutrality guarantees that the label of which of the two alternatives is labeled A and
which one is B, does not matter.
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Axiom 4 (Monotonicity) A sequence R ≡ {Rn}∞n=1 ∈ R is monotonic if for any
n ∈ N\{1}, xRny for any x ∈ Rn and any y ∈ Rn such that x − y ∈ Rn+, and xP ny for
any x, y ∈ Rn such that x− y ∈ Rn++.

Monotonicity guarantees that the social value of choosing A over B is increasing in
individual valuations.
For any n ∈ N\{1}, and for any M ⊆ {1, ..., n}, and for any x ∈ Rn, let xM ∈ R|M |

define the vector restricted to the subset of agents M, and let (xM , xN\M) be another
way to write vector x.

Axiom 5 (Separability) A sequence R ≡ {Rn}∞n=1 ∈ R is separable if for any n ∈
N\{1}, for any M ⊆ {1, ..., n}, and for any x, y ∈ Rn,

(xM , xN\M)Rn(yM , xN/M)⇐⇒ (xM , yN\M)Rn(yM , yN/M).

This corresponds to Debreu’s (1960) notion of strong separability. It means that can
evaluate partial valuation profiles restricted to a subset of agents without taking into
account the valuations of other agents.

Axiom 6 (Scale invariance) A sequence R ≡ {Rn}∞n=1 ∈ R is scale invariant if for
any n ∈ N\{1}, for any x, y ∈ Rn, and for any λ ∈ R++, λxR

nλy ⇐⇒ xRny.

Scale invariance guarantees that society applies the same criteria to important deci-
sions (γ high) than to less important ones (γ low).
The value system V is defined as the collection of axioms 1-6.

5.2 Proofs

In this section, we prove our results. The proofs are long. They proceed in ten steps:
Proposition 1 requires to follow steps 1-6 and 10, and Theorem 2 requires steps 1-9.
One - We prove existence of a symmetric equilibrium in pure, monotone strategies

for any parameter tuple (Lemma 3), and existence of a symmetric equilibrium in pure,
monotone and neutral strategies for any neutral F (Lemma 4).
Two - We prove that net vote acquisitions for A are strictly increasing in attitude

θ (Lemm 5), and use this result to write the first order condition of the individual
optimization problem (Equation (3)).
Three - We prove that equilibrium vote acquisitions converge to zero (Lemma 7 estab-

lishes the result for most attitudes; later Lemma 12 extends this result to all attitudes).
Four - We prove that the ratio of marginal costs converges to the ratio of attitudes

(Lemma 9).
Five - We prove that the marginal benefit of acquiring votes converges to zero (Lemma

11), and use this result to prove that the third and fourth steps extend to all attitudes
(Lemma 12, Corollary 13).
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Six - We prove that the ratio of vote acquisitions converges to a power function of
the ratio of attitudes; first we prove it piecewise (Lemma 15) and then over the whole
domain (Lemma 16).
Seven - After two technical lemmas (Lemma 17 and Lemma 18) we establish a suffi -

cient condition for a sequence of social choice correspondences to be implementable over
a subset of distribution functions that is open and dense over the set over all cumulative
distribution functions (Proposition 19).
Eight - We find a necessary condition for such implementation (Proposition 20).
Nine - We show that the necessary condition is suffi cient for generic implementability,

establishing our main result (Theorem 2).
Ten - We conclude by proving a result on implementation in neutral equilibria, re-

stricted to neutral distributions, from which Proposition 1 follows as an immediate corol-
lary.

Lemma 3 For any tuple (n, p, wINn , γ, F, c,G) ∈ N\{1}×R++×Rn+×R++×F ×C×G,
a pure symmetric monotone equilibrium of game Γ(n,p,wINn ,γ,F,c,G) exists.

Proof. For each tuple (n, p, wINn , γ, F, c,G) ∈ N\{1}×R++×Rn+×R++×F×C×G, define
Sγ as the set of all functions y : [−1, 1] −→ [−c−1(2pγ), c−1(2pγ)], and let Γ

(n,p,wINn ,γ,F,c,G)

R

denote the restricted game played by the n players in society Nn, with strategy set Sγ

for each agent, and expected utility given by EUi in Expression (1) for each i ∈ Nn.

Note that game Γ
(n,p,wINn ,γ,F,c,G)

R satisfies the nine conditions for existence of a sym-
metric, pure monotone equilibrium in Reny’s (2011) Theorem 4.5. Conditions G1-G6 in
this theorem, as explained by Reny, are standard and applied to a vast class of more
general environments that includes our own as a very special case. The three additional
conditions are the following:
i) the game must be symmetric. Note that initial wealth enters the utility function (1)

as an additive term; therefore, game Γ
(n,p,wINn ,γ,F,c,G)

R is strategically equivalent to a game

Γ
(n,p,ŵINn ,γ,F,c,G)

R with ŵIi = 0 for each i ∈ Nn, and Γ
(n,p,ŵINn ,γ,F,c,G)

R is symmetric, because
each player’s preference is drawn from the same distribution F, and G is anonymous,
aggregating total contributions.
ii) each player’s set of monotone pure best replies is non-empty. Given the actions

by other players, each player i maximizes a continuous function over a compact domain,
so a maximum exists, and this maximum is a best response. Furthermore, the utility
function is supermodular in |θi| and |ai| (it satisfies increasing differences in (|θi|, |ai|)
and so the set of maximizers is non-decreasing, and thus we can select a monotonically
increasing best response.
iii) each player’s set of monotone pure best replies is join-closed whenever the other

players employ the same monotone pure strategy. A subset of strategies is join-closed if
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the pointwise supremum of any pair of strategies in the set is also in the set. Since the
maximization problem is independently solved for each |θi| to obtain a best response, the
pointwise maximum of any pair of strategies is in the set. Since the set of best responses
is closed, the pointwise supremum is a pointwise maximum, for each point.

Therefore, game Γ
(n,p,wINn ,γ,F,c,G)

R has a symmetric, pure monotone equilibrium. For
each n ∈ N\{1}, for any voter i ∈ Nn, for any type θi ∈ [−1, 1], and for any strategy
profile s−i for Nn\{i}, ai /∈ [−c−1(2pγ), c−1(2pγ)] is a dominated action: it leads to
a strictly lower payoff than ai = 0. Thus, we can restrict attention to the restricted

game Γ
(n,p,wINn ,γ,F,c,G)

R with bounded action space X ≡ [−c−1(2pγ), c−1(2pγ)], and any

equilibrium of Γ
(n,p,wINn ,γ,F,c,G)

R is also an equilibrium of Γ(n,p,wINn ,γ,F,c,G). It follows that a
symmetric pure monotone equilibrium of game Γ(n,p,wINn ,γ,F,c,G) exists.

Lemma 4 For any tuple (n, p, wINn , γ, F, c,G) ∈ N\{1}×R++×Rn+×R++×F∗×C×G,
a symmetric pure neutral monotone equilibrium of game Γ

(n,p,wINn ,γ,F,c,G)

R exists.

Proof. Consider a further restricted game in which each agent i ∈ Nn privately observes
|θi| but not θi and then chooses an action |ai| ∈ R+. Subsequently, agent i learns the sign
of θi and chooses the sign of ai. Since it is dominated to choose sgn(ai) 6= sgn(θi), assume
that sgn(ai) = sgn(θi). Let Ŝγ as the set of all functions s̃ : [0, 1] −→ [0, c−1(2pγ)], and
let Γ̂(n,p,wINn ,γ,F,c,G) denote the restricted game played by the n players in society Nn, with
strategy set Ŝγ for each agent, and expected utility given by EUi in Expression (1) for
each i ∈ Nn.
Note that game Γ̂(n,p,wINn ,γ,F,c,G) satisfies the nine conditions for existence of a sym-

metric, pure monotone equilibrium in Reny’s (2011) Theorem 4.5. Conditions G1-G6 in
this theorem, as explained by Reny, are standard and applied to a vast class of more
general environments that includes our own as a very special case. The three additional

conditions hold in game Γ̂(n,p,wINn ,γ,F,c,G) exactly as in game Γ
(n,p,wINn ,γ,F,c,G)

R , as explained
in the proof of Lemma 3.
Therefore, game Γ̂(n,p,wINn ,γ,F,c,G) has a symmetric, pure monotone equilibrium. This

equilibrium is neutral by construction. We next show that this equilibrium is also an

equilibrium of the game Γ
(n,p,wINn ,γ,F,c,G)

R . Denote sn the strategy played in a symmetric
neutral, monotone, pure equilibrium of game Γ̂(n,p,wINn ,γ,F,c,G), and assume that sn is not

an equilibrium strategy of Γ
(n,p,wINn ,γ,F,c,G)

R . Then, there exists θ such that any agent
i with θi = θ prefers to deviate to si = s′ with s′(θ) 6= sn(θ). Since sn is neutral and
G(x) − 1

2
= 1

2
− G(−x), the utility for an agent j with θj = −θ of deviating to play

aj = −s′(θ) equals the utility for i of deviating to play ai = −s′(θ), and thus j would
deviate as well. But then, sn(|θ|) = |sn(θ)| is not a best response in game Γ̂(n,p,wINn ,γ,F,c,G),
since for |θ|, any agent i prefers to deviate to |s′(θ)|. So we arrive at a contradiction. It
must thus be that sn is also an equilibrium of Γ

(n,p,wINn ,γ,F,c,G)

R .

30



Since any equilibrium of Γ
(n,p,wINn ,γ,F,c,G)

R is also an equilibrium of Γ(n,p,wINn ,γ,F,c,G),
it follows as a corollary that a symmetric pure neutral monotone equilibrium of game
Γ(n,p,wINn ,γ,F,c,G) exists as well.
We denote arbitrary real-valued random variables by notation v̄ with realization v ∈

R, expected value E[v̄] ∈ R and variance V ar[v̄] ∈ R+. In particular, θ̄ is a random
variable with cumulative distribution F. For each k ∈ N, let θ̄k be another, independent
random variable with cumulative distribution function F, and for each n ∈ N\{1}, and
for each k ∈ {1, ..., n}, consider the random variable sn(θ̄k).
Denote byHn the cumulative distribution function of the random variable

∑
k∈N\{i} s

n(θ̄k).
By equilibrium symmetry, Hn does not depend on i ∈ Nn. Notice that since it

is strictly dominated for any player with valuation zero to incur costs, it follows that
sn(0) = 0 for any n ∈ N\{1}, and further, for any n ∈ N\{1}, since sn is monotonic
and the equilibrium is symmetric, either sn(1) > 0 or sn(−1) > 0, because if sn(1) =
sn(−1) = 0, then s(θ) = 0 for any θ ∈ [−1, 1], and if so, any agent with θi 6= 0 prefers to
deviate to invest a positive quantity. Further, the variance of Hn is strictly positive for
each n ∈ N\{1}. Note that V ar(Hn) = 0 implies that the set {θ ∈ [−1, 1] : sn(θ) 6= 0} has
measure zero, and thus, Pr

[∑
j∈N\{i} s

n(θ̄j) = 0
]

= 1, in which case, any agent i ∈ Nn

with θi ∈ [−1, 0) ∪ (0, 1] prefers to deviate and contribute a positive quantity. Hence,
V ar(Hn) > 0 for each n ∈ N\{1}.
As noted in the proof of Lemma 3, for any n ∈ N\{1}, any strategy sn ∈ E(n,p,γ,F,c,G)

is such that for any θ ∈ [−1, 1] , sn(θ) ∈ [−c−1(2pγ), c−1(2pγ)], because choosing ai ∈
R\ [−c−1(2pγ), c−1(2pγ)] costs more than 2pγ nominal wealth units, or equivalently, more
than 2γ real wealth units, which is the maximum real wealth that any agent is willing
to pay to change the social decision from her least to her most preferred alternative.
Therefore, Hn(a) = 0 for any a < −(n− 1)c−1(2pγ) and Hn((n− 1)c−1(2pγ)) = 1.

Lemma 5 For any (n, p, γ, F, c, G) ∈ N\{1} × R++ × R++ × F × C × G, for any sn ∈
E(n,p,γ,F,c,G), sn : [0, 1] −→ R is strictly increasing.

Proof. Fix (p, γ, F, c,G) ∈ R++ ×R++ ×F ×C ×G. Recall X ≡ [−c−1(2pγ), c−1(2pγ)],

and for any n ∈ N\{1} and any x ∈ (n− 1)X, define ϕn(x) ≡ Pr

[ ∑
k∈Nn\{i}

sn(θ̄k) = x

]
,

and define hn : (n− 1)X −→ R+ as the probability density of Hn such that∑
x∈(n−1)X

ϕn(x) +

∫
x∈(n−1)X

hn(x)dx = 1.

Then, given any equilibrium sn ∈ E(n,p,γ,F,c,G), the optimization problem of agent i ∈ Nn
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with attitude θi ∈ [−1, 1] is

max
ai∈X

γθi

 ∑
x∈(n−1)X

ϕn(x)G(x+ ai) +

∫
x∈(n−1)X

hn(x)G(x+ ai)dx


−γθi

 ∑
x∈(n−1)X

ϕn(x)(1−G(x+ ai)) +

∫
x∈(n−1)X

hn(x)(1−G(x+ ai))dx

− c(ai)

p
,

or equivalently

max
ai∈X

pγθi

 ∑
x∈(n−1)X

ϕn(x)(2G(x+ ai)− 1) +

∫
x∈(n−1)X

hn(x)(2G(x+ ai)− 1)dx

− c(ai).
Since G is continuously differentiable and the constraint ai ∈ X is not binding, we obtain
a solution by the First Order Condition

2pγθi

 ∑
x∈(n−1)X

ϕn(x)g(x+ ai) +

∫
x∈(n−1)X

hn(x)g(x+ ai)dx

 = c′(ai). (2)

Note that since g is strictly positive in R, and
∑

x∈(n−1)X

ϕn(x) +
∫

x∈(n−1)X

hn(x)dx = 1, it

follows that the summation within the parenthesis on the left-hand side of Equation (2)
is strictly positive for any ai ∈ X, and thus the left hand side is overall strictly increasing
in θi. Assume ai = a ∈ X is a solution to the First Order Condition (2) for agent i
with attitude θi, and for an arbitrary agent j ∈ Nn\{i}, assume θj 6= θi; without loss of
generality assume θj > θi. Then, the left hand side of Equation (2) has a lower value than
the left hand side of the analogous First Order Condition to the optimization problem of
agent j. Hence, aj = a cannot solve j′s first order condition, so it must be sn(θj) 6= sn(θj)
and thus for any θ, θ′ ∈ [−1, 1] such that θ 6= θ′ we obtain sn(θ) 6= sn(θ′), which, since sn

is weakly increasing, implies sn is strictly increasing.
As an immediate corollary to Lemma 5, Hn does not have a mass point, so for each

n ∈ N\{1}, we can define the probability density function h : (n− 1)X −→ R+ so that
x∫

−(n−1)X

hn(t)dt = Hn(t).

Given any equilibrium sn ∈ E(n,p,γ,F,c,G), the first order condition for the optimization
problem of player i ∈ Nn with attitude θi ∈ [−1, 1] can be simplified to:

2pγθi

∫
x∈(n−1)X

hn(x)g(x+ ai)dx = c′(ai). (3)
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Lemma 7 establishes that vote acquisitions converge to zero. We use the Berry-Esseen
theorem (Berry 1941, Esseen 1942), copied here for convenience.

Theorem 6 (Berry-Esseen) For any n ∈ N, let {x̄1, ..., x̄n} be a set of n independent,
identically distributed random variables with E[x̄k] = 0, E[(x̄k)

2] > 0 and E[[|x̄k|3] ∈ R
for each k ∈ {1, ..., n}; let Fn be the cumulative distribution function of

n∑
k=1

x̄k√
nE[(x̄k)2]

,

and let N [0, 1](x) be the cumulative distribution of the standard normal distribution func-
tion evaluated at x. Then, there exists κ ∈ R++ such that for any x ∈ R and for any
n ∈ N,

|Fn(x)−N [0, 1](x)| ≤ αE[[|x̄k|3]
√
n (E[(x̄k)2])

3
2

.

Lemma 7 For any tuple (p, {wIi }∞i=1, γ, F, c,G) ∈ R++ × R∞+ × R++ × F × C × G, and
any sequence {sn}∞n=1 such that s

n ∈ E(n,p,γ,F,c,G) for each n ∈ N\{1}, lim
n→∞

sn(θ) = 0 for

each θ ∈ (−1, 1).

Proof. Proof by contradiction. For any tuple (p, {wIi }∞i=1, γ, F, c,G) ∈ R++ × R∞+ ×
R++ × F × C × G, assume that {sn}∞n=2 is a sequence of monotone, symmetric, pure
equilibrium strategies of game Γ(n,p,wINn ,γ,F,c,G), and assume (absurd) that there exists
θ′ ∈ (−1, 1) such that lim

n→∞
sn(θ′) 6= 0. Then there exist a δ ∈ R++ and an infinite

subsequence {sn(τ)}∞τ=1 of {sn}∞n=2 with n : N\{1} −→ N strictly increasing, such that
|sn(τ)(θ′)| ≥ δ for every τ ∈ N. Note n(τ) is the size of the society in the τ− th element of
the subsequence. By monotonicity of sn(τ)(θ) with respect to θ ∈ [−1, 1] for each τ ∈ N,
it follows that if θ′ ∈ (−1, 0), then sn(τ)(θ) ≤ −δ for any θ ∈ [−1, θ′] and for any τ ∈ N,
and if θ′ ∈ (0, 1), then sn(τ)(θ) ≥ δ for any θ ∈ [θ′, 1].
For each n ∈ N\{1}, and for each k ∈ {1, ..., n}, let E[sn(θ̄)] denote the expectation

of the random variable sn(θ̄k), where we drop the subindex k because the expectation
does not depend on k. For each n ∈ N\{1} and for each k ∈ {1, .., n}, define as well the
independent, identically distributed random variables

qn(θ̄k) ≡ sn(θ̄k)− E[sn(θ̄)] and qn(θ̄) ≡ sn(θ̄)− E[sn(θ̄)];

let E[qn(θ̄)] and V ar[qn(θ̄)] denote their expectation and variance, which do not depend
on k. Note that for each n ∈ N\{1}, and for each k ∈ {1, .., n}, E[qn(θ̄)] = 0. Since
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|sn(τ)(θ)| ≥ δ for every τ ∈ N either for any θ ∈ [θ′, 1] or for any for any θ ∈ [−1, θ′] ,
there exists δ̂ ∈ R++ such that V ar[qn(τ)(θ̄)] > δ̂ for any τ ∈ N\{1]. Note V ar[qn(τ)(θ̄)] ≡
E
[(
qn(τ)(θ̄)

)2
]
−
(
E[qn(τ)(θ̄)]

)2
= E

[(
qn(τ)(θ̄)

)2
]
, so E

[∣∣qn(τ)(θ̄)
∣∣2] > δ̂, which implies

E
[∣∣qn(τ)(θ̄)

∣∣] > 0 and E
[∣∣qn(τ)(θ̄)

∣∣3] > 0. Since E
[∣∣qn(τ)(θ̄k)

∣∣] = E
[∣∣qn(τ)(θ̄)

∣∣] for any
k ∈ {1, ..., n(τ)}, for any τ ∈ N, let E

[∣∣qn(τ)(θ̄)
∣∣2] and E [∣∣qn(τ)(θ̄)

∣∣3] respectively denote
V ar[qn(τ)(θ̄k)] and E

[∣∣qn(τ)(θ̄k)
∣∣3] for any k ∈ {1, ..., n(τ)}, for any τ ∈ N.

For each τ ∈ N, define V τ (θ̄Nn(τ)\{i}) as the cumulative distribution of the random

variable

∑
k∈Nn(τ)\{i}

qn(τ)(θ̄k)

√
n(τ)−1

√
E[(qn(τ)(θ̄))

2
]
. By the Berry-Esseen theorem (Berry 1941, Esseen 1942),

there exists a κ ∈ R++ such that for any τ ∈ N and any x ∈ R,

|V τ (x)−N [0, 1](x)| ≤
κE[

∣∣qn(τ)(θ̄)
∣∣3](√

n(τ)− 1
)(

E[
(
qn(τ)(θ̄)

)2
]
) 3
2

.

For each τ ∈ N, define Ĥτ (θ̄Nn(τ)\{i}) as the cumulative distribution of the random variable∑
k∈Nn(τ)\{i}

qn(τ)(θ̄k), and let ĥτ (θ̄Nn(τ)\{i}) be its density function. For any z ∈ R++ and

any x ∈ R, let N [0, z](x) denote value at x of the cumulative distribution of a normal
distribution with mean zero and variance z. Then,∣∣∣Ĥτ (x)−N [0, E[

(
qn(τ)(θ̄)

)2
] (n(τ)− 1)](x)

∣∣∣ < κE[
∣∣qn(τ)(θ̄)

∣∣3](√
n(τ)− 1

)
δ̂
3
2

, (4)

Since {sn(θ̄)}∞n=1 is bounded for any n ∈ N\{1}, both {E[sn(τ)(θ̄)]}∞n=1 and {qn(τ)(θ̄)}∞n=1

are bounded as well for any τ ∈ N, and hence {E[
∣∣qn(τ)(θ̄)

∣∣3]}∞τ=1 is bounded, and the
right hand side of Inequality (4) converges to zero as τ diverges to infinity. Thus, the

random variable
∑

k∈Nn(τ)\{i}
q
n(τ)
k (θ̄) =

∑
k∈Nn(τ)\{i}

(
s
n(τ)
k (θ̄)− E[sn(τ)(θ̄)]

)
with cumulative

distribution Ĥτ (x) converges as τ −→∞ to a mean zero Normal distribution with vari-
ance E[

(
qn(τ)(θ̄)

)2
] (n(τ)− 1) . Since E[

(
qn(τ)(θ̄)

)2
] ≥ δ̂ for any τ ∈ N, it follows that

E[
(
qn(τ)(θ̄)

)2
] (n(τ)− 1) diverges to infinity as τ −→∞. Therefore,

lim
τ−→∞

(
Ĥτ (x)− Ĥτ (−x)

)
= 0 for any x ∈ R++. (5)

Since G is strictly increasing and neutral (G(x) = 1−G(−x)), and lim
x−→−∞

G(x) = 0,

then for any ε ∈
(
0, 1

2
c(δ)

)
, there exist x̃ ∈ R++ such that for any x ∈ (−∞,−x̃]∪ [x̃,∞),

[G(x+ c−1(2pγ))−G(x)]2pγθ′ <
1

2
c(δ)− ε
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Since |sn(τ)(θ′)| ≥ δ for every τ ∈ N (first paragraph of this proof), it then follows that

[G(x+ c−1(2pγ))−G(x)]2pγθ′ <
1

2
c(sn(τ)(θ′))− ε

for any x ∈ (−∞,−x̃]∪[x,∞). Further, since
∣∣sn(τ)(θ′)

∣∣ ≤ c−1(2pγ) (because
∣∣sn(τ)(θ′)

∣∣ >
c−1(2pγ) implies that si = sn(τ) is a strictly dominated strategy), it follows that for any
x ∈ (−∞,−x̃] ∪ [x̃,∞),

[G(x+ sn(τ)(θ′))−G(x)]2pγθ′ <
1

2
c(sn(τ)(θ′))− ε. (6)

For each τ ∈ N, and for any arbitrary agent i ∈ Nn(τ) with θi = θ′, the expected
utility of playing ai = sn(τ)(θ′), minus the expected utility of playing ai = 0, is:

2γθ′
∫ −x̃
−(n−1)c−1(2pγ)

(G(x+ sn(τ)(θ′))−G(x))hτ (x)dx

+2γθ′
∫ x̃

−x̃
(G(x+ sn(τ)(θ′))−G(x))hτ (x)dx

+2γθ′
∫ (n−1)c−1(2pγ)

x̃

(G(x+ sn(τ)(θ′))−G(x))hτ (x)dx− 1

p
c(sn(τ)(θ′)),

which is equal to

2γθ′
∫ −x̃
−(n−1)(c−1(2pγ)+E[sn(θ̄)])

(G(x+ sn(τ)(θ′))−G(x))ĥτ (x)dx (7)

+2γθ′
∫ x̃

−x̃
(G(x+ sn(τ)(θ′))−G(x))ĥτ (x)dx

+2γθ′
∫ (n−1)(c−1(2pγ)−E[sn(θ̄)])

x̃

(G(x+ sn(τ)(θ′))−G(x))ĥτ (x)dx− 1

p
c(sn(τ)(θ′)).

By Expression (5), lim
τ−→∞

(
Ĥτ (−x̃)− Ĥτ (x̃)

)
= 0, and thus lim

τ−→∞
ĥτ (x) = 0 for any

x ∈ (−x̃, x̃), and hence

lim
τ−→∞

2γθ′
∫ x̃

−x̃
(G(x+ sn(τ)(θ′))−G(x))ĥτ (x)dx = 0.

Therefore, the limit of Expression (7) as τ −→∞ is equal to the limit of

2γθ′
∫ −x̃
−(n−1)(c−1(2pγ)+E[sn(θ̄)])

(G(x+ sn(τ)(θ′))−G(x))ĥτ (x)dx

+2γθ′
∫ (n−1)(c−1(2pγ)−E[sn(θ̄)])

x̃

(G(x+ sn(τ)(θ′))−G(x))ĥτ (x)dx− 1

p
c(sn(τ)(θ′)),
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which by Expression (6), is strictly smaller than∫ −x̃
−(n−1)(c−1(2pγ)+E[sn(θ̄)])

(
1

2p
c(sn(τ)(θ′))− ε

)
ĥτ (x)dx

+

∫ (n−1)(c−1(2pγ)−E[sn(θ̄)])

x̃

(
1

2p
c(sn(τ)(θ′))− ε

)
ĥτ (x)dx− 1

p
c(sn(τ)(θ′))

<
1

p
c(sn(τ)(θ′))− ε− 1

p
c(sn(τ)(θ′)) < −ε,

so playing ai = 0 is strictly better, and hence si = sn(τ)(θ′) is not a best response, so
sn(τ) is not an equilibrium. Thus, we reach a contradiction. Thus, there does not exist
θ′ ∈ (−1, 1) such that limn→+∞ s

n(θ′) 6= 0, and it must be that lim
n→+∞

sn(θ) = 0 for each

θ ∈ (−1, 1).

The next lemma reformulates the First Order Condition (3) into a form that proves
more convenient for subsequent results. Recall we use the notationX ≡ [−c−1(2pγ), c−1(2pγ)],
so (n− 1)X = [−(n− 1)c−1(2pγ), (n− 1)c−1(2pγ)].

Lemma 8 For any tuple (p, {wIi }∞i=1, γ, F, c,G) ∈ R++×R∞+ ×R++×F×C×G, for any
sequence {sn}∞n=1 such that s

n ∈ E(n,p,γ,F,c,G) for each n ∈ N\{1}, for any n ∈ N\{1},
and for each θ ∈ [−1, 1], there exists zθ : (n − 1)X −→ [sn(θ), 0) ∪ (0, sn(θ)] such that
sgn(zθ(x)) = sgn(θ) for any x ∈ [−(n− 1)X, (n− 1)X], and

c′(sn(θ)) = 2pγθ

 ∫
x∈(n−1)X

g(x)hn(x)dx+ sn(θ)

∫
x∈(n−1)X

g′(x+ zθ)hn(x)dx

 . (8)

Proof. For any given n ∈ N\{1}, only a compact subset of the domain of G, namely
[−nX, nX] is relevant, since nsn(θ) ∈ nX for any θ. And G is twice continuously differ-
entiable. Note that by the First Order Condition (3), for each θ ∈ [−1, 1],

c′(sn(θ)) = 2pγθ

∫
x∈(n−1)X

g(x+ sn(θ))hn(x)dx.

We want to show that for any x ∈ (n − 1)X, and any θ ∈ [0, 1], there exists a
zθ(x) ∈ (0, sn(θ)) such that

g(x+ sn(θ)) = g(x) + sn(θ)g′(x+ zθ(x)). (9)

For each x ∈ (n−1)X, define ymin ≡ arg min
y∈[x,x+sn(θ)]

g′(y) and ymax ≡ arg max
y∈[x,x+sn(θ)]

g′(y).

Then note
(sn(θ))g′(ymin) ≤ g(x+ sn(θ))− g(x) ≤ (sn(θ))g′(ymax)

36



Since g is continuous, by the Intermediate Value Theorem, there exists some value
y(x) ∈ [x, x+ sn(θ)] such that

(sn(θ))g′(y(x)) = g(x+ sn(θ))− g(x).

Then, define zθ(x) ≡ y(x)− x and we obtain Equality (9).
An analogous argument, in this instance with y(x) ∈ [x + sn(θ), x], establishes that

for any θ ∈ [−1, 0], there exists a zθ(x) ∈ [sn(θ), 0] such that Equality (9) holds.

The next lemma uses Lemma 8 to establish that the ratio of marginal costs of two
agents converges to their ratio of attitudes.

Lemma 9 For any tuple (p, {wIi }∞i=1, γ, F, c,G) ∈ R++ × R∞+ × R++ × F × C × G, for
any sequence of equilibria {sn}∞n=2, and for any (θ, θ̂) ∈ (−1, 1)2,

lim
n→∞

c′(sn(θ))

c′(sn(θ̂))
=
θ

θ̂
.

Proof. For any tuple (p, {wIi }∞i=1, γ, F, c,G) ∈ R++×R∞+ ×R++×F×C×G, let {sn}∞n=2

be a sequence of equilibria, that is, sn ∈ E(n,p,γ,F,c,G) for each n ∈ N\{1}.
From Lemma 8, for each θ ∈ [−1, 1],

c′(sn(θ)) = 2pγθ

 ∫
x∈(n−1)X

g(x)hn(x)dx+ sn(θ)

∫
x∈(n−1)X

g′(x+ zθ(x))hn(x)dx

 .

Notice that since g is strictly positive and continuous, and g′ is continuous, for any
x, y ∈ R, g

′(y)
g(x)

is continuous, and over any closed interval of R, it is bounded. Further, by
Condition (iii) of the definition of G, ∃ε̂ ∈ R++ such that for any ε ∈ (0, ε̂),

lim
x→−∞

g′(x+ ε)

g(x)
∈ R and lim

x→∞

g′(x+ ε)

g(x)
∈ R. (10)

Therefore, there exists κ ∈ R++ such that
g′(x+ε)
g(x)

∈ [−κ, κ], for any ε ∈ (0, ε̄) and for
any x ∈ R. Equivalently,

−κg(x) ≤ g′(x+ ε) ≤ κg(x) ∀ε ∈ (0, ε̄), ∀x ∈ R. (11)

Since for any sequence {sn}∞n=1 of equilibria lim
n→∞

sn(θ) = 0 for each θ ∈ (−1, 1)

(Lemma 7), and since zθ(x) defined in Lemma 8 satisfies zθ(x) ∈ (0, sn(θ)), it follows
lim
n→∞

zθ(x) = 0 for each θ ∈ [−1, 1] and for each x ∈ (n − 1)X. Then, it follows from

Expression (11), that that that there exists n̂ ∈ N such that for any n ∈ N such that
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n > n̂, for each x ∈ (n−1)X, for any θ ∈ (−1, 0)∪(0, 1), and for any equilibrium strategy
sn, we have:

−κg(x) < g′(x+ zθ(x)) < κg(x).

Therefore,

g(x)− sn(θ)κg(x) < g(x) + sn(θ)g′(x+ zθ(x)) < g(x) + sn(θ)κg(x);

[1− sn(θ)κ]g(x)θhn(x) < (g(x) + sn(θ)g′(x+ zθ(x)))θhn(x) < (1 + sn(θ)κ)g(x)θhn(x).

Once again since lim
n→∞

sn(θ) = 0 for each θ ∈ (−1, 1) (Lemma 7), there exists ñ such that

1− sn(θ)κ > 0 for every n > ñ.
Then we can integrate x over (n− 1)X on all sides and multiply by 2pγ to obtain:

2pγ[1− sn(θ)κ]θ

∫
x∈(n−1)X

g(x)hn(x)dx

< 2pγθ

∫
x∈(n−1)X

(g(x) + sn(θ)g′(x+ zθ(x)))hn(x)dx

< 2pγ(1 + sn(θ)κ)θ

∫
x∈(n−1)X

g(x)hn(x)dx,

and hence, substituting Equality (8), for any θ ∈ (−1, 0) ∪ (0, 1),

c′(sn(θ)) ∈

2pγ(1− sn(θ)κ)θ

∫
x∈(n−1)X

g(x)hn(x)dx, 2pγ(1 + sn(θ)κ)θ

∫
x∈(n−1)X

g(x)hn(x)dx

 .

(12)
Then, for any θ, θ̂ ∈ (−1, 0) ∪ (0, 1),

c′(sn(θ))

c′(sn(θ̂))
∈


(1− sn(θ)κ)θ

∫
x∈(n−1)X

g(x)hn(x)dx

(1 + sn(θ̂)κ)θ̂
∫

x∈(n−1)X

g(x)hn(x)dx
,

(1 + sn(θ)κ)θ
∫

x∈(n−1)X

g(x)hn(x)dx

(1− sn(θ)κ)θ̂
∫

x∈(n−1)X

g(x)hn(x)dx


=

(
(1− sn(θ)κ)θ

(1 + sn(θ̂)κ)θ̂
,

(1 + sn(θ)κ)θ

(1− sn(θ)κ)θ̂

)
.

Note that because lim
n−→∞

sn(θ̃) = 0 for any θ̃ ∈ (−1, 0) ∪ (0, 1) (Lemma 7) and sn(0) = 0

for any n ∈ N, both limit points of the interval converge to θ

θ̂
as n increases to infinity.

Hence, for any (θ, θ̂) ∈ (−1, 1)2,

lim
n−→∞

c′(sn(θ))

c′(sn(θ̂))
=
θ

θ̂
.
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The next lemma proves the following observation: a cost elasticity greater than one
near zero implies that the cost function is convex near zero.

Lemma 10 For any c ∈ C, there exists λc ∈ R++ such that c′′(a) ∈ R++ for any
a ∈ (0, λc].

Proof. By definition of C, c ∈ C implies that lim
a−→0

ac′(a)
c(a)

∈ (1,R), c(0) = 0 and

lim
a−→0

ac′(a) = 0. Let z ≡ lim
a−→0

ac′(a)
c(a)

. Then lim
a−→0

ac′(a)
c(a)

= 0
0
; applying L’Hopital rule,

z = lim
a−→0

ac′(a)

c(a)
= lim

a−→0

(
1 +

ac′′(a)

c′(a)

)
so

lim
a−→0

ac′′(a)

c′(a)
= z − 1,

Hence, for any ε ∈ R++, there exists λε ∈ R++ such that for any a ∈ (0, λε],

ac′′(a)

c′(a)
∈ (z − 1− ε, z − 1 + ε). (13)

Select ε = z−1
2
, and since z > 1, note that z − 1− ε > 0. Further, for any a ∈

(
0, λ z−1

2

]
,

by assumption c′(a) > 0. Thus, from Expression (13), it follows c′′(a) > c′(a)
a

( z−1
2

) > 0

for any a ∈
(

0, λ z−1
2

]
.

Next we establish that the marginal effect of acquiring votes over the outcome con-
verges to zero (Lemma 11).

Lemma 11 For any tuple (p, {wIi }∞i=1, γ, F, c,G) ∈ R++ ×R∞+ ×R++ ×F ×C × G, and
for any sequence of equilibria {sn}∞n=2,

lim
n−→∞

∫
x∈(n−1)X

g(x)hn(x)dx = 0.

Proof. By Lemma 10, there exists a λ ∈ R++ such that c′ is strictly increasing in (0, λ].
Therefore, c′ is invertible over (0, λ]. Let (c′)−1 denote the inverse of c′ over (0, λ]. Then,
for any θ ∈ (−1, 1), from Expression (12) in the proof of Lemma 9,

sn(θ) ∈


(c′)−1

(
2pγ(1− sn(θ)κ)θ

∫
x∈(n−1)X

g(x)hn(x)dx

)
,

(c′)−1

(
2pγ(1 + sn(θ)κ)θ

∫
x∈(n−1)X

g(x)hn(x)dx

)

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and, since lim
n−→∞

sn(θ) = 0 for any θ ∈ (−1, 1) (Lemma 7), it follows that

lim
n−→∞

(c′)−1

2pγ(1− sn(θ)κ)θ

∫
x∈(n−1)X

g(x)hn(x)dx

 = 0,

which, since c′(0) = 0 and thus (c′)−1(0) = 0, implies

lim
n−→∞

2pγ(1− sn(θ)κ)θ

∫
x∈(n−1)X

g(x)hn(x)dx

 = 0,

which, for any θ ∈ (−1, 1)\{0}, implies

lim
n−→∞

∫
x∈(n−1)X

g(x)hn(x)dx = 0.

Lemma 11 allows us to more easily strengthen Lemma 7 by showing that vote acqui-
sitions converge to zero for every realization of attitudes, including θ ∈ {−1, 1}.

Lemma 12 For any (p, {wIi }∞i=1, γ, F, c,G) ∈ R++ × R∞+ × R++ × F × C × G, and any
sequence {sn}∞n=1 such that s

n ∈ E(n,p,γ,F,c,G) for each n ∈ N\{1}, and for any θ ∈ [−1, 1],
lim
n→∞

sn(θ) = 0.

Proof. lim
n→∞

sn(θ) = 0 for any θ ∈ (−1, 1) by Lemma 7. For θi ∈ {−1, 1}, note that the
First Order Condition (3) for agent i is

2pγθi

∫
x∈(n−1)X

hn(x)g(x+ ai)dx = c′(ai),

By definition of G, and since G ∈ G, G is strictly increasing and continuously differen-
tiable, thus g is continuous and strictly positive, and hence g and g(x+ai)

g(x)
are bounded

over any closed interval of R. Further, also by definition of G, ∃ε̂ ∈ R++ such that
lim

x→−∞
g′(x+ε)
g(x)

∈ R and lim
x→∞

g′(x+ε)
g(x)

∈ R for any ε ∈ [0, ε̂). In particular, for ε = 0, g
′(x)
g(x)

is

bounded over R, and g(x)+
∫ x+ai
x g′(t)dt

g(x)
= g(x+ai)

g(x)
is bounded over R as well, so there exists

some K ∈ R++ such that g(x+ ai) ≤ Kg(x) and∫
x∈(n−1)X

hn(x)g(x+ ai)dx ≤ K

∫
x∈(n−1)X

hn(x)g(x+ ai)dx
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and hence, by Lemma 11,

lim
n−→∞

∫
x∈(n−1)X

hn(x)g(x+ ai)dx = 0

so

lim
n−→∞

2pγθi

∫
x∈(n−1)X

hn(x)g(x+ ai)dx = lim
n−→∞

c′(ai) = 0,

so lim
n−→∞

ai = 0.

As a corollary of Lemma 12, we can more strengthen Lemma 9 so that it holds for
any (θ, θ̂) ∈ [−1, 1]2.

Corollary 13 For any tuple (p, {wIi }∞i=1, γ, F, c,G) ∈ R++×R∞+ ×R++×F ×C×G, for
any sequence of equilibria {sn}∞n=2, and for any (θ, θ̂) ∈ [−1, 1]2,

lim
n→∞

c′(sn(θ))

c′(sn(θ̂))
=
θ

θ̂
.

The proof follows step-by-step the proof of Lemma 9, noting, where needed, that
lim
n→∞

sn(θ) = 0 for θ ∈ {−1, 1} by Lemma 12. We next define an auxiliary function and
prove a lemma related to it. Define J : R2

++ −→ R+ by

J(x, y) =

{
yc′′(y)
c′(y)

if x = y
ln c′(x)−ln c′(y)

lnx−ln y
otherwise

.

Lemma 14 Let {xn}∞n=1 ∈ R∞++ and {yn}∞n=1 ∈ R∞++ be two converging sequences with
lim
n−→∞

xn = lim
n−→∞

yn = 0 and define z ≡ lim
x−→0

xc′(x)
c(x)

. Then lim
n−→∞

J(xn, yn) = z − 1.

Proof. Note that for any y ∈ R++,

lim
x−→0

J(x, y) =
ln c′(0)− ln c′(y)

ln 0− ln y
=
−∞
−∞ ,

applying L’Hopital rule,

lim
x−→0

J(x, y) = lim
x−→0

c′′(x)
c′(x)

1
x

= lim
x−→0

xc′′(x)

c′(x)
.
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Notice that z ≡ lim
x−→0

xc′(x)
c(x)

= 0
0
, so applying L’Hopital rule,

z = lim
x−→0

c′(x) + xc′′(x)

c′(x)
= 1 + lim

x−→0

xc′′(x)

c′(x)

z − 1 = lim
x−→0

xc′′(x)

c′(x)
, (14)

so lim
x−→0

J(x, y) = z − 1. Note as well that, using L’Hopital rule

lim
ε−→0

J(x, x+ ε) =
− c′′(x)

c′(x)

− 1
x

=
xc′′(x)

c′(x)

so J is continuous.
Define the function v : R+ −→ R+ by

v(x) =

{
z − 1 if x = 0
xc′′(x)
c′(x)

if x ∈ R++
.

By Equality (14), lim
x−→0

xc′′(x)
c′(x)

= z − 1 and hence lim
x−→0

v(x) = z − 1 and v is continuous.

Define the correspondence x+ : R+ ⇒ R+ by x+(w) = arg max
x∈[0,w]

v(x) for each w ∈ R+,

and the correspondence x− : R+ ⇒ R+ by x−(w) = arg min
x∈[0,w]

v(x) for each w ∈ R+, and

define the function v+ : R+ −→ R+ by v+(w) = max
x∈[0,w]

v(x) for each w ∈ R+ and the

function v− : R+ −→ R+ by v−(w) ≡ min
x∈[0,w]

v(x) for each w ∈ R+. Since v is continuous,

x+(w) and x−(w) are non-empty for each w ∈ R+, x+ and x− are upper hemi continuous,
and v+ and v− are continuous (Berge’s maximum theorem). Further, note that v+ is non-
decreasing and v− is non-increasing.
Construct two sequences {xt}∞t=1 ∈ R∞+ and {yt}∞t=1 ∈ R∞+ such that lim

t−→∞
xt =

lim
t−→∞

yt = 0. Then

lim
t−→0

xtc
′′(xt)

c′(xt)
= lim

t−→0

ytc
′′(yt)

c′(yt)
= z − 1.

Note that for any y ∈ R++, and for any x ∈ (0, y), J is differentiable and

∂J

∂x
(x, y) =

c′′(x)
c′(x)

(lnx− ln y)− (ln c′(x)− ln(c′(y)) 1
x

(lnx− ln y)2

=
xc′′(x)(lnx− ln y)− c′(x)(ln c′(x)− ln(c′(y))

xc′(x) (lnx− ln y)2 .

42



Hence ∂J
∂x

(x, y) = 0 if and only if

xc′′(x)(lnx− ln y) = c′(x)(ln c′(x)− ln(c′(y))

xc′′(x)

c′(x)
=

ln c′(x)− ln c′(y)

lnx− ln y
,

that is, ∂J
∂x

(x, y) = 0 if and only if J(x, y) = xc′′(x)
c′(x)

.

Since x ∈ arg max
x∈(0,y)

J(x, y) implies ∂J
∂x

(x, y) = 0, it follows that for any y ∈ R++

and any x ∈ arg max
x∈(0,y)

J(x, y), J(x, y) = v(x), so J(x, y) ≤ v+(x). Since v+ is non-

decreasing, it follows max
x∈(0,y)

J(x, y) ≤ v+(y). If arg max
x∈(0,y)

J(x, y) = ∅, then sup
x∈(0,y)

J(x, y) ∈{
lim
x−→0

J(x, y), J(y, y)
}

= {z − 1, v(y)} ≤ v+(y). So sup
x∈(0,y)

J(x, y) ≤ v+(y) for any y ∈

R++. Similarly, it can be shown that sup
y∈(0,x)

J(x, y) ≤ v+(x) for any x ∈ R++.

Moreover, since x ∈ arg min
x∈(0,y)

J(x, y) implies ∂J
∂x

(x, y) = 0, it follows that for any

y ∈ R++ and any x ∈ arg min
x∈(0,y)

J(x, y), J(x, y) = v(x), so J(x, y) ≥ v−(x). Since

v− is non-decreasing, it follows max
x∈(0,y)

J(x, y) ≥ v−(y). If arg min
x∈(0,y)

J(x, y) = ∅, then

inf
x∈(0,y)

J(x, y) ∈ { lim
x−→0

J(x, y), J(y, y)} = {z − 1, v(y)} ≥ v−(y). So inf
x∈(0,y)

J(x, y) ≥ v−(y)

for any y ∈ R++. Similarly, it can be shown that sup
y∈(0,x)

J(x, y) ≥ v−(y) for any x ∈ R++.

From all the above it follows that for any t ∈ N, J(xt, yt) ∈ [v−(wt), v
+(wt)], where

wt = max{xt, yt}. Notice that lim
t−→∞

wt = 0, and thus lim
t−→0

v−(wt) = z−1 and lim
t−→0

v+(wt) =

z − 1, and hence lim
n−→∞

J(xn, yn) = z − 1.

We next establish a key intermediary result: equilibrium actions are asymptotically
piecewise linear in (θ)ρ .

Lemma 15 For any tuple (p, {wIi }∞i=1, γ, F, c,G) ∈ R++×R∞+ ×R++×F×C×G, define
z ≡ lim

x−→0

xc′(x)
c(x)

. Then, for any {sn}∞n=1 such that s
n ∈ E(n,p,γ,F,c,G) for each n ∈ N\{1},

and for any (θ, θ̂)2 ∈ [−1, 0)2 ∪ (0, 1]2,

lim
n→∞

sn(θ)

sn(θ̂)
=

(
θ

θ̂

) 1
z−1

.

Proof. For any (θ, θ̂) ∈ [−1, 0)2∪(0, 1]2, by Lemma 9 and Corollary 13, lim
n→∞

c′(sn(θ))

c′(sn(θ̂))
= θ

θ̂
,

and taking logarithms on both sides,

lim
n→∞

(ln c′(sn(θ))− ln c′(sn(θ̂)) = ln

(
θ

θ̂

)
. (15)
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By Lemma 14, for any {xn}∞n=1 ∈ R∞++ with lim
n→∞

xn = 0 and {yn}∞n=1 ∈ R∞++ with

lim
n→∞

yn = 0,

lim
n→∞

ln c′(xn)− ln c′(yn)

ln xn
yn

= z − 1,

thus, in particular,

lim
n→∞

ln c′(sn(θ))− ln c′(sn(θ̂))

ln sn(θ)

sn(θ̂)

= z − 1,

lim
n→∞

(
ln c′(sn(θ))− ln c′(sn(θ̂))

)
= lim

n→∞
ln

(
sn(θ)

sn(θ̂)

)z−1

and thus substituting the left hand side according to Equality 15, we obtain

ln
θ

θ̂
= lim

n→∞
ln

(
sn(θ)

sn(θ̂)

)z−1

,

lim
n→∞

sn(θ)

sn(θ̂)
=

(
θ

θ̂

) 1
z−1

. (16)

Further, we can strengthen this result, to obtain linearity in (θ)ρ .

Lemma 16 For any tuple (p, {wIi }∞i=1, γ, F, c,G) ∈ R++×R∞+ ×R++×F×C×G, define
z ≡ lim

x−→0

xc′(x)
c(x)

. Then, for any {sn}∞n=1 such that s
n ∈ E(n,p,γ,F,c,G) for each n ∈ N\{1},

and for any (θ, θ̂)2 ∈ [−1, 0)2 ∪ (0, 1]2,

lim
n→∞

sn(θ)

sn(θ̂)
= sgn

(
θ

θ̂

) ∣∣∣∣θθ̂
∣∣∣∣ 1
z−1

. (17)

Proof. For any (θ, θ̂) ∈ [−1, 0]2 ∪ [0, 1]2, Equality (17) reduces to Equality (16), which
holds by Lemma 15. We want to show that Equality (17) holds as well for any (θ, θ̂) ∈
([−1, 0] × [0, 1]) ∪ ([0, 1] × [−1, 0]) (that is, if θ and θ̂ have different sign). For any
θ ∈ [−1, 0) ∪ (0, 1], by Lemma 9 and Corollary 13,

lim
n→∞

c′(sn(θ))

c′(sn(−θ)) = −1.

Hence, for any (θ, θ̂) ∈ ([−1, 0]× [0, 1]) ∪ ([0, 1]× [−1, 0]),

lim
n→∞

c′(sn(θ))

c′(sn(θ̂))
= lim

n→∞

−c′(sn(|θ|))
c′(sn(|θ̂|))

,
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which, by Lemma 9 and Corollary 13, is equal to − |θ||θ̂| . Thus,

− lim
n→∞

c′(sn(θ))

c′(sn(θ̂))
=
|θ|
|θ̂|
. (18)

Note that the left hand side of Expression (18) is equal to lim
n→∞

c′(|sn(θ)|)
c′(|sn(θ̂)|) ∈ R+, so we can

take logarithms on both side, and obtain

lim
n→∞

(
ln c′(|sn(θ)|)− ln c′(|sn(θ̂)|)

)
= ln

(
|θ|
|θ̂|

)
. (19)

By Lemma 14, for any {xn}∞n=1 ∈ R∞++ with lim
n→∞

xn = 0 and {yn}∞n=1 ∈ R∞++ with

lim
n→∞

yn = 0,

lim
n→∞

ln c′(xn)− ln c′(yn)

ln xn
yn

= z − 1,

thus, in particular,

lim
n→∞

ln c′(|sn(θ)|)− ln c′(|sn(θ̂)|)
ln |s

n(θ)|
|sn(θ̂)|

= z − 1,

lim
n→∞

(
ln c′(|sn(θ)|)− ln c′(|sn(θ̂)|)

)
= lim

n→∞
ln

∣∣∣∣∣sn(θ)

sn(θ̂)

∣∣∣∣∣
z−1

and thus substituting the left hand side according to Equality 19, we obtain

ln

(
|θ|
|θ̂|

)
= lim

n→∞
ln

∣∣∣∣∣sn(θ)

sn(θ̂)

∣∣∣∣∣
z−1

,

lim
n→∞

∣∣∣∣∣sn(θ)

sn(θ̂)

∣∣∣∣∣ =

∣∣∣∣θθ̂
∣∣∣∣ 1
z−1

,

lim
n→∞

sn(θ)

sn(θ̂)
= sgn

(
θ

θ̂

) ∣∣∣∣θθ̂
∣∣∣∣ 1
z−1

.

So acquisitions of votes converge to linear in a power of valuations.

For any F ∈ F , and for any function ϕ : [−1, 1] −→ R, let EF
[
ϕ(θ̄)

]
denote the

expectation of the random variable ϕ(θ̄), given that θ̄ is distributed according to F. If F
is fixed and unambiguous, we drop the subindex. For any ρ ∈ R++, define Fρ ⊂ F by
Fρ≡ {F ∈ F : EF [sgn(θ̄)|θ̄|ρ] 6= 0}.
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Lemma 17 For any ρ ∈ R++, Fρ is open and dense in F .

Proof. Consider an arbitrary F ∈ Fρ. By definition of Fρ, it follows from F ∈ Fρ that
EF [sgn(θ̄)|θ̄|ρ] 6= 0. Without loss of generality, assume EF [sgn(θ̄)|θ̄|ρ] > 0, that is,∫ 1

0

f(θ)θρdθ −
∫ 0

−1

f(θ)|θ|ρdθ = κ

for some κ ∈ R++. For any ε ∈ R++, let Nε(F ) be the open ε−neighborhood around F,
in the metric space (F , d∞,∞). For any ε ∈ R++, and for any F̂ ∈ Nε(F ),

d∞(F, F̂ ) + d∞(f, f̂) < ε,

that is
sup

θ∈[−1,1]

{∣∣∣F (θ)− F̂ (θ)
∣∣∣}+ sup

θ∈[−1,1]

{∣∣∣f(θ)− f̂(θ)
∣∣∣} < ε,

which implies
sup

θ∈[−1,1]

{∣∣∣f(θ)− f̂(θ)
∣∣∣} < ε

and thus∫ 1

0

f(θ)θρdθ −
∫ 0

−1

f(θ)|θ|ρdθ −
(∫ 1

0

f̂(θ)θρdθ −
∫ 0

−1

f̂(θ)|θ|ρdθ
)

< ε

∫ 1

−1

|θ|ρdθ

= 2ε
1

ρ+ 1

so for ε < ρ+1
2
κ, it follows that∫ 1

0

f(θ)θρdθ −
∫ 0

−1

f(θ)|θ|ρdθ −
(∫ 1

0

f̂(θ)θρdθ −
∫ 0

−1

f̂(θ)|θ|ρdθ
)
< 2ε

1

ρ+ 1
,

0 < κ− 2ε
1

ρ+ 1
<

(∫ 1

0

f̂(θ)θρdθ −
∫ 0

−1

f̂(θ)|θ|ρdθ
)
,

so for any F̂ ∈ Nε(F ), EF̂ [sgn(θ)|θ|ρ] 6= 0, that is, Nε(F ) ⊂ Fρ so Fρ is open in
(F , d∞,∞).
To show that Fρ is dense in (F , d∞,∞), let F ∈ F be such that EF [sgn(θ̄)|θ̄|ρ] = 0,

and, for each δ ∈ R++, take a cumulative distribution Fδ ∈ Nδ(F ) such that Fδ(θ) < F (θ)
for any θ ∈ (−1, 1). Note that for each δ ∈ R++, EF [sgn(θ̄)|θ̄|ρ] > 0 and thus Fδ ∈ Fρ,
and the sequence {Fδ} with δ −→ 0 converges to F. Hence, Fρ is dense in F .

We also use the following lemma by Pólya, presented as Exercise 127 in Part II,
Chapter 3 of Pólya and Szegő (1978).
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Lemma 18 (Pólya) If a sequence of monotone (continuous or discontinuous) functions
converges on a closed interval to a continuous function it converges uniformly.

We can now prove a main proposition.

Proposition 19 For any ρ ∈ R++, the sequence of social choice correspondences SCρ is
implementable over Fρ by any vote-buying mechanism c ∈ C such that lim

x−→0+

xc′(x)
c(x)

= 1+ρ
ρ
.

Proof. Let c be any mechanism inC such that lim
x−→0

xc′(x)
c(x)

= 1+ρ
ρ
. For any (p, {wIi }∞i=1, γ, F,G) ∈

R++×R∞+ ×R++×F ×G, let {sn}∞n=1 be a sequence such that s
n ∈ E(n,p,γ,F,c,G) for each

n ∈ N\{1}. Then, by Lemma 16, for any θ ∈ [−1, 1],

lim
n→∞

sn(θ)

sn(1)
= sgn (θ) |θ|ρ . (20)

For each n ∈ N\{1}, define the function ψn : [−1, 1] −→ [−1, 1] by ψn(θ) = sn(θ)
sn(1)

. For each
n ∈ N\{1}, ψn is a monotone function defined on a closed interval, and by Expression
(20), the sequence {ψn}∞n=1 converges pointwise to the continuous function sgn (θ) |θ|ρ .
It follows from Polya’s lemma (Lemma 18) that {ψn}∞n=2 converges uniformly to function
sgn (θ) |θ|ρ . That is, for any ε ∈ R++, there exists n̂(ε) such that for any θ ∈ [−1, 1] ,
and for any n > n̂(ε), ∣∣∣∣sn(θ)

sn(1)
− sgn (θ) |θ|ρ

∣∣∣∣ < ε. (21)

Take any F ∈ Fρ such that EF [sgn(θ̄)|θ̄|ρ] > 0, and any ε̂ ∈
(
0, EF [sgn(θ̄)|θ̄|ρ]

)
. By

the weak law of large numbers, the random variable 1
n

n∑
k=1

sgn
(
θ̄k
) ∣∣θ̄k∣∣ρ − ε̂, where θ̄k is

distributed according to F for each k ∈ {1, ..., n}, converges to its expectation

EF [sgn(θ̄)|θ̄|ρ]− ε̂ > 0;

and therefore,

lim
n−→∞

Pr

[
n∑
k=1

sgn
(
θ̄k
) ∣∣θ̄k∣∣ρ − ε̂ > 0

]
= 1. (22)

Since, by Inequality (21), for any n > n̂(ε̂), s
n(θ)
sn(1)

> sgn (θ) |θ|ρ − ε̂, it follows that

lim
n−→∞

Pr

[
sn(θ̄)

sn(1)
> sgn

(
θ̄
) ∣∣θ̄∣∣ρ − ε̂] = 1
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and then from Equality (22),

lim
n−→∞

Pr

[
n∑
k=1

sn(θ̄k)

sn(1)
− ε̂ > 0

]
= 1,

and thus

lim
n−→∞

Pr

[
n∑
k=1

sn(θ̄k) > 0

]
= lim

n−→∞
(1−Hn(0)) = 1, (23)

so lim
n−→∞

Hn(0) = 0. Note that for any F ∈ Fρ such that EF [sgn(θ̄)|θ̄|ρ] > 0, since

SCn
ρ (γ, θNn) = A if and only if

n∑
k=1

sgn (θk) |θk|ρ > 0, and since lim
n−→∞

Pr

[
n∑
k=1

sgn
(
θ̄k
) ∣∣θ̄k∣∣ρ > 0

]
=

1 (by the weak law of large numbers), it follows that

lim
n−→∞

Pr
[
SCn

ρ (γ, θ̄Nn) = A
]

= 1. (24)

From Lemma 11,

lim
n−→∞

∫
x∈(n−1)X

g(x)hn(x)dx = 0, (25)

and since g(x) > 0 for any x ∈ R, from Equality (25) we obtain that for any x̂ ∈ R++,

lim
n−→∞

x̂∫
−x̂

g(x)hn(x)dx = 0.

Since g is continuous, it attains a minimum in [−x̂, x̂], and this minimum is strictly
positive. Since hn(x) ∈ R+ for any x ∈ R and for any n ∈ N\{1}, it then follows that

lim
n−→∞

x̂∫
−x̂

hn(x)dx = 0,

which implies
lim
n−→∞

(Hn(x̂)−Hn(−x̂)) = 0. (26)

Note that lim
n−→∞

Hn(0) = 0 and (26) together imply that

lim
n−→∞

Pr

[
n∑
k=1

sn(θ̄k) > x̂

]
= lim

n−→∞
(1−Hn(x̂)) = 1. (27)
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For any εt ∈ R++, and for any x̂t ∈ R++ such that G(x̂t) > 1− εt, Equality (27) implies
that lim

n−→∞
Pr[dnF (s, θ̄) = A] > 1−εt, and thus, choosing a sequence {εt}∞t=1 that converges

to zero, lim
n−→∞

Pr[dnF (s, θ̄) = A] = 1, and then, by Equation (24),

lim
n−→∞

Pr[dnF (s, θ̄) = SCn
ρ (γ, θ̄Nn)] = 1, (28)

From equalities (23) and (24), it follows that the probability that the equilibrium outcome
coincides with the alternative chosen by the social choice correspondence SCn

ρ converges
to one, so c asymptotically implements the sequence of social choice correspondences SCρ
over the set

{
F ∈ Fρ such that EF [sgn(θ̄)|θ̄|ρ] > 0

}
.

Similarly, for any F ∈ Fρ such that EF [sgn(θ̄)|θ̄|ρ] < 0, lim
n−→∞

Pr

[
n∑
k=1

sn(θ̄k) < 0

]
= 1

and lim
n−→∞

Pr
[
SCn

ρ (γ, θ̄Nn) = B
]

= 1, so c asymptotically implements SCρ over the set{
F ∈ Fρ such that EF [sgn(θ̄)|θ̄|ρ] < 0

}
.

Hence, c asymptotically implements the sequence of social choice correspondences
SCρ over the set of cumulative distributions Fρ.

After detailing suffi cient conditions for generic implementability in Proposition 19,
we next prove that these conditions are (almost) also necessary.

Proposition 20 For any SC ∈ SC such that, for any ρ ∈ R++, SC and SCρ do not
converge to each other generically, SC is not implementable generically over F .

Proof. We prove the contrapositive. For any (p, {wIi }∞i=1, γ, F,G) ∈ R++×R∞+ ×R++×
F×G, for any n ∈ N\{1}, for any θNn ∈ [−1, 1]n, and for any equilibrium sn ∈ En,p,γ,F,c,G,
let d̄nF (θ̄Nn) denote the random variable that takes value d̄nF (θ̄Nn) = A with probability∫

θNn

n∏
k=1

f(θk)

(
G

(
n∑
k=1

sn(θk)

))
dθNn

and d̄nF (θ̄Nn) = B with probability∫
θNn

n∏
k=1

f(θk)

(
1−G

(
n∑
k=1

sn(θk)

))
dθNn .

Assume c implements SC generically. We wish to show that there exists ρ ∈ R++

such that SC and SCρ converge to each other generically.
Recall that for any vote-buying mechanism c ∈ C, and for any a ∈ R, ηc(a) ≡ ac′(a)

c(A)

denotes the elasticity of the cost function c evaluated at a ∈ R, and recall as well that
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by definition of the class of mechanisms C, lim
a−→0

ηc(a) ∈ (1,∞). Then note that from

Proposition 19, for any ρ ∈ R++, any vote-buying mechanism c ∈ C with lim
a−→0

ηc(a) = 1+ρ
ρ

implements SCρ, so defining z ≡ 1+ρ
ρ
, and hence ρ = 1

z−1
, for any z ∈ (1,∞), any

vote-buying mechanism c ∈ C with lim
a−→0

ηc(a) = z implements SC 1
z−1

= SCρ. Since⋃
z∈(1,∞)

{c ∈ C : lim
a−→0

ηc(a) = z} = C, it follows that for any c ∈ C, ∃ρ ∈ R++ such that

c implements SCρ generically (in particular, ρ = 1
lim
a−→0

ηc(a)−1
).

Therefore, for any c ∈ C, there exists ρ ∈ R++, and there exists an openFD dense inF
such that c implements SCρ overFD, so for any F ∈ FD, lim

n−→∞
Pr
[
d̄nF (θ̄Nn) 6= SCn

ρ (γ, θ̄Nn)
]

=

0.
But since c is posited to also implement SC, there exists an open FD′ dense in F such

that c implements SCρ over FD
′
, so for any F ∈ FD′ lim

n−→∞
Pr
[
d̄nF (θ̄Nn) 6= SCn(γ, θ̄Nn)

]
=

0.
It follows that for any F ∈ FD′ ∩ FD, lim

n−→∞
Pr
[
SCn(γ, θ̄Nn) 6= SCn

ρ (γ, θ̄Nn)
]

= 0.

Since the intersection of two open dense sets is dense (an implication of Baire’s [3]
Category Theorem), it follows that FD′ ∩FD it itself an open dense set in F , so SC and
SCρ converge to each other generically.

Proposition 19 and Proposition 20 together lead to our main result, the characteriza-
tion of generically implementable sequences of social choice correspondences in Theorem
2.

Theorem 2 A sequence SC of social choice correspondences is generically implementable
by a vote-buying mechanism in C if and only if there exists ρ ∈ R++ such that SC and
SCρ converge to each other generically, in which case, any vote-buying mechanism c ∈ C
such that lim

x−→0+

xc′(x)
c(x)

= 1+ρ
ρ
generically implements SC.

Proof. By Proposition 19, for any ρ ∈ R++, any vote-buying mechanism c ∈ C such
that lim

x−→0+

xc′(x)
c(x)

= 1+ρ
ρ
implements SCρ over Fρ, and Fρ is an open dense subset of F

(Lemma 17). Hence, c implements SCρ generically.
For any SC ∈ SC such that SC and SCρ converge to each other generically, there ex-

ists an open dense setFD ⊆ F such that for any F ∈ FD, lim
n−→∞

Pr
[
SC(θ̄Nn) 6= SCρ(θ̄Nn)

]
=

0.
Since SC and SCρ converge to each other over Fρ ∩ FD, from

lim
n−→∞

Pr
[
SCn(γ, θ̄Nn) 6= SCn

ρ (γ, θ̄Nn)
]

= 0 for any F ∈ Fρ ∩ FD, and

lim
n−→∞

Pr
[
d̄nF (θ̄Nn) 6= SCn

ρ (γ, θ̄Nn)
]

= 0 for any F ∈ Fρ ∩ FD,
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it follows that

lim
n−→∞

Pr
[
d̄nF (γ, θ̄Nn) 6= SCn(γ, θ̄Nn)

]
= 0 for any F ∈ Fρ ∩ FD.

Since Fρ is open and dense in F (Lemma 17), and since the intersection of two open dense
sets is open dense (an implication of the Category Theorem by Baire (1899)), it follows
that Fρ ∩ FD is itself an open dense set in F , and thus c implements SC generically.
For any SC ∈ SC such that for any ρ ∈ R++, SC and SCρ do not converge to each

other generically, SC is not implementable generically over F , by Proposition 20.
We conclude by an implementation result restricted to the class of neutral distribution

functions.

Proposition 21 For any ρ ∈ R++, a sequence SC of social choice correspondences such
that SC and SCρ converge to each other given any F ∈ F∗ is implementable over F∗ in
symmetric, monotone, pure and neutral equilibria by any vote-buying mechanism c ∈ C
such that lim

x−→0+

xc′(x)
c(x)

= 1+ρ
ρ
.

Proof. Wefirst show that SCρ is asymptotically implemented by c such that lim
x−→0+

xc′(x)
c(x)

=

1+ρ
ρ
. We want to show that

lim
n−→∞


∫

θNn∈ΘγA(SCnρ )

(
n∏
i=1

f(θi)

)
G
(∑

i∈Nn sn(θi)
)
dθNn

+
∫

θNn∈ΘγB(SCnρ )

(
n∏
i=1

f(θi)

)(
1−G

(∑
i∈Nn sn(θi)

))
dθNn

 > 1− ε.

Note lim
x−→0

xc′(x)
c(x)

= ρ
1+ρ

so ρ = 1

lim
x−→0

xc′(x)
c(x)

−1
. For each n ∈ N\{1}, for each θ ∈ (−1, 1),

by Lemma 15,

lim
n−→∞

sn(θ)

sn (1)
= sgn(θ)|θ|ρ for each θ ∈ [−1, 1]. (29)

For each n ∈ N\{1}, define the random variable ρn(θ̄) ≡ sn(θ̄)
sn(1)
− sgn(θ̄)|θ̄|ρ. By Equality

(29), for any δ ∈ R++, there exists n̂δ ∈ N such that for any n > n̂δ, ρ
n(θ) ∈ (−δ, δ) for

any θ ∈ [0, 1]; further, by neutrality of sn, ρn(θ) = −ρn(−θ) for any θ ∈ [−1, 0]. So, for
any n > n̂δ, V ar(ρ

n(θ̄)) ≤ δ2. We can then construct a decreasing sequence {δt}∞t=1 such
that δt −→

t→∞
0, and obtain

lim
n−→∞

V ar(ρn(θ̄)) = 0. (30)

For each n ∈ N\{1}, and for each k ∈ {1, ..., n}, define the random variable ρnk(θ̄) ≡
sn(θ̄)
sn(1)

− sgn(θ̄)|θ̄|ρ. These are n independent, identically distributed random variables.
Then note that

V ar

(
1√
n

n∑
k=1

ρnk(θ̄)

)
= V ar(ρn(θ̄)), (31)
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so by equalities (30) and (31),

lim
n−→∞

V ar

(
1√
n

n∑
k=1

ρnk(θ̄)

)
= 0;

that is, as n → ∞ the realization of 1√
n

n∑
k=1

ρnk(θ̄) becomes arbitrarily close to zero with

probability converging to one, so the cumulative distribution of 1√
n

n∑
k=1

ρnk(θ̄) converges to

a step function that is zero below zero, and one above zero. Similarly, V ar
(

1√
n

n∑
k=1

sgn(θ̄k)|θ̄k|ρ
)

=

V ar(sgn(θ̄)|θ̄|ρ) > 0, so the distribution of 1√
n

n∑
k=1

sgn(θ̄k)|θ̄k|ρ converges to a normal dis-

tribution with mean zero and strictly positive variance equal to V ar
(
sgn(θ̄)|θ̄|ρ

)
. Hence,

lim
n−→∞

Pr

[
sgn

(∑
i∈Nn

sn(θ̄i)

sn (1)

)
6= sgn

(
1√
n

∑
i∈Nn

sgn(θ̄i)|θ̄i|ρ
)]

= 0,

or equivalently, since sn (1) > 0 for each n ∈ N\{1},

lim
n−→∞

Pr

[
sgn

(∑
i∈Nn

sn(θ̄i)

)
6= sgn

(∑
i∈Nn

sgn(θ̄i)|θ̄i|ρ
)]

= 0. (32)

From Lemma 11,

lim
n−→∞

∫
x∈(n−1)X

g(x)hn(x)dx = 0, (33)

and since g(x) > 0 for any x ∈ R, from Equality (33) we obtain that for any x̂ ∈ R++,

lim
n−→∞

x̂∫
−x̂

g(x)hn(x)dx = 0. (34)

Since g is continuous, it attains a minimum in [−x̂, x̂], and this minimum is strictly
positive. Since hn(x) ∈ R+ for any x ∈ R and for any n ∈ N\{1}, it then follows that

lim
n−→∞

x̂∫
−x̂

hn(x)dx = 0,

which implies
lim
n−→∞

(Hn(x̂)−Hn(−x̂)) = 0. (35)
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For any ε ∈ R++, and for any x̂ such that G(x̂) > 1 − ε
2
, it follows from Equation (35)

that,

lim
n−→∞

Pr

[
G

(∑
i∈Nn

sn(θ̄i)

)
∈
(ε

2
, 1− ε

2

)]
= 0. (36)

It follows from G(0) = 1
2
and from expressions (32) and (36) that

lim
n−→∞

Pr

[
G

(∑
i∈Nn

sn(θ̄i)

)
> 1− ε

2

∣∣∣∣∣sgn
(∑
i∈Nn

sgn(θi)|θi|ρ
)
> 0

]
= 1, and (37)

lim
n−→∞

Pr

[
G

(∑
i∈Nn

sn(θ̄i)

)
<
ε

2

∣∣∣∣∣sgn
(∑
i∈Nn

sgn(θi)|θi|ρ
)
< 0

]
= 1.

Thus, subject to θNn ∈ Θγ
A(SCn

ρ ), with probability converging to one in n,
∑
i∈Nn

sn(θi)

is strictly positive (Expression (32)), and subject to
∑
i∈Nn

sn(θi) being strictly positive,

its magnitude is suffi ciently large so that G
( ∑
i∈Nn

sn(θi)

)
> 1 − ε

2
(Expression (37)).

Overall, subject to (γ, θNn) ∈ Θγ
A(SCn

ρ ), if n is suffi ciently large, G
( ∑
i∈Nn

sn(θi)

)
> 1− ε

as desired. Similarly, subject to θNn ∈ Θγ
B(SCn

ρ ), with probability converging to one
in n,

∑
i∈Nn

sn(θi) is strictly negative (Expression (32)), and subject to
∑
i∈Nn

sn(θi) being

strictly negative, its absolute value is suffi ciently large so that G
( ∑
i∈Nn

sn(θi)

)
< ε

2

(Expression (37)). Overall, subject to (γ, θNn) ∈ Θγ
B(SCn

ρ ), if n is suffi ciently large,

G

( ∑
i∈Nn

sn(θi)

)
< ε as desired.

Hence, any vote-buying mechanism c ∈ C such that lim
x−→0+

xc′(x)
c(x)

= 1+ρ
ρ
implements

SCρ.
Further, for any SC ∈ SC such that SC and SCρ converge to each other,

lim
n−→∞

Pr
[
SCn

ρ (γ, θ̄Nn) 6= SCn(γ, θ̄Nn)
]

= 0,

so c also implements the sequence of social choice correspondences SC over the set of
cumulative distributions F∗.
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