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Abstract

We establish a relationship between decay centrality and two widely used and computation-

ally cheaper measures of centrality, namely degree and closeness centrality. We show that for

low values of the decay parameter the nodes with maximum decay centrality also have maximum

degree, whereas for high values of the decay parameter they also maximize closeness. For inter-

mediate values of the decay parameter, we perform an extensive set of simulations on random

networks and find that maximum degree or closeness are good proxies for maximum decay cen-

trality. In particular, in the vast majority of simulated networks, the nodes with maximum decay

centrality are characterized by a threshold on the decay parameter below which they belong to

the set of nodes with maximum degree and above which they belong to the set of nodes with

maximum closeness. The threshold values vary with the characteristics of the network. More-

over, nodes with maximum degree or closeness are highly ranked in terms of decay centrality

even when they are not maximizing it. The latter analysis allows us to propose a simple rule of

thumb that ensures a nearly optimal choice with very high probability.
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1. Introduction

Decay centrality is a measure of centrality in which a node is rewarded for how close it is to other

nodes, but in a way that very distant nodes are weighted less than closer ones (see Jackson, 2008).

It is defined as
∑
j 6=i

δd(i,j), where 0 < δ < 1 is a decay parameter and d(i, j) is the geodesic distance

between nodes i and j. For low values of δ decay centrality puts much more weight on closer nodes,

thus becoming proportional to degree centrality, whereas for high values of δ it measures the size of

the component a node lies in.

It is considered to be richer than other distance related measures, because it captures the idea

that the importance of a node for another is proportional to their distance (see for instance Jackson

and Wolinsky, 1996). More recently, it has been considered important in problems of optimal tar-

geting selection in networks (see Banerjee et.al, 2013; Chatterjee and Dutta, 2015; Tsakas, 2014). In

particular, in two different environments, Chatterjee and Dutta (2015) and Tsakas (2014) find decay

centrality to be the measure that helps selecting the node that can lead to the maximum diffusion

of a given action in a social network.

Nevertheless, its use is cumbersome for two main reasons. First, except in very simple structures,

which are the nodes with maximum decay centrality cannot be easily identified, since the measure

depends vastly on the exact network topology and the value of the decay parameter. Second, calcu-

lating the decay centrality of all nodes and subsequently choosing the one that maximizes it might be

computationally costly, since it requires calculating the geodesic distance between each pair of nodes

and subsequently summing a function of them. This is particularly important for large networks.1

The aim of this paper is to show the close connection between decay centrality and two well–

studied and computationally cheaper measures, namely degree and closeness centrality. The rela-

tionships are established both analytically and numerically and provide evidence that the nodes with

maximum decay centrality usually belong either to the set of nodes with maximum degree or to the

set of nodes with maximum closeness.

In particular, focusing on connected networks, we show that for sufficiently low values of the

decay parameter the nodes that maximize decay centrality belong to the set of nodes with maximum

degree, whereas for sufficiently high values of the decay parameter the nodes that maximize decay
1For a network with n nodes, the time complexity for the calculating degree and closeness centrality are in O(n2)

and O(n3) respectively (see Brandes and Erlebach, 2005), where for the calculation of shortest paths that is necessary

for closeness centrality is used the simple Dijkstra algorithm (see Dijkstra, 1959). Once the shortest paths have been

calculated, decay centrality requires the calculation of δd(i,j) for each pair of nodes (i, j). Hence, the time complexity

of calculating decay centrality is in O(n5).
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centrality maximize closeness as well. The first proposition is not surprising as it is already known

that for low values of δ decay centrality is proportional to degree. However, the second proposition

establishes a novel relationship between decay and closeness centrality for high values of δ, for which

so far decay centrality was associated only with the size of the component a node lied in.

Nevertheless, despite establishing these results what happens for intermediate values of the decay

parameter still remains unanswered. We tackle this problem numerically and using an extended set

of simulations we find that in the vast majority of cases the nodes with maximum decay centrality

belong either to the set of nodes with maximum degree or to the set of nodes with maximum closeness

centrality. When the two sets do not intersect, we observe that for low values of δ the decay centrality

is maximized by nodes with maximum degree and as δ increases there is a threshold above which

decay centrality is maximized by nodes with maximum closeness. The threshold varies with the

network parameters. It occurs very rarely that for some value of δ a node maximizes decay centrality

without having either maximum degree or closeness and even in that case the rank in terms of decay

centrality of nodes with maximum degree or closeness is very close to the top.

When the two sets intersect a node that belongs to their intersection is almost always the one

with maximum centrality for all values of δ. We study how this result is affected by several network

parameters and analyze the distribution of ranks in decay centrality of nodes with maximum degree

or closeness, so as to understand how suboptimal these choices may be. We find that even in when

considering the 95th percentile, the rank of the nodes is relatively high, but it is affected significantly

by δ. Nevertheless, we find that considering a rule of thumb with a threshold at δ = 0.5, below

which a node with maximum degree is chosen and above which a node with maximum closeness is

chosen, is sufficient to ensure that the chosen node is ranked among the top nodes in terms of decay

centrality, with probability at least equal to 95%. This provides a very useful rule of thumb, as it is

clear–cut and computationally cheap. We also present a simple econometric analysis that shows the

effect of other measurable network characteristics on the likelihood that a node maximizing either

degree or closeness maximizes decay centrality as well.

In general, the results suggest that in most cases, given a decay parameter, one can use degree or

closeness as proxies for decay centrality, without risking to make a particularly suboptimal choice.

2. Notation

Consider a set of nodes N , with cardinality n, which are connected through a network. A network

is represented by a family of sets N := {Ni ⊆ N | i = 1, . . . , n}, with Ni denoting the set of nodes

that are directly connected with i. Ni is called i’s neighborhood and its cardinality, |Ni|, is called
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i’s degree. We focus on undirected networks, where j ∈ Ni if and only if i ∈ Nj. It is also useful to

define the set of nodes with maximum degree, i.e. Ideg = argmax
i∈N
|Ni|.

A path in a network between nodes i and j is a sequence i1, ..., iK such that i1 = i, iK = j and

ik+1 ∈ Nik for k = 1, ..., K − 1. The geodesic distance, d(i, j), between two nodes in the network is

the length of the shortest path between them. We say that two nodes are connected if there exists

a path between them. The network is connected if every pair of nodes is connected. We focus on

connected networks, nevertheless for disconnected networks the analysis would be identical for each

of their connected components.2

The closeness centrality (or simply closeness) of a node i ∈ N is defined as the inverse of the sum of

the geodesic distances from each other agent in the network, i.e. Ci = 1∑
j 6=i

d(i,j)
. Notice that closeness

centrality measures how easily a node can reach all other nodes in the network. According to this

definition, we define the set of nodes with maximum closeness centrality, i.e. Iclos = argmax
i∈N

∑
j 6=i

Ci.

Finally, given a decay parameter δ ∈ (0, 1), the decay centrality of node i ∈ N is DCδ
i =

∑
j 6=i

δd(i,j).

The decay centrality is a function of distances from each node in the network, adjusted by a decay

parameter that makes distant nodes count less than closer ones. As in the previous two cases, for

each value of δ, we define the set of nodes with maximum decay centrality, i.e. Iδdc = argmax
i∈N

∑
j 6=i

DCδ
i .

3. Analytical Results

Proposition 1. Exists δ such that for all δ ∈ (0, δ) holds that Iδdc ⊆ Ideg.

Proof of Proposition 1. To prove the argument it is enough to ensure that for these values of δ a

node with maximum decay centrality, i ∈ Iδdc, should necessarily be among the nodes with maximum

degree, i.e. i ∈ Ideg. Notice that for all δ ∈ (0, 1), argmax
i∈N

∑
j 6=i

δd(i,j) = argmax
i∈N

∑
j 6=i

δd(i,j)−1, since in

the right hand side all arguments are divided by δ. This modification allows to use the argument

that lim
δ→0

∑
j 6=i

δd(i,j)−1 = |Ni|, which holds because lim
δ→0

δd(i,j)−1 = 1 if d(i, j) = 1 and is equal to 0

otherwise. Therefore, in the limit, maximizing decay centrality coincides with maximizing degree.

Moreover, the objective function is continuous in δ, which means that if lim
δ→0

∑
j 6=i

δd(i,j)−1 = |Ni| >

|Nk| = lim
δ→0

∑
j 6=i

δd(k,j)−1 for i, k ∈ N , hence there exists δ > 0 such that
∑
j 6=i

δd(i,j)−1 ≥
∑
j 6=i

δd(k,j)−1, or

equivalently
∑
j 6=i

δd(i,j) ≥
∑
j 6=i

δd(k,j), for all δ ∈ (0, δ).

2A connected component is a non-empty sub-network N ′ such that (i) N ′ ⊂ N , (ii) N ′ is connected and (iii) if

i, j ∈ N ′ and j ∈ Ni, then j ∈ N ′i .
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Proposition 2. Exists δ such that for all δ ∈ (δ, 1) holds that Iδdc ⊆ Iclos.

Proof of Proposition 2. To prove the argument is enough to ensure that for these values of δ a

node with maximum decay centrality, i ∈ Iδdc, should necessarily be among the nodes with maximum

closeness, i ∈ Iclos. Consider decay centrality as a function of δ, i.e. fi(δ) =
∑
j 6=i

δd(i,j) and notice

that the function is continuously differentiable in δ, as well as that lim
δ→1

fi(δ) = |N | for all i ∈ N .

Differentiating fi with respect to δ we get that f ′i(δ) =
∑
j 6=i

d(i, j)δd(i,j)−1 > 0 and lim
δ→1

f ′i(δ) = d(i, j).

The result becomes straightforward noticing that for fi, fk being increasing functions for which it

holds that fi(1) = fk(1) and f ′i(1) < f ′k(1) there must exist δ such that fi(δ) > fk(δ) for all δ ∈ (δ, 1).

Therefore, in order a node to maximize decay centrality for δ ∈ (δ, 1) it should minimize
∑
j 6=i

d(i, j),

or equivalently maximize 1∑
j 6=i

d(i,j)
(i.e. closeness).

The two propositions establish the fact that in the two limits decay centrality coincides with

degree and closeness respectively. However, the characteristics that make nodes have high decay

centrality for intermediate values of the decay parameter still remain unexplored.

4. Numerical Results

We simulate random undirected Èrdos-Renyi networks (Erdős and Rényi, 1959), G(n, p), where n

is the network size and p is the probability of two nodes being linked. The networks are required

to be connected so that geodesic distances are well defined. We consider five distinct network sizes

spanning from 10 to 200 nodes and ten link probabilities spanning from 0.05 to 0.5 and perform

10000 trials for each configuration. Our aim is to understand to what extent there is a connection

between nodes with high decay centrality and nodes with either high degree or high closeness for

intermediate values of δ.

The first question we pose is how often Iδdc, i.e. the set of nodes with maximum decay centrality,

intersects with either Ideg, i.e. the set of nodes with maximum degree, or with Iclos, i.e. the set of

nodes with maximum closeness. We find that inn the vast majority of the cases Iδdc ⊆ (Ideg ∪ Iclos) for
almost all intermediate values of δ and not only for the limit values (close to 0 or 1), as the theory has

predicted. This suggests that focusing on nodes with either maximum degree or maximum closeness

will often be sufficient to ensure the maximization of decay centrality.

Before exploring this result further, it is important to mention that Ideg intersects with Iclos quite

often for random networks.3 The reasons why this occurs are outside the scope of this paper, however
3A non–empty intersection between Ideg and Iclos is observed very often for sufficiently dense networks, namely
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it has an apparent effect on our results as it provides a natural connection between the two limit

cases explored by theory. In fact, in “almost all” of the cases where there are nodes that belong both

to Ideg and Iclos, those nodes also belong to Iδdc. This result cannot be generalized theoretically as

there are cases in which, for some intermediate values of δ, the nodes with maximum decay centrality

do not belong to either Ideg or Iclos. Nevertheless, as it becomes apparent when comparing Tables 1

and 2 the frequency with which such cases arise is practically negligible. Later on, we explore the

rank in decay centrality of nodes with maximum degree or closeness when they are not ranked first

and we find that they are still very highly ranked. This result provides a first strong argument, which

is that if there exists a node i ∈ N such that i ∈ (Ideg ∩ Iclos) then almost always i ∈ Iδdc as well.

@
@
@
@@

n

p
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

10 8620 8756 8951 9035 9341 9570 9752 9879 9971 9987

20 6600 7229 8113 8711 9349 9752 9969 9998 10000 10000

50 5921 7620 8220 9330 9964 10000 10000 10000 10000 10000

100 6783 7401 8794 9989 10000 10000 10000 10000 10000 10000

200 7209 7593 9976 10000 10000 10000 10000 10000 10000 10000

Table 1: Frequency of occassions where Ideg ∩ Iclos 6= ∅.

@
@
@
@@

n

p
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

10 0 0 0 0 0 0 0 0 0 0

20 11 2 0 0 0 0 0 0 0 0

50 30 0 0 0 0 0 0 0 0 0

100 14 0 0 0 0 0 0 0 0 0

200 0 0 0 0 0 0 0 0 0 0

Table 2: Frequency of occassions where Ideg ∩ Iclos 6= ∅ and Iδdc * (Ideg ∩ Iclos) for some value of δ.

We turn our attention to the case where Ideg and Iclos do not intersect. In this case, we expect

from theory a transition in the nodes that belong to Iδdc as δ increases. It turns out that even in this

cases, most of the times the transition is immediate, meaning that a node i ∈ Iδdc belongs either to

Ideg or to Iclos. This can become apparent in Figure 1, which contains the percentage frequencies

p > 0.15, as it can be seen in Table 1 and Figure 9 in the Appendix.
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with which Iδdec ⊆ Ideg (blue), Iδdec ⊆ Iclos (yellow) and Iδdc ∩ (Ideg ∪ Iclos) = ∅ (red). For each value

of δ the frequencies correspond to the fraction of the simulated networks in which each of the three

conditions held true. The fact that in the left subfigure Ideg and Iclos can intersect means that the

sum of the frequencies may exceed 100%. In fact, this seems to be the case rather often. This in

no longer possible in the right subfigure, where we include only the cases where Ideg and Iclos do not

intersect, therefore the three conditions are mutually exclusive. Note that, the latter case is never

observed in more than a 2% of the trials, with the percentage becoming much lower as we get further

away from δ = 0.5. This suggests that for most networks there is a threshold value of δ below which

Iδdec ⊆ Ideg and above which Iδdec ⊆ Iclos.

(a) Including also cases where Ideg ∩ Iclos 6= ∅ (b) Including only cases where Ideg ∩ Iclos = ∅

Figure 1: The blue (yellow) line shows the percentage frequency with which Iδdec ⊆ Ideg (Iδdec ⊆ Iclos),

whereas the red line shows the frequency with which it does not belong to any of the two sets.

Figure 1 contains the percentage frequencies after pooling all different (n, p)–configurations, which

yields a reasonable question on how results might differ for different values of parameters p and n.

Figure 2 contains the three percentage frequencies of interest for all network sizes and values of

p ∈ {0.05, 0.1, 0.15, 0.2}, focusing again on networks where Ideg and Iclos do not intersect. The results

are qualitatively similar in all configurations, presenting an inverted S-shaped curve for the frequency

of Iδdec ⊆ Ideg, an S-shaped curve for the frequency of Iδdec ⊆ Iclos and an inverted bell curve for the

frequency of Iδdc ∩ (Ideg ∪ Iclos) = ∅. Regarding the latter one, we observe that its frequency never

exceeds 10%, with this being the case only for p = 0.05 and values of δ close to 0.5. As far as

it concerns the transition from nodes with maximum degree to those with maximum centrality, we

observe this to occur for lower values of δ as the networks become larger. This result is more prevalent

6



(a) Iδdc ⊆ Ideg (b) Idc * (Ideg ∪ Iclos) (c) Iδdc ⊆ Iclos

Figure 2: Percentage frequency of decay parameters for the three transitions presented separately

for each network size. The four rows correspond to p = 0.05, 0.1, 0.15 and 0.2 respectively.
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for low values of p; as p increases we observe a sharp transition occurring for δ very close to 0.5.4

The previous observations raise two important questions. First, what is the rank in terms of

decay centrality of nodes with maximum degree and closeness, when they are not ranked first? The

answer to this question would determine how suboptimal could be the choice of a node based on its

degree or closeness when one cares about maximizing decay centrality. Figures 3 and 4 show the

average rank, as well as the 5th and 95th percentiles of rank distribution in decay centrality of nodes

with maximum degree and closeness respectively.5 It turns out that nodes belonging to Ideg or Iclos
are highly ranked in terms of decay centrality for all values of δ, even when they are not ranked first.

The result is similar if we exclude the networks in which Ideg and Iclos intersect. This reinforces the

argument that choosing among nodes with maximum degree or closeness can be an adequate proxy

for nodes that maximize decay centrality.

Figure 3: Average rank (red), as well as 5th (blue) and 95th (black) percentiles, of decay centrality

of nodes with maximum degree, including all networks. The five subfigures correspond to n =

10, 20, 50, 100, 200 from top–left to bottom–right and p = 0.05.

Nevertheless, focusing either only on degree or only on closeness leads to increasingly suboptimal

choices as δ moves towards one of the extremes. Hence, it remains to be clarified which of the two
4It should be mentioned that for p ≥ 0.2 there are very few observations where Ideg and Iclos do not intersect,

which may affect the weight of each individual trial in the result.
5The two figures corresponds to a particular pair (n, p), nevertheless the results are qualitatively similar for other

configurations, some of which can be found in the Appendix (see Figures 10, 11, 12 and 13).
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Figure 4: Average rank (red), as well as 5th (blue) and 95th (black) percentiles, of decay centrality

of nodes with maximum closeness, including all networks. The five subfigures correspond to n =

10, 20, 50, 100, 200 from top–left to bottom–right and p = 0.05.

sets would provide better candidates depending on the value of the decay parameter one is interested

in. Intuitively, when interested in high values of δ, nodes that maximize closeness centrality would

be more natural candidates and vice versa when interested in low values of δ nodes that maximize

degree centrality would be more natural candidates.

Ideally, we would like to have a simple rule of thumb that would facilitate this choice. A quite

natural rule would be to choose among the nodes from Ideg for δ < 0.5 and a node from Iclos for

δ > 0.5. Given that the two sets usually contain few nodes, it should not be too costly to calculate

the decay centrality of each of these nodes and pick the one that maximizes it.

It turns out that this rule of thumb is sufficient to ensure that the chosen node will be ranked

among the top in terms of decay centrality. Figure 5 shows the same three statistics as before for

p = 0.05 and all network sizes, in which it can be seen that in all networks a node chosen according

to this rule will be ranked in terms of decay centrality among the top three with probability 95%.6

In addition to this, we try to identify the threshold values at which the transitions actually occur.

Figure 6 shows the values of δ that correspond to the three potential transitions, namely: (a) the

lowest δ for which Ideg stops containing Iδdc, (b) the lowest δ for which Iδdc does not coincide with either
6Figure 14 in the Appendix shows a similar picture when excluding networks where Ideg and Iclos intersect. Even

in this case, a node chosen according to the rule is ranked among the top five with probability at least equal to 95%.
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Figure 5: Average rank (red), as well as 5% (blue) and 95% (black) percentiles, of decay centrality

of nodes with maximum degree for δ < 0.5 and with maximum closeness for δ > 0.5, including all

networks. The five subfigures correspond to n = 10, 20, 50, 100, 200 from top–left to bottom–right

and p = 0.05.

Ideg or Iclos and (c) the lowest δ for which Iclos starts containing Iδdc.7 Figure 7 shows the respective

cumulative distributions of the values. This visualization is more useful for the comparison between

different networks. Once again, we focus on graphs where Ideg and Iclos do not intersect. A first

observation is that the graphs corresponding to transitions (a) and (c) seem very similar, which

is expected given that the transition occurs most of the times directly from one set to the other.

Moreover, when reporting the number of observations, it becomes apparent that the intermediate

region, where Iδdc is not contained in Ideg∪Iclos, occurs very rarely compared to the other two; a result

that is much more prevalent as the values of p increase. However, there is little additional information

one can gain from observing the three plots. As an attempt to obtain a better understanding, we

also present the plots corresponding to different network sizes and link probabilities.

Figure 8 shows the cumulative distributions of the values of δ per network size, for p equal to

0.05, 0.1, 0.15 and 0.2 respectively. A comparison across networks reveals that the transition tends

to occur earlier in larger networks, mainly for low values of p. As p becomes larger, we observe an

increasing concentration of observations around the cutoff point of δ = 0.5. The graphs seem quite
7The three plots are sufficient to account for almost all observations, as transitions in the opposite direction occur

almost never.
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(a) Ideg stops containing Iδdc (b) Ideg ∪ Iclos stops containing Iδdc (c) Iclos starts containing Iδdc

Figure 6: Frequency of decay parameters for the three transitions presented pooled across all networks

sizes and link probabilities.

(a) Ideg stops containing Iδdc (b) Ideg ∪ Iclos stops containing Iδdc (c) Iclos starts containing Iδdc

Figure 7: Percentage cumulative frequency of decay parameters for the three transitions presented

pooled across all networks sizes and link probabilities.

similar with those obtained by Figure 2, despite referring to different measures. This similarity is

mainly due to the fact that in the vast majority of cases Iδdc ⊆ (Ideg ∪ Iclos). A piece of information

that is missing from those graphs, is that for p > 0.1 the intermediate region, where Iδdc is not

contained in Ideg ∪ Iclos, occurs extremely rarely, as the two sets either intersect or the transition

from one towards the other occurs directly.

Finally, we try and identify some other observable characteristics of the network that could

provide information on which of the two notions of centrality would be adequate in each case. Doing

so graphically would be cumbersome, as the results would need to be reported for specific values of

n, p and δ, thus limiting their expositional clarity. For this reason, we perform a simple econometric

analysis that allows us to get an idea on the effect of each characteristic at once.

We focus on networks where Ideg and Iclos do not intersect and we construct a discrete choice

model with three alternatives: (i) Iδdc ⊆ Ideg, (ii) Iδdc ⊆ Iclos and (iii) Iδdc * (Ideg ∪ Iclos). Given that

11



(a) Ideg stops containing Iδdc (b) Ideg ∪ Iclos stops containing Iδdc (c) Iclos starts containing Iδdc

Figure 8: Percentage cumulative frequency of decay parameters for the three transitions presented

separately for each network size. The four rows correspond to p = 0.05, 0.1, 0.15 and 0.2 respectively.
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Ideg and Iclos do not intersect these three alternatives are mutually exclusive. We run a standard

multinomial logit regression attempting to estimate the relative probability of each alternative arising,

controlling for several network characteristics. Table 3 shows the results for all networks for p = 0.05.8

Alternative (i) is considered as the base and only the coefficients related to (ii) are reported. The main

information one gets from these is the sign of the coefficient, which shows the effect of a characteristic

on the relative likelihood of (ii) compared to (i), i.e. a positive coefficient signifies that an increase

in the given variable makes more likely that a node with maximum closeness will maximize decay

centrality compared to a node with maximum degree.9 Apart from the already established effect

of δ and the not surprising effect of maximum and average degree and maximum closeness, we find

that a larger diameter increases the likelihood of (ii) compared to (i), except in very small networks.

This result is quite intuitive, as in networks with larger diameter a node with high degree may still

be quite far from certain nodes located in the periphery of the network, which affects negatively the

decay centrality of the node.10

5. Discussion

We have established a clear relationship between decay centrality and two widely used measures of

centrality, namely degree and closeness, showing that nodes that maximize one of the two measures

are natural candidates for maximizing decay centrality. In fact, the majority of networks has a

threshold value of δ below which maximum decay centrality coincides with maximum degree and

above which it coincides with maximum closeness. We show that a simple rule of thumb that considers

a common threshold at δ = 0.5 seems to perform particularly well. The variety of threshold values

observed for different networks raises the question on whether there are some particular characteristics

of the network that can allow the characterization of this threshold value with some accuracy; a

question that has been only partially tackled here. Finally, simulations are limited to networks of

small to medium size (up to 200 nodes), due to computational limitations. There is no observation

suggesting that passing to larger networks should alter the results qualitatively, however an extension

of the analysis to large networks would ensure their applicability to problems where decay centrality

has been shown to play an important role.
8Table 4 in the Appendix shows the same analysis for p = 0.10. For larger values of p and large networks convergence

of the method is not always guaranteed, mainly because there are very few observations of alternative (iii).
9The coefficients are expected to be strongly significant because of the large sample size, which should make one

even more cautious when attempting to explain them.
10This result might be partially driven by the fact that random networks tend to have small diameters (for a thorough

analysis see Bollobás, 1981; Vega–Redondo, 2007; Jackson, 2008).

13



For p=0.05 n=10 n=20 n=50 n=100 n=200

Maximum Degree -1.980∗∗∗ -0.833∗∗∗ -0.641∗∗∗ -0.868∗∗∗ -0.884∗∗∗

Maximum Closeness 0.353∗∗∗ 0.175∗∗∗ 0.0897∗∗∗ 0.183∗∗∗ 0.180∗∗∗

Delta 16.18∗∗∗ 10.91∗∗∗ 8.817∗∗∗ 8.972∗∗∗ 10.16∗∗∗

Diameter -0.913∗∗∗ 0.133∗∗∗ 0.124∗∗∗ 0.0691∗∗∗ 0.0931∗∗∗

Average Degree -1.578∗∗∗ -1.372∗∗∗ -1.534∗∗∗ -1.824∗∗∗ -1.139∗∗∗

St. Dev. Degree -0.155 -0.0220 -0.103∗∗∗ -0.235∗∗∗ -0.0526∗∗∗

Simulation -6.20e-09 3.16e-07∗∗∗ 1.03e-07∗ -1.85e-07∗∗∗ -5.70e-07∗∗∗

Constant 13.59∗∗∗ 8.369∗∗∗ 15.97∗∗∗ 60.53∗∗∗ 106.0∗∗∗

N 69000 170000 203950 160850 139550

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 3: Coefficients of multinomial logit regression with alternatives (i) Iδdc ⊆ Ideg, (ii) Iδdc ⊆ Iclos

and (iii) Iδdc * (Ideg ∪ Iclos), for networks where Ideg and Iclos do not intersect. Alternative (i) is taken

as the base and the reported coefficients correspond to (ii). Results are for all networks and p = 0.05.
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A. Graphs

Figure 9: Frequency with which Ideg and Iclos intersect given network size and connection probability.
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Figure 10: Average rank (red), as well as 5th (blue) and 95th (black) percentiles, of decay centrality

of nodes with maximum degree, including all networks. The five subfigures correspond to n =

10, 20, 50, 100, 200 from top–left to bottom–right and p = 0.10.

Figure 11: Average rank (red), as well as 5th (blue) and 95th (black) percentiles, of decay centrality

of nodes with maximum closeness, including all networks. The five subfigures correspond to n =

10, 20, 50, 100, 200 from top–left to bottom–right and p = 0.10.
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Figure 12: Average rank (red), as well as 5th (blue) and 95th (black) percentiles, of decay centrality

of nodes with maximum degree, excluding networks where Ideg and Iclos intersect. The five subfigures

correspond to n = 10, 20, 50, 100, 200 from top–left to bottom–right and p = 0.05.

Figure 13: Average rank (red), as well as 5th (blue) and 95th (black) percentiles, of decay centrality of

nodes with maximum closeness, excluding networks where Ideg and Iclos intersect. The five subfigures

correspond to n = 10, 20, 50, 100, 200 from top–left to bottom–right and p = 0.05.
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Figure 14: Average rank (red), as well as 5th (blue) and 95th (black) percentiles, of decay centrality

of nodes with maximum degree for δ < 0.5 and with maximum closeness for δ > 0.5, excluding

networks where Ideg and Iclos intersect. The five subfigures correspond to n = 10, 20, 50, 100, 200

from top–left to bottom–right and p = 0.05.

For p=0.10 n=10 n=20 n=50 n=100 n=200

Maximum Degree -2.502∗∗∗ -1.129∗∗∗ -1.059∗∗∗ -1.025∗∗∗ -0.973∗∗∗

Maximum Closeness 0.370∗∗∗ 0.185∗∗∗ 0.380∗∗∗ 0.384∗∗∗ 0.553∗∗∗

Delta 15.31∗∗∗ 10.90∗∗∗ 10.72∗∗∗ 10.95∗∗∗ 11.46∗∗∗

Diameter -0.656∗∗∗ 0.140∗∗∗ 0.399∗∗∗ 0.386∗∗∗ 3.118∗∗∗

Average Degree -0.836∗∗∗ -0.718∗∗∗ -0.946∗∗∗ -1.114∗∗∗ -0.577∗∗∗

St. Dev. Degree 0.904∗∗∗ 0.606∗∗∗ -0.250∗∗∗ 0.0690∗∗∗ 0.0304∗∗∗

Simulation 5.93e-07∗∗∗ -1.98e-07∗∗ -6.35e-08 -8.92e-09 3.06e-07∗∗∗

Constant 12.20∗∗∗ 8.208∗∗∗ 49.01∗∗∗ 96.82∗∗∗ 232.9∗∗∗

N 62200 138550 119000 129950 120350
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4: Coefficients of multinomial logit regression with alternatives (i) Iδdc ⊆ Ideg, (ii) Iδdc ⊆ Iclos

and (iii) Iδdc * (Ideg ∪ Iclos), for networks where Ideg and Iclos do not intersect. Alternative (i) is taken

as the base and the reported coefficients correspond to (ii). Results are for all networks and p = 0.10.
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