
 

 
 

 

 

 

 

 

 

Working Paper 03-2016 
 
 
 
 

 
 

On the use of high frequency measures of volatility 
in MIDAS regressions 
 
 
 
 
 
Elena Andreou 

 
 
 
 
 
 

 
 

Department of Economics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus 
Tel.: +357-22893700, Fax: +357-22895028, Web site: http://www.ucy.ac.cy/econ/en  

http://www.ucy.ac.cy/econ/en


On the use of high frequency measures of volatility
in MIDAS regressions.

Elena Andreou
Department of Economics
University of Cyprus and

CEPR

First version: October 2014
Revised version: March 2016.

Abstract

Many empirical studies link mixed data frequency variables such as low
frequency macroeconomic or financial variables with high frequency financial
indicators’volatilities, especially within a predictive regression model context.
The objective of this paper is threefold: First, we relate the standard Least
Squares (LS) regression model with high frequency volatility predictors, with
the corresponding Mixed Data Sampling Nonlinear LS (MIDAS-NLS) regres-
sion model (Ghysels et al., 2005, 2006), and evaluate the properties of the
regression estimators of these models. We also consider alternative high fre-
quency volatility measures as well as various continuous time models using their
corresponding relevant higher-order moments to further analyze the properties
of these estimators. Second, we derive the relative MSE effi ciency of the slope
estimator in the standard LS and MIDAS regressions, we provide conditions
for relative effi ciency and present the numerical results for different continuous
time models. Third, we extend the analysis of the bias of the slope estimator
in standard LS regressions with alternative realized measures of risk such as
the Realized Covariance, Realized Beta and the Realized Skewness when the
true DGP is a MIDAS model.

JEL classifications: C22, C53, G22.
Keywords: MIDAS regression model, high-frequency volatility estimators,

bias, effi ciency.
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1 Introduction

There is a plethora of empirical studies that link mixed data frequency variables such
as low frequency macroeconomic or financial variables with high frequency financial
indicators’volatilities, especially in a predictive regression context. In the macroeco-
nomics literature key macro variables such as output growth, observed at some low
frequency, typically annual or quarterly, are predicted by the volatility of a financial
indicator (e.g. stock returns or credit spreads) estimated from higher frequency (e.g.
(intra)daily) data (Schwert (1989a,b), Campbell et al. (2001), Engle et al. (2013),
Fornari and Mele (2013), Andreou et al. (2013), Bekaert and Hoerova (2014), inter
alia). These high frequency volatilities are also considered as leading indicators of
business cycle fluctuations also modeled in a mixed data frequency setup. In addition,
related empirical studies examine if stock market volatility (as well as other financial
market development indicators) are determinants of long-run economic growth (e.g.
Levine and Zevros, 1998) in a cross-sectional regression setup.
Another strand of research in financial economics links high frequency measures

of risk with low frequency returns. Motivated from Merton’s Intertemporal Capital
Asset Pricing Model (CAPM) (1973) or from continuous time diffusion models with
no leverage, e.g. the Ornstein—Uhlenbeck (OU) model, a population model provides
a link between returns and risk. A large empirical literature on predictive regressions
links excess stock returns at a low frequency (e.g. annual or quarterly) with high
frequency volatility predictors based on monthly, daily or intradaily data and studies
the risk-return relationship (e.g. French et al. (1987), Ludvigson and Ng (2007),
Ghysels et al. (2005, 2006), Bandi and Perron (2008), Bollerslev and Zhou (2006),
Goyal and Welch (2008), Lettau and Ludvigson (2010), among others). A popular
benchmark estimator used in most of the aforementioned recent studies is the Re-
alized Volatility (RVt), proposed by Andersen and Bollerslev (1998), in addition to
a large family of high frequency volatility filters. Within this literature other types
of high frequency predictors are also used to forecast low frequency returns such as
the Realized Skewness and Kurtosis (e.g. Amaya et al., 2015) as well as the Realized
betas (e.g. Gonzalez et al., 2012) in a regression model setup. Last but not least,
within the financial econometrics literature regression models are also used to forecast
other lower frequency risk measures at a longer horizon h, e.g. the monthly Real-
ized Volatility (RVt+h), or the 10-day Value at Risk, using higher frequency volatility
measures.
Given the aforementioned studies, this paper assumes that the Data Generating

Process (DGP) is a Mixed Data Sampling process where the dependent variable
is observed at a low frequency and the predictor is a quadratic transformation of
a high frequency variable which approximates alternative high frequency volatility
measures. Our objective is to relate and analyze the standard LS regression models,
which relate a dependent variable observed at some low frequency with volatility
measures observed at higher frequencies (given e.g. by the Realized Variance), with
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the corresponding Mixed Data Sampling (MIDAS) regression models estimated by
Nonlinear Least Squares (NLS), first proposed by Ghysels et al (2005, 2006). We
evaluate the properties of the regression estimators of these two models for alternative
high frequency volatility filters as well as various continuous time models using their
relevant higher-order moments. Analytical and numerical results are presented for the
bias and the relative effi ciency of the slope estimator in these two regression models
for a number of alternative high frequency volatilities. We also extend this analysis
to alternative realized measures such as the Realized Covariance, the Realized beta
and the Realized Skewness.
The paper provides two main novel findings. First we show that if the DGP is

a MIDAS regression model with high frequency volatilities which aggregates/weights
high frequency quadratic transformations of returns using a non-flat/unequal weight-
ing scheme, then the standard approach of ignoring the weighting scheme and ag-
gregating equally the high frequency data, and thereby estimating a standard LS
model with the usual Realized Volatility type estimators, can yield a biased LS slope
regression estimator. We parameterize this bias in a general setting as well as in
various continuous time models encountered in the financial asset returns modelling
literature, e.g. an OU model, a two factor affi ne volatility model, among others,
using their relevant higher-order moments. We find that the bias depends on the
autocorrelation of the quadratic transformation of high frequency returns and the
cumulative weighting scheme of the MIDAS regression which measures deviations
of the weights from equal/flat aggregation scheme. This cumulative weighted term
is negative for most decreasing weights which assume a memory decaying pattern,
whereas the correlation of squared returns is positive for the aforementioned contin-
uous time models. Hence the bias of the LS regression slope estimator, which links
the low frequency variable with the high frequency volatility measures, turns out to
be negative. The numerical analysis establishes that this bias can be severe and in
some cases can reach up to -80%, using empirically relevant models and parameter
values. This result has various empirical implications. Within the financial economics
literature our results imply a large downward bias in the estimated risk-return trade
off relationship and consequently financial misallocation implications as well as more
serious losses from risk management decisions during crises due to misspecifying VaR
models with high frequency volatilities. Within the macro forecasting literature our
results also imply that if the low frequency variable is say GDP growth and the high
frequency variable involves aggregation of say quadratic high frequency asset returns
(a proxy of stock volatility), then foregoing the MIDAS non-flat aggregation scheme
and using the standard LS regression flat-aggregation approach would yield biased
LS regression slope estimates.
The second finding of the paper relates to the relative effi ciency of the standard

LS and MIDAS-NLS regression estimators. We derive and parameterize the Mean
Square Error (MSE) of the slope estimators in a general setting and for various con-
tinuous time and discrete time models using their high-order moments. We find that
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the slope estimator of a MIDAS-NLS regression model is relatively more effi cient
for non-flat weights, than the corresponding standard LS model slope estimator with
the RVt type filters. Using numerical analysis and empirically relevant parameters
we present the relative MSEs of the slope regression parameters for various models
as a function of the high-frequency moments, sampling frequency and alternative
weighting schemes. Interestingly our analysis shows that the LS slope estimator is
not only biased but it is also ineffi cient when the true DGP is a MIDAS regression
model. Moreover, even under certain assumptions when the LS estimator is unbiased
we find that it is still relatively less effi cient than the corresponding MIDAS-NLS
estimator. More importantly, we derive conditions for relative effi ciency of the MI-
DAS and LS regression slope estimators based on the high-frequency moments and
weighting scheme which we also evaluate numerically for empirically relevant models
and parameters. Relative effi ciency gains incur for the MIDAS-NLS versus the LS
estimator, even when the true weighting scheme in a MIDAS regression is assumed
to be near the traditional flat/equal weights one.
Our analysis is related to Andreou, Ghysels and Kourtellos (AGK) (2010) except

they do not deal with high frequency volatility filters and study special cases of
MIDAS regressions which either yield no bias, since high frequency regressors are
assumed to follow i.i.d. or ARCH models, or yield biased slope estimators if the
high frequency process follows an AR(1). In this paper the MIDAS regression models
involve high frequency volatility filters and other realized measures which in almost
all cases studied yield biased slope regression estimators. More importantly here we
derive more general and analytical asymptotic bias and effi ciency representations for
the different high frequency volatility estimators in MIDAS regressions compared to
AGK (2010).1 In addition we derive the asymptotic bias for many continuous time
processes of returns as well as a more general ARMA model. While neither high
frequency volatility filters nor the models considered here are studied in AGK (2010),
our findings also differ. We show that for the models studied here, for alternative
weighting schemes and most volatility filters, the slope estimator in the standard LS
regression models turns out to be biased in almost all cases, but the bias does not
diverge with the high frequency sample size, m, as shown in AGK (2010) for the
high frequency AR(1) model (in Proposition 4.3). Furthermore, this paper derives
novel conditions for relative MSE effi ciency of the standard LS and MIDAS slope
estimators using high-frequency volatility estimators which can be readily applied to
regression models. We also show that in many empirically relevant setups the MIDAS
slope estimator is relatively more effi cient than the LS slope estimator. In addition,
we examine analytically the Rsquared measure of in-sample fit, usually employed
in empirical studies of predictive regression models, of standard LS versus MIDAS
high frequency volatility estimators. Last but not least, we analyze the properties
of the slope estimator in regression models for alternative realized measures such as

1Our analytical results in Propositions 1 and 2 below are more general than the standard formu-
lation of bias and effi ciency in AGK (2010) (equation (3.3) and Propositions 4.3 and 4.4).
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the Realized Covariance, the Realized beta and the Realized Skewness and link the
standard LS regressions with the corresponding MIDAS models.
The paper is organized as follows: In section 2 we assume a MIDAS DGP and

show how the MIDAS regression model (Ghysels et al., 2005, 2006) is related to the
standard LS regressions using the popular high frequency volatility estimators such as
Realized Volatility type estimators, among others. In section 3 we derive the general
bias representation of the slope estimator of the standard regression model due to
misspecifying the MIDAS regression model. We further parameterize the bias of the
slope estimator for a number of continuous time models, for alternative weighting
schemes and empirically relevant parameters. Moreover we show how the bias can be
extended to other types of high frequency volatility measures proposed in the volatility
estimation literature. In section 4 we analyze the asymptotic variance and MSE for
the slope estimator of the LS and NLS regression models with high frequency volatility
filters and derive the conditions of relative MSE effi ciency of the slope estimators in
standard LS and MIDAS-NLS models. We also study the in-sample Rsquared of these
models. In section 5 we extend the bias analysis in the standard LS regression models
with other Realized Measures when the corresponding MIDAS model is misspecified.
In section 5 we also derive some additional and easily verifiable conditions of relative
asymptotic variance effi ciency of the slope estimators in the MIDAS and LS regression
models which use high frequency covariance measures. Section 6 concludes the paper.

2 Regression models of low frequency variables
with high frequency volatility predictors

The objective in this section is to relate and analyze the standard LS regression model
which employs high frequency volatility measures as predictors with the corresponding
MIDAS-NLS regression models first proposed by Ghysels et al (2005, 2006).
We assume a MIDAS Data Generating Process (MIDAS-DGP) which relates the

low frequency dependent variable, Yt, observed once between t − 1 and t, and the
response variable which is the aggregated, weighted quadratic transformation of a
high frequency variable (r

(m)
t/m)2, taken as a proxy of its volatility, observed m times

more often than Yt:

Yt+1 = µ+ γ
∑m

i=1
mwi(r

(m)
t−i/m)2 + et+1, (1)

where et ∼ WN(0, ζ2), t = 1, ..., T. The high frequency variable r(m)
t/m is assumed

to follow a continuous time process, details of which are presented in section 3. The
MIDAS-DGP allows for a general aggregation/weighting scheme, wi. In (1) we assume
that wi > 0 and

∑m
i=1 wi = 1 such that the slope parameter, γ, is identified.

The MIDAS-DGP in (1) is motivated from different strands of the literature. In
financial economics, low frequency financial asset returns are explained by financial
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indicators’volatilities which aggregate higher frequency data (e.g. Goyal and Welch
(2008), Ghysels et al. (2005, 2006)). The Realized Volatility (RVt) estimator is often
used as a benchmark. Different high-frequency Realized Volatility measures are em-
ployed in this literature. In addition, a similar MIDAS-DGP to (1) is assumed in the
risk-return literature using alternative high-frequency measures of risk, approximated
by different high frequency transformations of r(m)

t/m, such as the Realized Skewness and
Kurtosis (Amaya et al., 2015, inter alia) or based on cross-products of high-frequency
returns of different assets capturing measures of covariation as measured by the Re-
alized Covariance and Realized Beta (e.g. Gonzales et al., among others). A similar
approach is pursued in the macro literature which links low frequency economic activ-
ity variables with high frequency financial volatility indicators. For example, the low
frequency dependent variable could be monthly industrial production growth or infla-
tion whereas the high frequency variable is the quadratic transformation of financial
assets returns observed m times more often in the same period. Various values of m
have been proposed in the literature to study, for instance, the relationship between
low frequency returns or macro variables and financial volatility, where m is say daily
(m = 22 or 66 days) e.g. French et al. (1987), Goyal and Welch (2008), Ghysels et al.
(2005, 2006), and m = 22 ∗ 78 5-minute data in Bollerslev and Zhou (2006) among
others.
Two alternative approaches can be pursued to estimate the MIDAS-DGP in (1).

The MIDAS regression model approach, first proposed by Ghysels et al. (2005, 2006),
specifies the dynamic relationship between the Yt and r

(m)
t/m by projecting the low-

frequency variable Yt onto a history of lagged high frequency observations of r
(m)
t−i/m,

by estimating a flexible and parsimonious weighting function, wi(θ), which depends
on a low dimensional parameter vector e.g. θ = (θ1, θ2):

Yt+1 = µ+ γ
WRV

∑q

i=0
wi(θ)(r

(m)
t−i/m)2 + et+1 = µ+ γ

WRV
WRVt + et+1, (2)

where et is a martingale difference process with respect to the sigma fields generated
by {r(m)

t−i/m, e
(m)
t−i/m, i ≥ 0}, E(e2

t ) = σ2 < ∞, q ≥ m, t = 1, ..., T. We assume that∑q
i=0 wi(θ) = 1 so that γ

WRV
is identified. Within the MIDAS model alternative

transformations of the aggregated/weighted high frequency variable, r(m)
t/m, can be

related to high-frequency volatility measures such as Realized Volatility, Realized
Power Variation, among others, as well as other high-frequency risk measures such
as the Realized Skewness and Kurtosis. For instance, aggregation of the process
{|r(m)

t/m|g} in (2) can be related to the popular Realized Volatility (RVt) and Power
Variation (PVt) measures for g = 2 and 1, respectively, when the estimated weights
turn to be all equal or flat. In general the MIDAS regression model allows for flexible
and parsimonious weighting scheme to be estimated by the data and thereby involves
aggregating the weighted high frequency say {|r(m)

t/m|g, g = 2} which is denoted by the
Weighted Realized Volatility, WRVt =

∑q
i=0 wi(θ)(r

(m)
t−i/m)2, given in (2). Similarly if
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the corresponding high-frequency process in the MIDAS regression model was instead
{|r(m)

t/m|g, g = 1}, we would refer to the estimated process in (2) as Weighted Power
Variation, WPVt =

∑q
i=0 wi(θ)|r(m)

t−i/m|.2
Some examples of flexible, parametric weight functions in (2) are Almon, the

exponential Almon, the Beta polynomials (e.g. Ghysels et al., 2006) for which the
weighting scheme can be decreasing, increasing, hump shaped and multi-modal. Here
we use the Exponential Almon weights

wi(θ1, θ2) = eθ1i+θ2i
2

/
∑m

k=1
eθ1k+θ2k2 (3)

and the Geometric weights
wi(θ) = θi/

∑m

k=1
θk. (4)

The above weight functions nest the flat weighting scheme when θ1 = θ2 = 0 in (3)
and θ = 1 in (4).3 Our analysis can cover additional weighting functions.
The standard LS regression model approach to approximate the MIDAS-DGP in

(1) assumes that all weights are equal or flat such that wi = 1/m in (1) and therefore

Yt+1 = µ+ γRV
∑m

i=0
(r

(m)
t−i/m)2 + et+1 = µ+ γRVRVt + et+1, (5)

where et ∼ WN(0, ζ2) and the Realized Volatility is RVt =
∑m

i=1(r
(m)
t−i/m)2. The

MIDAS regression model in (2) nests the standard LS regression model in (5) when
an equal or flat weighting/aggregation scheme is assumed or estimated by the data,
i.e. wi(θ) = 1 and q = m, with the corresponding popular Realized Volatility,
RVt =

∑m
i=0(r

(m)
t−im)2 or Power Variation, PVt =

∑m
i=0 |r

(m)
t−i/m| filters for g = 2 and 1,

respectively. While the standard model in (5) is estimated by LS, the MIDAS model
in (2) is estimated by NLS.4

In order to compare these two modeling approaches consider the situation where
the weights are not flat/equal and instead the flat weights are imposed and the stan-
dard LS model (5) is estimated. This would yield a misspecified standard regression
model. The misspecification arises in the form of the omitted variable bias which

2It is important to clarify that WRVt and WPVt refer to the estimated processes within the
MIDAS model. This point also applies to other transformations of the high frequency process which
can be related to other types of existing realized measures in the literature, discussed below.

3Additional examples of weight functions used for volatility filtering are, for instance, the U-
shaped weighting schemes which capture the intraday seasonality of squared returns to estimate
the corresponding daily volatility. In addition asymmetric weighting schemes which correspond
to different weights depending on the effect of positive or negative returns in volatility have also
been proposed by Chen and Ghysels (2010). Finally the Heterogeneous AutoRegressive HAR-RV
regressions proposed by Corsi (2009) are closely related to MIDAS-RV regressions with step functions
as weights as noted in Corsi (2009).

4The MIDAS model can be more general than the corresponing LS regression given q > m. Yet
for comparison purposes we use the same m as that used traditionally by the RV filters.
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yields not only a biased but also ineffi cient regression slope estimator, γ̂RV . In or-
der to show the omitted terms we can decompose the term WRVt in the MIDAS
regression model (2) as follows:

WRVt = m
∑m

i=1
wi(θ)(r

(m)
t−i/m)2 =

∑m

i=1
(mwi(θ)− 1) (r

(m)
t−i/m)2 +RVt

= m
∑m

i=1
(wi(θ)− 1/m) (r

(m)
t−i/m)2 +RVt = m

∑m

i=1
w∗i (θ)(r

(m)
t−i/m)2 +RVt

= m
∑m

i=1
w∗i (θ)(r

(m)
t−i/m)2 +RVt = XRVt(θ) +RVt, (6)

where XRVt(θ) = m
∑m

i=1w
∗
i (θ)(r

(m)
t−i/m)2 = m

∑m
i=1 (wi(θ)− 1/m) (r

(m)
t−i/m)2. Given

that for identifying the γ
WRV

parameter we assume
∑m

i=1wi(θ) = 1, this implies that∑m
i=1 w

∗
i (θ) = 0.

The above MIDAS regression model can also be related to other volatility filters
(e.g. the Realized Power Variance, the Two Scale Realized Variance) as well as other
realized measures (e.g. higher order Realized Moments and Realized Covariances)
which we analyze in more detail in subsequent sections below.

3 The Bias in regression models with high fre-
quency volatility measures

Following the previous subsection the MIDAS regression model (2) following the
decomposition in (6) can be expressed as

Yt+1 = µ+ γWRV

∑q

i=0
wi(θ)(r

(m)
t−i/m)2 + et+1 = µ+ γWRVWRVt + et+1

= µ+ γWRV (XRVt(θ) +RVt) + et+1 et ∼ WN(0, ζ2) (7)

which decomposes the MIDAS term, WRVt, to the equally weighted traditional RVt
filter and an extra variable, XRVt(θ) = m

∑m
i=1w

∗
i (θ)(r

(m)
t−i/m)2 such that

∑m
i=1wi(θ)

= 1 for identifying γWRV. If one imposes the RVt in (7) and estimates the standard
LS regression model in (5) then γ̂RV would be biased if the omitted term XRVt(θ)
from (7) is correlated with RVt. Proposition 1 provides the details of this bias.

Proposition 1 Let the MIDAS regression model given in (7) be the true model with
a non-flat weighting scheme which yields the estimated Weighted Realized Volatility
term, WRVt, in (6). If instead the standard LS regression model in (5) is estimated
imposing the Realized Volatility, RVt, with equal weights, then the OLS estimator of
γ̂RV in (5) would be biased for γWRV in (7). Assuming that the high frequency process
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{(r(m)
t/m)2} is stationary and ergodic, the bias of γ̂RV is:

Bias (γ̂RV) =
γWRV

V ar(
m∑
i=1

(r
(m)
t−i/m)2)

Cov(

m∑
i=1

(r
(m)
t−i/m)2,m

m∑
i=1

w∗i (r
(m)
t−i/m)2)

=

γWRV
m∑
i=1

w∗i var((r
(m)
t−i/m)2) + 2mγWRV

m∑
i=1

∑
i<j

w∗iCov((r
(m)
t−i/m)2, (r

(m)
t−j/m)2)

mV ar((r
(m)
t−i/m)2) + 2

m∑
i=1

∑
i<j

Cov((r
(m)
t−i/m)2, (r

(m)
t−j/m)2)

=

2γWRV
m∑
i=1

∑
i<j

w∗jCorr((r
(m)
t−i/m)2, (r

(m)
t−j/m)2)

1 + 2
m−1∑
i=1

m−i
m
Corr((r

(m)
t−i/m)2, (r

(m)
t−j/m)2)

(8)

where
∑m

i=1 w
∗
i var((r

(m)
t−i/m)2) = 0 given that

∑m
i=1 w

∗
i = 0 by definition. �

The bias of γ̂RV given in Proposition 1 is related to the well-known bias problem
due to an omitted relevant variable in the regression model. Yet the difference here is
that the omitted variable, XRVt(θ), that involves the non-flat weighting scheme, is
not only correlated with the equally weighted RVt, but it also has the same regression
coeffi cient, γWRV, as the standard equally weighted RVt regressor. One could consider
the alternative errors-in-variables approach that treats the extra variable, XRVt(θ),
as a measurement error, where the true variableWRVt is measured imprecisely by the
observed or proxy variable RVt, and the difference between them is a measurement
error defined by XRVt(θ) = WRVt − RVt, given in (6). Following this approach,
the LS slope estimator γ̂RV is again a biased estimator of γWRV due to the errors-
in-variables problem, when the correlation between the proxy variable, RVt, and
the measurement error, XRVt(θ), is not zero. In the errors-in-variables approach
the true model is given by Yt+1 = µ + γWRVWRVt + et+1. This model can also
be expressed in terms of the observed variable and its measurement error: Yt+1 =
µ+ γWRVRVt + γWRV (WRVt−RVt) + et+1 = µ+ γWRVRVt + γWRVXRVt(θ) + et+1.
However following the standard errors-in-variables approach, one estimates the LS
model Yt+1 = µ + γRVRVt + e′t+1, where e

′
t+1 = γWRVXRVt(θ) + et+1, assuming the

measurement error has mean zero, constant variance and is uncorrelated with et+1

and the true variable, WRVt. Under these assumptions the asymptotic bias of γ̂RV
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now becomes:

Bias(γ̂RV) =
Cov(RVt, e

′
t+1)

V ar(RVt)
=
Cov(RVt, γWRVXRVt(θ)+et+1)

V ar(RVt)

= γWRV
Cov(WRVt, XRVt(θ))− V ar(XRVt(θ))

V ar(RVt)

= −γWRV
V ar(XRVt(θ))

V ar(WRVt) + V ar(XRVt(θ))
. (9)

It is worth pointing out that in the errors-in-variables setup, the measurement error
assumptions and in particular the assumption that the error term is uncorrelated with
the true variable, Cov(WRVt, XRVt(θ)) = 0, reduces the bias to (9). Comparing
the numerator in (9) with the corresponding one derived in the bias expression in
Proposition 1, we observe that in the latter case this is given by Cov(RVt, XRVt(θ)),
instead. Therefore although the errors-in-variables approach also yields a bias in the
LS estimator, when the weights are not flat, given by (9), the classical measurement
assumption is not valid in our setup since by construction Cov(WRVt, XRVt(θ)) 6= 0.
Consequently, we follow the omitted variable approach for deriving the bias as given
in Proposition 1 and (8).

Following Proposition 1 we apply the law of large numbers to find that γ̂RV in the
standard LS regression model converges to:

γ̂RV
P→ γWRV(1 +

cov(RVt, XRVt(θ))

var(RVt)
)

P→ γWRV(1 +

2m
m∑
i=1

∑
i<j

w∗iCov
(

(r
(m)
t−i/m)2, (r

(m)
t−j/m)2

)
mV ar

(
(r

(m)
t−i/m)2

)
+ 2

m∑
i=1

∑
i<j

Cov
(

(r
(m)
t−i/m)2, (r

(m)
t−j/m)2

)) (10)

assuming that the high frequency process {(r(m)
t/m)2} is stationary and ergodic.

The bias of γ̂RV in (8) is a function of the persistence of the squared high fre-
quency returns {(r(m)

t/m)2} aggregated by the high frequency volatility measures, e.g.
the RVt and WRVt in these models, the high frequency sample, m, the cumulative
sum of weights given by

∑m
i=1

∑m
i<jw

∗
j =
∑m

i=1

∑m
i<j(wj − 1/m) and the true parame-

ter, γWRV. If the estimated weights in the MIDAS NLS regression (7) turn out to be
flat/equal, then the bias in the standard OLS regression (5) would be zero. However
if the estimated weights are not flat in the MIDAS regression model above, then the
Bias(γ̂RV) due to imposing the equally weighted RVt (with weights 1/m), is a function
of the cumulative weight function, the autocorrelation function of {(r(m)

t−i/m)2} and the
true parameter, γWRV, which determine the sign and the shape of the Bias(γ̂RV).5

5The bias expression derived hereby is different from that derived in Andreou, Ghysels and
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For a family of positive exponentially declining weighting functions, such as the
Geometric weights and Exponential Almon weights, and different values of m, the
cumulative weights,

∑m
i=1

∑m
i<j w

∗
j , are negative and exponentially declining and in-

crease in absolute value as m grows. Declining weight functions, wj(θ), are found to
be relevant when modeling, for instance, the monthly volatility using daily squared
returns within (or beyond the month) for which the distant squared returns have an
exponential memory decaying behavior for estimating the monthly volatility today.
Applications of exponentially declining weights based on the Beta or Exponential
Almon polynomials as well as asymmetric weights are found in Ghysels et al. (2005),
Leon et al. (2007), Gonzalez et al. (2012) among others.6

When the estimated weights turn out to be declining in a MIDAS regression model
and one instead estimates the LS regression model using RVt, given in (5), thereby
imposing the equal high-frequency weights in model (7), then γ̂RV would be biased
downwards if the unknown true parameter, γWRV, is positive. Otherwise, if γWRV is
negative, then γ̂RV would be biased upwards. In both cases, the γ̂RV tends to be biased
towards zero. Consequently if the low frequency dependent variable is stock returns
then following the classical risk-return trade-off theoretical relationship, γWRV would
be assumed to be positive. Hence the negative bias result in standard LS regression
models, like (5), yields an under-estimated risk-return relation which has financial
misallocation implications. Similarly if the low frequency variable is Value at Risk
(VaR) our results imply that there would be more serious losses from risk management
decisions especially during crises. Within the macro forecasting literature our results
imply that if the low frequency variable is say GDP growth and the high frequency
variable is a proxy of stock market volatility, then foregoing the the evidence of a
non-flat weighting scheme in MIDAS models (e.g. Andreou et al., 2012, 2013) and
using the standard LS regression model would yield biased LS forecasts.
Essentially what the above proposition states is that if the weighting scheme of

high frequency aggregated squared returns for volatility filters is not flat in MIDAS
regressions, then a bias will incur on the slope estimator from imposing the traditional
equally weighting scheme in realized volatility LS regressions. Our formulation of the
bias in (8) is general enough to be valid for different weighting schemes, different types
of high frequency processes and autocorrelations and generalizes to other volatility
estimators (addressed below). The above results can be extended easily to other
high frequency volatility filters used in the literature which we discuss further in
subsection 3.2. Now we turn to parameterize the general bias formulation in (8)

Kourtellos (AGK) (2010) both for the general case in (8) and (10) and for the specific models
considered below. The general representation of the bias in (8) is relatively more analytical in terms
of the role of the high frequency process and the weighting scheme, compared to standard formulation
of the LS bias in (3.3) in AGK. In addition, here we obtain the bias for different volatility filters
and for different types of models (discrete and continuous). Moreover we derive a more general
and elegant representation of the bias in (8) and (18) compared to the bias of an AR(1) model in
Proposition 4.3, Box 1 equation in AGK.

6The bias derived in this section applies to alternative high-frequency weight functions.
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for both continuous and discrete time models given that these are considered in the
literature of volalility estimation. This approach allows us to examine using various
models of financial asset returns under what situations the bias of γ̂RV turns out to
be negative and to compare the actual size of the bias for alternative models and
parameters.

3.1 The Bias of γ̂RV for continuous and discrete time models

In this subsection the general bias formulation of γ̂RV in Proposition 1 is now derived
for some continuous time models typically considered in the stock returns modeling
literature using the corresponding unconditional higher-order moments of returns.
For the specific examples of the continuous and discrete time processes studied be-
low we report the conditions or parameter restrictions that ensure stationarity and
ergodicity which are known in the literature. We also examine if the empirical pa-
rameter values satisfy these conditions for the processes considered. For the discrete
choice model and many of the continuous time models studied below these conditions
are satisfied. In this subsection we also quantify the size of the bias for empirically
relevant parameter values of a number of models found in the literature. In order to
compare the level of the bias across models and model parameters we fix the weight-
ing scheme to be the same across applications. We focus on exponentially declining
weighting schemes having in mind the application of how MIDAS models with daily
high frequency volatility filters affect the low frequency variables e.g. macroeconomic
variables or aggregated excess stock returns. In our analysism can be longer than the
corresponding low frequency time interval of say the mixed samples of monthly/daily
(m ≈ 22), quarterly/daily (m ≈ 66) or annual/daily (m ≈ 250). We plot the cor-
responding bias curves for the different models, parameters and weighting schemes
across m. In all examples we fix γWRV to be positive and equal to 1 for ease of ex-
position and we take m = 288 the typical interval used for 5 minute stock market
return data to estimate the daily volatility.7

3.1.1 The Ornstein Uhlenbeck (OU) model

Let the price follow an OU Stochastic Volatility type model given by

dP (t) =
{
µ+ βσ2(t)

}
dt+ σ(t)dW (t), (11)

where W (t) is a standard Brownian motion and σ2(t)∼ OU is the instantaneous
volatility assumed to be stationary, latent and stochastically independent of W (t)
where dσ2(t) = −λσ2(t)dt+ dz(λt), λ > 0 and z(t) is a (homogeneous) Levy process

7Similarly in the case of annual/daily MIDAS-volatility paradigm then m ≈ 250 which can also
be inferred from the same figures.
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with non-negative increments. This stochastic differential equation is satisfied by the

σ2(t) = exp(−λt)σ2(0) +

∫ t

0

exp(−λ(t− s))dz(λs). (12)

According to Barndorff-Nielsen and Shephard (BNS) (2001, section 2.2), for a self-
decomposable probability distribution D on the positive half-line there is a strictly
stationary OU process such that σ2(t) ∼ D. Following a simple example in BNS (2001,
section 2.2), σ2(t) is a stationary OU process with Γ(ν, α)marginals. According to Lee
(2012, section 2.5), the process σ2(t) in (12) is exponentially ergodic and β−mixing if
σ2(t) is simultaneously π-irreducible and E|z(t)|r <∞ for some t > 0 and r > 0. For
this model the Bias(γ̂RV) in the standard LS regression estimator (5) which imposes
the flat weighted RV t is:

Bias (γ̂RV) =
2mγWRV

∑m
i=1

∑m
i<j w

∗
j c e

−λ(j−i−1)

m+ 2
∑m

i=1

∑m
i<j c e

−λ(j−i−1)
, (13)

where λ > 0 is the parameter that controls the autocorrelation of σ2(t) given by
%(u) = exp (−λ|u|) when the σ2(t) is square integrable. Note that c =

(
1− e−λ∆

)2
/(6(e−λ∆−

1 + λ∆) + 2(λ∆)2(ξ/ω)2), 0 ≤ c ≤ 1/3, ∆ = 1, (ν, α) := (3, 8.5) and varying the
parameters ξ = να−1 and ω2 = να−2.8 From (13) we observe that increasing λ that
causes the Bias(γ̂RV) in the OU model to increase.
In Figure 1 we plot the Bias(γ̂RV ) in the OU model in (13) for different m values

and weight functions w∗(θ) and various parameter values as in BNS (2001) (e.g.
c = 0.09, λ = 0.01 in this figure), as well as different weight functions. Note however
that the numerical results for the OU model regarding the bias can be interpreted
for different high frequencies and values of m given that the λ value reported from
BNS(2002) hold for a range of frequencies m. We use four alternative weighting
schemes w(θ) that yield different exponentially decaying weights. The graphs focus
on the exponential Almon weights but similar results are obtained for the Geometric
weights. Without loss of generality we fix θ1 to zero and vary θ2. For the exponential
Almon weights the flat or equal weighting scheme has θ2 = 0, the near-flat weights
refer to θ2 = −0.0005, whereas the steep or fast decaying scheme refers to θ2 = −0.05
and finally the corresponding intermediate declining weights have θ2 = −0.005.
For the OU model and above parameters we know that the autocorrelation func-

tion %(u) is positive and decreasing as m grows, and therefore the
∑m

i=1

∑m
i<j %(u)

is an increasing, positive function as m grows. Using the bias formulation in (13)
we find in Figure 1 that the Bias(γ̂RV ) is always negative and increasing in absolute
value, due to the cumulative sums of weighted autocorrelations

∑m
i=1

∑m
i<j w

∗
j%j(u).

The Bias(γ̂RV) stabilizes at a lower value when m ≈ 150 for the different weight func-
tions considered in the OU model. The bias is relatively higher in absolute value for

8Using the values in BNS (2001) in example 2.2 does not seem to affect the shape or size of the
bias.
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steeper weights which is expected given that they deviate relatively more from the
flat weights. This is shown by the dotted line in Figure 1. For these steep weights the
bias curve shows that the actual size of the bias for large m ≥ 150 can be severe and
reduce the estimated γRV up to −0.8 (compared to the true γWRV = 1). It is worth
emphasizing that even for the near-flat weights (represented by the dashed line) the
bias is still sizeable and it can reach up to −0.5. For smaller values of m, e.g. take
m = 66 for the 3-month daily returns proposed by French et al. (1987), the bias is
smaller ranging from −0.1 to −0.7 for near-flat to steep weights, respectively.

3.1.2 The Eigenfunction Stochastic Volatility (ESV) model

Let the price follow a continuous time ESV (p) (Meddahi, 2001)

dpt = σtdWt, σ2
t =

∑p

i=0
αiEi(ft), p ∈ N

⋃
{+∞} ,

∑p

i=0
α2
i <∞, (14)

where Ei(ft) are the eigenfunctions of the infinitesimal generator of ft characterized
by dft = k(θ−ft)dt+σftdBt andWt and Bt are two independent standard Brownian
processes. In this model the Bias(γ̂RV) is parameterized by:

Bias (γ̂RV ) =

2mγWRV
m∑
i=1

m∑
i<j

w∗j

(
p∑
q=1

α2q(1−e−δq)
2
e−δq(j−i−1)

δ2q

)
m

(
2α2

0 + 6
p∑
q=1

α2q(−1+δq+e
−δq)

δ2q

)
+ 2

m∑
i=1

m∑
i<j

(
p∑
q=1

α2q(1−e−δq)
2
e−δq(j−i−1)

δ2q

)
(15)

We consider two models within the ESV class of models.

The GARCH diffusion model is given by

dft = k(θ − ft)dt+ σftdBt, σ2
t = α0E0(ft) + α1E1(ft), (16)

where α0 = θ, α1 = θ
√
λ/1− λ and λ = σ2/2k. The parameter θ determines the

(unconditional) mean of volatility and θ > 0 ensures non-negativity of the variance
process, k is the mean reversion parameter and σ is the variance-to-variance parame-
ter. For the process to be well-defined the parameters θ > 0, k > 0 and σ2 ≤ 2kθ
imply that the process is stationary in mean and volatility (e.g. Feller, 1951, Bollerslev
and Zhou, 2002). These conditions are satisfied for the sets of parameters we consider
below. Following Meddahi and Renault (2004) the above GARCH-diffusion model is
by definition stationary. The Bias(γ̂RV) in equation (15) now holds for p = 1. Using
the two sets of parameters from Andersen et al. (2011) (where θ = 0.636, σ = 0.144,
δ1 = κ = 0.035) and Bollerslev and Zhou (2002) (where θ = 0.250, σ = 0.100,
δ1 = κ = 0.100) we plot the Bias(γ̂RV) in Figure 2. We observe that for this model
and the above sets of parameter values the Bias(γ̂RV) exhibits the same general pat-
tern as that in the OU model. Yet an important difference is that the Bias(γ̂RV)
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in the GARCH diffusion model is almost half of that of the OU model, across all
m and weighting schemes when using the Andersen et al (2011) (ABM) parameters.
Moreover, using the parameter values in BZ parameters the Bias(γ̂RV) decreases and
becomes much smaller compared to that based on the ABM parameters. This is
mainly due to the lower value of the θ parameter in (16). Overall we find that the
bias of γ̂RV for the GARCH diffusion model with parameter values as in ABM and
BZ ranges from −0.6 to −0.2 for steep weight functions, and from −0.2 to −0.05 for
near flat weights. Overall for the GARCH diffusion model the Bias(γ̂RV) is decreasing
and it stabilizes to a lower bound and at an earlier value of m, m ≈ 100, compared to
that of the OU model. This result is due to not only the parameters in the GARCH
diffusion but also the stochastic volatility nature of the model.

The two-factor affi ne volatility model is given by

σ2
t = σ2

1,t + σ2
2,t, dσ2

j,t = kj(θj − σ2
j,t)dt+ ηjσj,tdW

(j+1)
t , j = 1, 2 (17)

which is rewritten in

dfj,t = kj(αj + 1− fj,t)dt+
√

2kj
√
fj,tdW

(j+1)
t , j = 1, 2.

where aj = (2kjθj − fj,t) − 1 and fj,t = σ2
j,t(2kj/η

2
j), j = 1, 2. Following Barczy et

al. (2014) the two-factor affi ne model specification in (17) is stationary and ergodic
by definition. The Bias(γ̂RV) given by equation (15) holds for p = 2 and parameters
α0 = θ1 + θ2, α1 = −η1(θ1/2k1)0.5, α2 = −η2(θ2/2k2), δ1 = k1 and δ2 = 2k2. We use
the Bollerslev and Zhou (2002) parameter values where k1 = 0.5708, θ1 = 0.3257, η1 =
0.2286, k2 = 0.0757, θ2 = 0.1786, η2 = 0.1096 to parameterize the Bias(γ̂RV) found
in Figure 3. Andersen, Bollerslev and Meddahi (2004) report very similar parameter
values. In Figure 3 we observe that for exponential Almon weights, the Bias(γ̂RV)
based on the two factor affi ne model appears to be relatively smaller than all the
rest of the models considered and the actual values of the bias appear to be closer
to those obtained for the GARCH diffusion with the Bollerslev and Zhou (2002)
parameter values. However, it is worth noting that the small bias that ranges from
−0.1 to −0.025 for the steep and near flat exponential Almon weights, does not apply
to other declining weights. In fact Figure 3 shows that the corresponding bias for
Geometric weights yields higher Bias(γ̂RV) curves which range from −0.25 to −0.15,
for steep and near-flat weights, respectively, for the same model parameter values.

3.1.3 ARMA approximation of squared returns

We now turn to discrete time models for the squared returns process to study the
Bias(γ̂RV ). The squared returns process can be approximated by an ARMA(p, p)
model for some continuous time models e.g. for the non-Gaussian Ornstein—Uhlenbeck
(OU) and the constant elasticity of variance (CEV) processes (Barndorff-Nielsen and
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Shephard, 2002). Similarly Drost and Nijman (1993) show that if returns follow a
weak GARCH type process then squared returns follow a weak ARMA model and the
corresponding temporal aggregation results can be used to study the effects of differ-
ent sampling frequencies and parameters for such discrete time models. Meddahi and
Renault (2004) also extend such ARMA-type representations within the Square-root
Stochastic Autoregressive Volatility (SR-SARV) models.
We parameterize the general bias formulation of γ̂RV in (8) following Barndorff-

Nielsen and Shephard (2002) who show one can approximate the squared returns
process by an ARMA(1,1) for the non-Gaussian Ornstein—Uhlenbeck (OU) and the
constant elasticity of variance (CEV) models. The linear ARMA(1,1) approximation
has the same autocorrelation function as that of a GARCH model. The AR root of
the ARMA for squared returns is the same as that for the actual volatility whereas
the moving average root is typically much larger in absolute value. Consider the
ARMA approximation for squared returns (r

(m)
t )2 = φ1 + φ1(r

(m)
t−1)2 + ε

(m)
t + β1ε

(m)
t−1

where ε(m)
t is a weak WN and |φ1| < 1 implies a stationary and ergodic process (e.g.

Kristensen, 2009). For the ARMA(1,1) model the bias in (8) becomes

Bias (γ̂RV ) =
2mγWRV(φ1 + β1) (1 + β1φ1)

∑m
i=1

∑m
i<j w

∗
jφ

j−i−1
1

m
(
1 + 2β1φ1 + β2

1

)
+ 2(φ1 + β1) (1 + β1φ1)

∑m
i=1

∑m
i<j φ

j−i−1
1

. (18)

For the positive ARMA parameters in the squared returns process the bias in (18)
would always be negative due to

∑m
i=1

∑
i<j w

∗
j < 0. Using an OU model BNS(2002)

show that the AR parameter is close to 1 (i.e. 0.9 or higher) which is associated with
volatility persistence typically observed in financial data, and that the MA parameter
is close to 0.265 for a wide range of AR parameters. In Figure 4 we plot the bias in
(18) using φ1 = 0.9 and β1 = 0.265 from BNS (2002). We also plot the bias for two
more cases: φ1 = 0.8 and β1 = 0.9 to examine the higher MA effects and φ1 = 0.5
and β1 = 0.265 to assess the effects of lower AR. We report the exponential Almon
weights for steep and near-flat parameters for the BNS parameters whereas for the
other 2 cases we focus on steep weights. We observe that for this ARMA model
with BNS parameters the Bias(γ̂RV ) is negative and it increases in absolute value for
steeper weights, w∗j , while it converges to a lower bound of −0.75 when m ≥ 80. We
find that the bias for the ARMA parameters in BNS (2002) are robust to higher MA
effects (in fact for the same φ1 value, φ1 = 0.9 and higher MA, β1, the bias curves stay
the same with that of BNS). However, it is the higher AR parameter that increases
the bias of γ̂RV in absolute value, ceteris paribus. In fact if for the BNS parameters
one would reduce φ1 from 0.9 to 0.5, then we observe that the Bias(γ̂RV ) would drop
to almost a half, keeping all other parameters equal.

Summarizing, the above numerical results show that, when γWRV > 0, i.e. assum-
ing that an increase in high frequency financial volatility would also increase the low
frequency variable (say low frequency stock returns or the economic activity growth
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rate), for all the above continuous time models and their discrete model approxima-
tion studied above, the bias in γ̂RV is negative and it increases in absolute value for
steeper weights. Moreover our bias curves show that the bias stabilizes to a lower
value around m ≈ 100 for the OU, GARCH diffusion, two factor affi ne and weak
ARMA approximations, for alternative weight parameters. In comparing the actual
size of the bias across the different models and parameter values we find that it is
relatively larger in absolute value for the OU models followed by the weak ARMA
approximations and it is smaller for the GARCH diffusion and especially for the
affi ne two factor models. In quantifying the bias we find that it ranges from -50%
for near-flat weights to -80% for sharply decreasing weights when m ≥ 100 when
γWRV = 1.
Last but not least, we complement the above evidence with asymmetric weighting

schemes for MIDAS models proposed by Ghysels et al. (2005) given the empirical
evidence of the risk return tradeoff for the major European stock markets found
in Leon et al. (2007). The high frequency volatility estimator with asymmetric
weights incorporates the differential effect of positive and negative shocks in volatil-
ity, ϕ

∑m
i=1 wi(θ

−
1 , θ

−
2 )+ (2−ϕ)

∑m
i=1wi(θ

+
1 , θ

+
2 ), where wi(θ1, θ2) are the exponential

almon weights given by (3) for positive and negative returns and ϕ ∈ (0, 2) controls
the total weight of negative shocks on the variance. For the estimated asymmetric
weight parameters in Leon et al. (2007) we derive the corresponding bias curves as-
suming an ARMA process and the bias in (18). Figures 5-7 show the bias curves for
the estimated parameters of the Eurostockxx50, the French CAC and the German
DAX stock market indices, respectively, with the corresponding asymmetric weight-
ing schemes. Interestingly we obtain a negative and decreasing Bias(γ̂RV ) effect for
these asymmetric weights of the three stock market indices which is consistent with
the previous results (for symmetric weights and different models).

3.2 The Bias of γ̂RV for other high frequency volatility filters

The bias results in Proposition 1 can be extended to other high frequency volatility
filters used in the literature. In this subsection we discuss how estimating MIDAS
regressions with different transformation of the high frequency process can be related
to alternative volatility filters such as for instance the Realized Power and Bipower
Variation and the Two Scale Realized Variance.
If we project the low frequency left-hand variable Yt onto a history of lagged high

frequency absolute returns, either |r(m)
t−i/m| or |r

(m)
t−i/m||r

(m)
t−(i−1)/m| then we can relate our

resulting MIDAS regression models to the standard LS regressions models that use
the Realized Power Variation (RPVt =

∑m
i=1 |r

(m)
t−i/m|) or Realized Bipower Variation

(RBPVt = π
2
|r(m)
t−i/m||r

(m)
t−(i−1)/m|) filters (BNS, 2004a), respectively. Specifying the

MIDAS regression model in (2) with high frequency lags of {|r(m)
t/m|} would yield the
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Weighted Realized Power Variation filter, WRPVt, which can be decomposed as

WRPVt = m
∑m

i=1
wi|r(m)

t−i/m| = m
∑m

i=1
(wi − 1/m) |r(m)

t−i/m|+RPVt (19)

which we express as a function of the RPVt in BNS (2004a) and the extra weighted
component, where XRPVt = m

∑m
i=1 w

∗
i |r

(m)
t−i/m|. Based on Proposition 1 the bias in

γ̂RPV in the corresponding LS regression model with RPVt as a predictor caused
by ignoring the first term in (19) or the non-flat weighting scheme of the MIDAS
regression model, is a function of

cov (RPVt, XRPVt) = m
∑m

i=1w
∗
i var(|r

(m)
t−i/m|) + 2m

∑m
i=1

∑
i<j w

∗
iCov(|r(m)

t−i/m|, |r
(m)
t−j/m|) .

Similarly in the MIDAS regression model filtering the weighted |r(m)
t−i/m||r

(m)
t−(i−1)/m|

yields the Weighted Realized Bipower Variation (WRBPV) given by

WRBPVt =
π

2
m

m∑
i=2

wi|r(m)
t−i/m||r

(m)
t−(i−1)/m| =

π

2
m

m∑
i=2

(wi − 1/m) |r(m)
t−i/m||r

(m)
t−(i−1)/m|+RBPVt

(20)
which is a function of the RBPVt in BNS (2004a) and the extra weighted com-
ponent XRBPVt = πm/2

∑m
i=2w

∗
i |r

(m)
t−i/m||r

(m)
t−(i−1)/m|. Following Proposition 1 the

corresponding potential bias in the LS γ̂RBPV is a function of

cov (RBPVt, XRBPVt) = m
∑m

i=2w
∗
i var(|r

(m)
t−i/m||r

(m)
t−(i−1)/m|)

+2m
∑m

i=2

∑
i<j w

∗
iCov(|r(m)

t−i/m||r
(m)
t−(i−1)/m|, |r

(m)
t−j/m||r

(m)
t−(j−1)/m|).

In the analysis so far we have assumed that there is no microstructure noise. In
case we are dealing with intradaily data though the high frequency returns process
can be contaminated with microstructure noise. We now turn to consider another
family of volatility estimators which are robust to microstructure noise. We focus on
the case of IID microstructure noise and consider the asymptotic representation of
the Two Scaled Realized Variance predictor TSRV (m,m1,...,mk,K) proposed by Zhang
et al. (2005), Ait-Sahalia et al. (2006) and Ait-Sahalia and Mykland (2011). The
TSRV (m,m1,...,mk,K) estimator is:

TSRV (m,m1,m2,...,mk,K) =
1

K

∑K

k=1
RV (k,mk) − m̄

m
RV (all) (21)

where m = (1/K)
∑K

k=1 mk or m̄ = (m − K + 1)/K . Note that an alternative
small-sample adjustment to the TSRV in (21) is given by

TSRV
(m,m1,m2,...,mk,K)
adj = (1−m/m)−1TSRV (m,m1,m2,...,mk,K) (22)

which shares the same asymptotic distribution as TSRV (m,m1,...,mk,K). The TSRV (m,m1,...,mk,K)

estimator is based on the idea of averaging over various RV estimators constructed by
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sampling sparsely over high-frequency subsamples. The high frequency observations
allocated into subsamples indexed by k. Using for instance a regular allocation the
returns could be sampled at 5-minute intervals at 9:30, 9:35, 9:40,... and at 9:31,
9:36, 9:41,... and so forth. This will yield a size mk for the size of the kth subsample
with a total of K samples. Averaging the subsample RVs, RV (k,mk), will yield the
so-called average RV estimator given by:

RV (k,mk) =
∑mk

i=1
(r

(mk)
ti,i−1)

2 (23)

The RV (all) in (21) denotes the RV constructed from all the observations and is used
as a bias correction for the average subsampled estimator in (23).
Following the MIDAS regression models we can define the corresponding model

with the estimated Two ScaledWeighted Realized Variance predictor, TSWRV (m,m1,...,mk,K),
with non-flat weights given by

TSWRV (m,m1,...,mk,K) =
1

K

∑K

k=1
WRV (k,mk) − m̄

m
WRV (all), (24)

where WRV (k,mk) = mk

∑mk
i=1 w̃

(mk)
i (r

(mk)
ti,i−1)

2 and WRV (all) = m
∑m

i=1wi(r
(m)
i )2 with∑m

i=1 wi = 1 and
∑mk

i=1 w̃
(mk)
i = 1 for all k, represent the different weights in the

subsampled and full-sampled WRV ’s. This estimator is also motivated from the
MIDAS setup of non-flat weigthing scheme similar to the WRVt given that aggre-
grating the high frequency returns may have different weighting due to either the
time-series structure or the impact of news. More importantly motivated from Zhang
et al. (2005) we show that TSWRV is also unbiased in the case of IID microstruc-
ture noise and more interestingly (24) is a generalization of the TSRV as shown
in the online Appendix (part I).9 In particular, the results in the online Appendix
(part I) show how the TSWRV is associated with TSRV when the latter is closely
related to a Bartlett kernel estimator following Barndorff-Nielsen et al (2004) (see
also Barndorff-Nielsen et al., 2011).
In order to address the potential bias from ignoring the non-flat weighting scheme

in TSWRV
(m,m1,...,mk,K)
t we can decompose it as follows:

TSWRV
(m,m1,...,mk,K)
t = TSRV

(m,m1,...,mk,K)
t +XTSRV

(m,m1,...,mk,K)
t

where TSRV (m,m1,...,mk,K)
t is given by (21) and the extra two-scaled weighted term

now involves two components given by:

XTSRV
(m,m1,...,mk,K)
t =

1

K

∑K

k=1
mk

∑mk

i=1
w̃
∗(mk)
i (r

(mk)
ti,i−1)

2 − m̄
∑m

i=1
w∗i (r

(m)
i )2

(25)
where w̃∗(mk)

i = w̃
(mk)
i − 1/mk and w∗i = wi − 1/m. Interestingly the representa-

tion of XTSRV (m,m1,...,mk,K)
t involves two extra terms in addition to the classical

9The online appendix can be found on the author’s webpage.
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TSRV
(m,m1,...,mk,K)
t . This is also in contrast to the single extra term in XRVt com-

pared to the popular RVt or corresponding PVt estimators above.
From the general bias formulation in equation (8) in Proposition 1 the bias of

γ̂TSRV is a function of the covariance of the Two Scaled Realized Variance estimator
in (21) and the omitted variable in equation (25) given by

Cov
(
TSRV (m,m1,...,mk,K), XTSRV (m,m1,...,mk,K)

)
=

= Cov[(
1

K

K∑
k=1

RV (k,mk) − m̄

m
RV (all)), (

1

K

K∑
k=1

mk

mk∑
i=1

w̃
∗(mk)
i (r

(mk)
ti,i−1)

2 − m̄
m∑
i=1

w∗i (r
(m)
i )2)]

= E[
1

K

K∑
k=1

RV (k,mk) 1

K

K∑
k=1

mk

mk∑
i=1

w̃
∗(mk)
i (r

(mk)
ti,i−1)

2]− E[
1

K

K∑
k=1

RV (k,mk)m̄

m∑
i=1

w∗i (r
(m)
i )2]

− E[
m̄

m
RV (all) 1

K

K∑
k=1

mk

mk∑
i=1

w̃
∗(mk)
i (r

(mk)
ti,i−1)

2] + E[
m̄

m
RV (all)m̄

m∑
i=1

w∗i (r
(m)
i )2] (26)

where the remaining cross-products of the expectations involved in (26) turn out to
be zero because by definition

∑m
i=1w

∗
i = 0 and

∑mk
i=1 w̃

∗(mk)
i = 0, where w∗i = wi−1/m

and w̃∗(mk)
i = w̃

(mk)
i − 1/mk. Similarly the corresponding bias for the small sample

adjusted TSRV in (22) would scale (26) by (1− m̄/m)−1.

4 TheMSE for the slope parameters and in-sample
measures of fit

In this section we turn to the analysis of the asymptotic variance and MSE of the
MIDAS NLS regression estimator γ̂

WRV
in (7) and compare it with the standard

regression LS estimator γ̂
RV
in (5) to assess their relative asymptotic effi ciency. We

provide the general asymptotic variance formulation and apply this to various models
such as the OU, the GARCH diffusion and ARMA with empirically relevant para-
meters to assess the relative effi ciency of the NLS and LS estimators. In addition we
analyze the in-sample R-squared measure of fit of the MIDAS and standard linear re-
gression models given they are functions of the variances of the related high-frequency
volatility measures, as well as the respective γ parameters.

Proposition 2 Assuming that the high frequency process {(r(m)
t/m)2} is stationary and

ergodic, the asymptotic variance (AVar) of the OLS γ̂RV estimator is

AVar (γ̂RV) = ζ2/Var (RVt)

= ζ2/
(
mV ar((r

(m)
t−i/m)2) + 2

∑m

i=1

∑
i<j

Cov((r
(m)
t−i/m)2, (r

(m)
t−j/m)2)

)
(27)
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where var(et) = ζ2. The asymptotic variance (AVar) of the NLS γ̂WRV estimator is

AVar (γ̂WRV) = ζ2E

(
∂XRVt(θ)

∂θ

)2

var

(
∂XRVt(θ)

∂θ

)
/D (28)

where

D = var
(
∂XRVt(θ)

∂θ

)[
E(WRV )2E

(
(∂XRVt(θ)

∂θ
)2
)
−
(
E
(
WRV ∂XRVt(θ)

∂θ

))2
]

−
[
E(WRV )E

(
(∂XRVt(θ)

∂θ
)2
)
− E

(
WRV ∂XRVt(θ)

∂θ

)
E(∂XRVt(θ)

∂θ
)
]2

(29)
Appendix A, part A1 presents the analytical expressions of AVar(γ̂WRV). �

Note that the asymptotic variance of γ̂WRV in the regression model (7) is more
general than that in Andreou et al. (2010) because none of the elements in D in (29)
become zero, as shown in detail in Appendix A, part A1.
As in the previous section we turn to the high frequency moments of specific mod-

els for asset returns as well as empirically relevant parameters in order to assess the
relative asymptotic MSE and relative asymptotic Variance effi ciency of γ̂RV and γ̂WRV
for a number of alternative weighting schemes. Based on the results in Propositions 1
and 2 we analyze the ratios of MSEs, MSE(γ̂RV )/MSE(γ̂WRV ), assuming that ζ

2 = 1
and γWRV = 1 as in the previous numerical analysis for comparison purposes. Figures
8-10 present these MSE ratio results for the OU and ARMA, GARCH diffusion and
two-factor affi ne models, respectively, as defined in subsection 3.1. In all cases the
γ̂WRV is relatively more effi cient than γ̂RV in MSE terms. Figures 9 and 10 show
that even for near-flat exponential almon weights for the GARCH diffusion and two-
factor affi ne models, the MSE(γ̂RV )/MSE(γ̂WRV ) ≈ 2 for m ≥ 100 i.e. γ̂RV looses
almost half of its MSE relative effi ciency as m grows compared to γ̂WRV . For the OU
and ARMA models presented in Figure 8 the relative effi ciency gains from using the
non-flat weights are much bigger. Overall, the numerical results presented in these
figures show that the relative MSE effi ciency gains would depend on the moments of
the high frequency volatility filters, the weighting scheme and its derivative as well
as their cross-product terms as analyzed in Proposition 2.

Proposition 3 The relative effi ciency of the OLS γ̂RV estimator vis-a-vis the NLS
γ̂WRV estimator is based on the asymptotic MSE ratio MSE(γ̂RV) /MSE(γ̂WRV) =
[AVar(γ̂RV)+(Bias(γ̂RV))2]/AVar(γ̂WRV). Assuming for simplicity E(∂XRVt(θ)/∂θ) =
0 we derive the necessary and suffi cient condition for γ̂WRV to be relatively more ef-
ficient than γ̂RV in terms of MSE:(
V ar(WRVt)− (E(∂XRVt(θ)

∂θ
)2)−1(E(WRVt

∂XRVt(θ)
∂θ

))2

V ar(RVt)

)(
1 +

(Cov(RVt, XRVt(θ)γWRV )2

ζ2V ar(RVt)

)
> 1.

(30)
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Given that the (Bias(γ̂RV))2 > 0 we can also assess the relative asymptotic effi ciency
in terms of AVar(γ̂RV) /AVar(γ̂WRV) which yields the following suffi cient condition
for γ̂WRV to be relatively more effi cient than γ̂RV:

AVar (γ̂RV)

AVar (γ̂WRV)
=

D

var(RV )(E(∂XRVt(θ)
∂θ

)2)2
> 1

or
V ar(WRVt)− (E

(
∂XRVt(θ)

∂θ

)2

)−1(E
(
WRVt

∂XRVt(θ)
∂θ

)
)2

V ar(RVt)
> 1 (31)

where D is given in equation (29) (in Proposition 2). The proof is in Appendix A,
part A2. �

We also evaluate the findings from Proposition 3 using the continuous time mod-
els and parameters discussed above. The necessary and suffi cient condition in (30)
is satisfied for the various models and parameter values and alternative weighting
schemes which corroporates evidence in Figures 8-10 presented above in terms of rel-
ative MSEs. Consequently for conciseness we do not present these graphs. Instead we
present evidence which evaluates the suffi cient condition in (31) based on the relative
asymptotic variance condition. Figures 11 and 12 present the ratios of the asymp-
totic variances, AVar(γ̂RV )/AVar(γ̂WRV ), for the OU and GARCH diffusion models,
respectively. Interestingly we find that even for near-flat aggregation weights and for
m ≥ 60, the γ̂WRV is relatively more effi cient than the γ̂RV for empirically relevant
parameters (as in ABM (2004), BNS (2002) and BZ (2006)). Therefore it is worth
emphasizing that even if one evaluates the relative effi ciency in terms of asymptotic
variances the LS slope estimator is still relatively less effi cient than the corresponding
MIDAS-NLS estimator.

Another popular measure of in-sample fit used in empirical studies and in particu-
lar in predictive regressions of excess market returns using different predictors includ-
ing high frequency Realized Volatility, is the coeffi cient of determination, Rsquared
(R2). We examine the ratio of R2′s of the standard regression model using the tra-
ditional RVt as in the LS model (5) vis-a-vis the MIDAS model (7) with WRVt, and
show that R2

RV < R2
WRV. In addition we examine how the ratio of R

2′s, R2
RV/R

2
WRV,

behaves for these two alternative high frequency volatility measures in different mod-
els and weight functions.
We first consider the case where γ̂RV is a biased estimator of the true parameter γ

and then proceed to the case where both γ̂RV and γ̂WRV could be unbiased estimators
of γ. For the standard regression model (5) the coeffi cient of determination is R2

RV =
cov2(Yt+1, RVt)/var(Yt+1)var(RVt) = γ2

RVV ar(RVt)/V ar(Yt+1). Similarly for MIDAS
model in (7) the corresponding R2

WRV = cov2(Yt+1,WRVt)/var(Yt+1)var(WRVt) =
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γ2
WRVV ar(WRVt)/V ar(Yt+1). Then if γ̂RV is biased then γ̂

2
RV can be written as a

function of γ2
WRV from equation (10). In this case we obtain the ratio of R2′s:

R2
RV/R

2
WRV = [V ar(RVt) + Cov(RVt, XRVt)]

2 /V ar(RVt)V ar(WRVt) (32)

which is equivalent to

R2
RV

R2
WRV

=
(V ar(RVt))

2 + (Cov(RVt, XRVt))
2 + 2Cov(RVt, XRVt)V ar(RVt)

(V ar(RVt))
2 + V ar(RVt)V ar(XRVt) + 2Cov(RVt, XRVt)V ar(RVt)

. (33)

From the ratio in (33) we observe, as expected, that R2
RV/R

2
WRV = 1 if the esti-

mated weights turn out to be equal/flat in model (7) and γ̂RV is unbiased. However,
when the estimated weight function turns out to be non-flat then whether ratio of
R2
RV/R

2
WRV in (33) will be less or greater than one will be determined by whether

(Cov(RVt, XRVt))
2 ≶ V ar(RVt)V ar(XRVt). We show that the (Cov(RVt, XRVt))

2 <
V ar(RVt)V ar(XRVt) or

corr2(RVt, XRVt) =
(Cov(RVt, XRVt))

2

V ar(RVt)V ar(XRVt)
< 1 (34)

which implies that R2
RV/R

2
WRV < 1. Note that

Cov(RVt, XRVt) = E(RVt ·XRVt) = 2m
m∑
i=1

∑
i<j

w∗jE((r
(m)
t−i/m)2(r

(m)
t−j/m)2) (35)

because E(XRVt) = 0. Hence

V ar(XRVt) = E(XRV 2
t ) = m2

m∑
i=1

w∗2i E(r
(m)
t−i/m)4+2m2

m∑
i=1

∑
i<j

w∗iw
∗
jE((r

(m)
t−i/m)2(r

(m)
t−j/m)2).

(36)
We rewrite the V ar(RVt) in terms of expectations:

V ar(RVt) = mE(r
(m)
t−i/m)4 + 2

m∑
i=1

∑
i<j

E((r
(m)
t−i/m)2(r

(m)
t−j/m)2)−m(E(r

(m)
t−i/m)2)2 (37)

The product of (36) and (37) is of order m3 whereas the numerator in (34) which is
(35) is of orderm2, which implies that R2

RV/R
2
WRV < 1 for general weighting functions.

We now turn to the second case where both γ̂WRV and γ̂RV could be unbiased
estimators of γ. In this situation, given that E(γ̂WRV) = E(γ̂RV) = γ, the

R2
RV/R

2
WRV = V ar(RVt)/V ar(WRVt) < 1 (38)

because Var(WRVt) = var(RVt) + var(XRVt) + 2cov(RVt, XRVt) and var(XRVt) >
2cov(RVt, XRVt) given that var(XRVt) is of orderm2 whereas the cov(RVt, XRVt) <
0 and is of order m.
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The numerical results for some models studied in subsection 3.1 confirm that
R2
RV/R

2
WRV < 1 for different weight functions found in Figures 13-15. It is worth

emphasizing that even for the near-flat weights, when high frequency returns follow
an OU with empirically relevant parameters, we find that 0.9 ≤ R2

RV/R
2
WRV ≤ 0.5

for 80 ≤ m ≤ 288 (Figure 13). Similar results are obtained for the GARCH diffusion
models (Figure 14) and the ARMA models (Figure 15). These results also hold for
different weight functions such as the exponential almon and geometric weights.

5 Other Realized Measures in MIDAS regressions

5.1 Realized Covariances

In this subsection we analyze the corresponding regression models with the real-
ized covariances and in the next subsection we turn to the realized beta and skew-
ness. Consider the model specification where as before, the low frequency is say
a quarterly or monthly excess returns and the high frequency variables are real-
ized covariances of high frequency returns with several high frequency factors such
as the market portfolio or other factors like the Fama-French factors. Realized co-
variances are relevant in many setups such as portfolio optimization and allocation,
asset pricing models and porfolio risk assessment. The Realized Covariance is defined
by RCovt =

∑m
i=1 rz,i,trm,i,t as proposed (e.g. in Andersen, Bollerslev, Diebold and

Labys, 2001) to represent the high frequency covariance between the returns of two
financial assets, rz and rm, e.g. exchange rates returns in the aforementioned study,
or the (excess) returns of a risky stock and the market portfolio. Barndorff-Nielsen
and Shephard (2004b) provide the distribution theory of realized covariance, corre-
lation and beta measures. The corresponding MIDAS regression model is given by
Yt+1 = µ + γWRCov

∑m
i=1 vi(θ)rz,i,trm,i,t + et+1 = µ + γWRCovWRCovt + et+1 where

et ∼ WN(0, ζ2) and we denote for ease of exposition the Weighted Realized Covari-
ance, WRCovt, as:

WRCovz,t = m
∑m

i=1
vi(θ)rz,i,trm,i,t

=
∑m

i=1
rz,i,trm,i,t +m

∑m

i=1
v∗i rz,i,trm,i,t = RCovz,t +XRCovz,t(θ)

where vi(θ) are estimated weight functions and MIDAS model becomes:

Yt+1 = µ+ γWRCovWRCovz,t + et+1 = µ+ γWRCov (RCovz,t +XRCovz,t(θ)) + et+1

(39)
where et ∼ WN(0, ζ2). If one imposes the equally weighted RCovz,t and estimates
the LS regression model below

Yt+1 = µ+ γRCovRCovz,t + et+1 (40)
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then these models can be casted into the analysis of section 3.1. Hence the bias
from omitting the term XRCovz,t(θ) in (39) and estimating the model (40) following
Proposition 1 is:

Bias (γ̂RCov) =
2γWRCov

∑m
i=1

∑
i<j v

∗
jCorr (rz,i,trm,i,t, rz,j,trm,j,t)

1 + 2
∑m−1

i=1
m−i
m
Corr (rz,i,trm,i,t, rz,j,trm,j,t)

(41)

From equation (41) we infer that the Bias(γ̂RCov) = 0 if (i) the weights vi are flat or
(ii) if there is no autocorrelation between the cross-products of the two asset returns
rz,trm,t, at different time intervals i and j. In case the Corr (rz,i,trm,i,t, rz,j,trm,j,t) = 0,
then the LS estimator γ̂RCov is unbiased. More specifically (ii) would hold for weakly
effi cient financial markets based on the assumption of no linear dependence. This as-
sumption has gained mixed empirical evidence. However, if Corr (rz,i,trm,i,t, rz,j,trm,j,t) 6=
0 then the Bias(γ̂RCov) would be determined by (i) the cumulative sum of the weight
function,

∑m
i=1

∑
i<j v

∗
j (ii) by the high frequency sample size m and (iii) the form

of weak dependence encountered in {rz,trm,t} e.g. Corr (rz,i,trm,i,t, rz,j,trm,j,t) =
ρz,m|j − i| for a Brownian Motion.
Assuming the multivariate supOU processes presented in Barndorff-Nielsen and

Stelzer (2010, 2013) and Pigorsch and Stelzer (2009a,b) we can obtain the properties
of the multivariate high frequency returns process. Following Barndorff-Nielsen and
Stelzer (2013, Theorem 3.4) for supOU with Stochastic Volatility with no leverage
and Pigorsch and Stelzer (2009a, Theorems 3.2, 3.3), the d-dimentional vector of log
price increments denoted by {Xt} as well as their "squares" {XtX

T
t } are stationary

and square-integrable with

E(X1) = 0, V ar(X1) = E(V1), Cov(Xh+1,X1) = 0,∀h. (42)

and with E(X1X
T
1 ) = E(V1) and

Cov(vec(Xh+1X
T
h+1), vec(X1X

T
1 )) = Cov(vec(Vh+1), vec(V1)) for h ∈ N

where limh→∞Cov(vec(Vh+1), vec(V1)) = 0. Moreover, vec(XXT ) is an ARMA(1,1)
which implies that {XtX

T
t } is itself an ARMA(1,1) process. Hence assuming the

positive semi-definite supOU process with Stochastic Volatility in Barndorff-Nielsen
and Stelzer (2010, 2013) the autocorrelation of the cross-product of returns,
Corr(

∑m
i=1 rz,i,trm,i,t,

∑m
i=1 rz,j,trm,j,t), would be zero and therefore the Bias(γ̂RCov) =

0, even if the high frequency weights are non-flat.
We now turn to study the effi ciency of the regression estimates γ̂WRCov and γ̂RCov

assuming that both are unbiased estimators implied by (42). The asymptotic variance
(AVar) of the LS γ̂RCov estimator is

AVar (γ̂RCov) =
ζ2

mV ar (rz,i,trm,i,t) + 2
∑m

i=1

∑
i<j Cov (rz,i,trm,i,t, rz,j,trm,j,t)

where AVar(γ̂RCov) = ζ2/mV ar (rz,i,trm,i,t) if {(rz,i,trm,i,t)} is uncorrelated i.e.
Corr(rz,i,trm,i,t, rz,j,trm,j,t) = 0. If one further assumes that {rz,i,trm,i,t} is a martingale
difference then E (rz,i,trm,i,t) = 0 and V ar (rz,i,trm,i,t) = E (rz,i,trm,i,t)

2 .
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Following Proposition 2 the asymptotic variance (AVar) of the NLS γ̂WRCov esti-
mator now has a simpler form (compared to the equations in Proposition 2) and is
given by

AVar (γ̂WRCov) = ζ2E

(
∂XRCovt(θ)

∂θ

)2

var

(
∂XRCovt(θ)

∂θ

)
/D (43)

where XRCovz,t(θ) = m
∑m

i=1 v
∗
i rz,i,trm,i,t and

D = var
(
∂XRCovt(θ)

∂θ

)[
E(WRCov)2E

(
(∂XRCovt(θ)

∂θ
)2
)
−
(
E
(
WRCov ∂XRCovt(θ)

∂θ

))2
]

−
[
E(WRCov)E

(
(∂XRCovt(θ)

∂θ
)2
)
− E

(
WRCov ∂XRCovt(θ)

∂θ

)
E(∂XRCovt(θ)

∂θ
)
]2

.

(44)
The elements in equations (43) and (44) are obtained in Appendix B, part B1. Based
on the multivariate OU models with SV the {(rz,i,trm,i,t)2} follows an ARMA(1,1) and
{(rz,i,trm,i,t)} is uncorrelated. The asymptotic variances of γ̂WRCov and γ̂RCov can be
estimated when {(rz,i,trm,i,t)} is an uncorrelated process with a non-zero mean, i.e.
when E (rz,i,trm,i,t) = µ, or when {(rz,i,trm,i,t)} is a martingale difference process
i.e. E (rz,i,trm,i,t) = 0. In the latter case we show in Appendix B, part B1, that
E(WRCovt) and E (∂XRCovt(θ)/∂θ) become zero and the AVar(γ̂WRCov) simplifies
to:

AVar (γ̂WRCov) =
ζ2E

(
∂XRCovt(θ)

∂θ

)2

E(WRCov)2E

((
∂XRCovt(θ)

∂θ

)2
)
−
(
E
(
WRCov ∂XRCovt(θ)

∂θ

))2

(45)

Figure 16 shows the relative AVar of the MIDAS-NLS and standard regression
LS slope estimators, γ̂WRCov and γ̂RCov, when Zt = {

(
rz,i,trm,i,t

)2} is an ARMA(1,1)
and E (rz,i,trm,i,t) = 0. For comparison purposes with the asymptotic variance of
the regression slope estimators with Realized Volatility type estimators, i.e. γ̂WRV

and γ̂RV , we consider the following parameters for the Zt process: AR parameters
equal to 0.9 and 0.5 and MA parameter equal to 0.265. The relative effi ciency graphs
show the ratio of the AVar(γ̂RCov) vis-a-vis the AVar(γ̂WRCov), for intermediate and
near-flat weights only, i.e. when θ2 = −0.005 and −0.0005, respectively, and θ1 = 0.
In all cases the AVar(γ̂WRCov) <AVar(γ̂RCov) in Figure 16. It is evident that even for
near-flat weights the AVar(γ̂RCov) forgoes half of the effi ciency of AVar(γ̂WRCov) for
m ≥ 100. Similar results apply to the geometric weight function and the rest of the
models studied in section 3.

Proposition 4 Assuming a positive semi-definite supOU process with Stochastic Volatil-
ity in Barndorff-Nielsen and Stelzer (2010, 2013) the (Bias(γ̂RCov))

2 = 0 and the
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relative effi ciency of the OLS γ̂RCov estimator vis-a-vis the NLS γ̂WRCov estimator is
based on the asymptotic variance difference

AV ar (γ̂RCov)− AV ar (γ̂WRCov) > 0

if and only if the following condition is satisfied

E (XRCovt)
2 −

[
E(WRCovt

∂XRCovt(θ)

∂θ
)

]2 [
E(
∂XRCovt(θ)

∂θ
)2

]−1

> 0 (46)

or equivalently

m∑
i=1

v2
i −

[
m∑
i=1

vi(
∂vi(θ)

∂θ
)

]2 [ m∑
i=1

(
∂vi(θ)

∂θ
)2

]−1

>
1

m
. (47)

which is expressed in terms of the weighting function. The proof is in Appendix B,
part B2. �

It is interesting to note that the relative effi ciency condition derived in (47) involves
only the estimated weight function and its derivative and does not involve the high
frequency moments of the process. This is a much simpler condition to evaluate vis-
a-vis that of Proposition 4 which is due to assumption (42) in the multivariate supOU
process. According to inequality (47) if the difference in the first two terms in the LHS
of the inequality which involves only functions of the weights and their derivatives
is greater than the flat-weights, 1/m, then γ̂WRCov is asymptotically relatively more
effi cient than γ̂RCov. We examine numerically condition (47) presented in Figures 17
and 18 for various Geometric and Exponential Almon weights. It is evident that in all
cases under the assumptions mentioned above, the γ̂WRCov is relatively more effi cient
than γ̂RCov for reasonable values of m > 20 which is a value often encountered in the
empirical high frequency volatility estimation literature.

5.2 Realized beta and Realized Skewness

In this subsection we briefly discuss how our previous analysis can be extended to
regression models with other types of high frequency measures of risk namely the
Realized beta and the Realized Skewness which are not only functions of the Real-
ized Volatility but have also been widely used in empirical asset pricing models as
alternative measures of risk, some of which in the recent literature. The details and
derivations are presented in an online Appendix available from the author’s webpage
in order to keep the discussion concise. The interest in Realized beta, Rβ, is also
motivated by the large literature on modeling the time-varying behavior of betas in
asset pricing models (e.g. in Andersen, Bollerslev, Diebold and Wu, 2006) and is
given by

Rβz,t =
RCovz,t
RVt

=
Cov (rz,i,t, rm,i,t)

V ar (rm,i,t)
=

∑m
i=1 rz,i,trm,i,t∑m
i=1 r

2
m,i,t

(48)
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where rz,i,t is say the daily returns on stock z on day i of month t and rm,i,t is
the daily market return on day i of month t. Many empirical studies attempt to
explain low frequency excess stock returns (ranging frommonthly to annual) using the
Rβz,t based on higher frequency typically daily and sometimes intradaily observations.
Motivated by the MIDAS approach we define the corresponding MIDAS beta or
Weighted Realized beta, WRβz,t :

WRβz,t =
WRCovz,t
WRVt

=
m
∑m

i=1 vi(θ)rz,i,trm,i,t
m
∑m

i=1wi(θ)r2
m,i,t

(49)

where vi(θ) and wi(θ) are either different estimated weight functions or the same
weight polynomial, say wi(θ), with different estimated parameters, θ, given that
WRCovz,t and WRVt are estimators of different realized measures. For example,
Gonzalez et al (2012) provide an empirical application estimating MIDAS cross-
sectional regressions of monthly excess returns on using the market, the industry
and size/book-to-market portfolios as well as a number of additional risk factors (e.g.
Fama-French factors among others). The online Appendix (part II) shows that the
estimated regression coeffi cients using traditional Rβz,t predictor in (48) can be bi-
ased if the true model is a MIDAS which yields the Weighted version of Realized
beta, WRβz,t given by (49) with non-flat weights. This result has implications for
the risk premia estimates obtained from standard regressions. In order to show this
we decompose WRβz,t defined in (49) to

WRβz,t =

∑m
i=1 rz,i,trm,i,t +m

∑m
i=1 v

∗
i (θ)rz,i,trm,i,t∑m

i=1 r
2
m,i,t +m

∑m
i=1w

∗
i (θ)r2

m,i,t

=
RCovz,t +XRCovz,t

RVt +XRVt
(50)

where v∗i (θ) = (vi(θ)− 1/m) andw∗i (θ) = (wi(θ)− 1/m) .We can rewrite theWRβz,t
in (50) in terms of the traditional Rβz,t as follows:

WRβz,t =
RCovz,t
RVt

+
RVt ·XRCovz,t −RCovz,t ·XRVt

RVt(RVt +XRVt)
= Rβz,t +XRβz,t, (51)

The correlation between the last two terms in (51) is a function of

E
(
Rβz,t ·XRβz,t

)
= (52)

E

(
m
∑m

i=1 r
2
m,i,t

∑m
i=1 v

∗
i rz,i,trm,i,t

∑m
i=1 rz,i,trm,i,t −m(

∑m
i=1 rz,i,trm,i,t)

2
∑m

i=1w
∗
i r

2
m,i,t

(
∑m

i=1 r
2
m,i,t)

3 +m(
∑m

i=1 r
2
m,i,t)

2
∑m

i=1w
∗
i r

2
m,i,t

)
Conditions for an unbiased slope estimator of a standard regression model with an
Rβt predictor are derived using (52) in the online Appendix (part II) and involve
a number of conditions in terms of high frequency moments when the aggregation
weights, vi and wi, are not flat.
Another recent and popular realized measure in asset pricing is the Realized Skew-

ness, which can be estimated from say monthly or daily or intradaily data, and is
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used as an alternative factor to explain the low frequency expected returns in the
classical regressions (e.g. Amaya et al., 2015, among others). Skewness estimators
following alternative methods have gained recent attention as an important factor in
explaining stock returns, among others. Following the regression model setup in this
paper one can explain the low frequency variable, Yt+1, with the Realized Skewness,
RSkewt, observed at higher frequency

RSkewt =
m1/2

∑m
i=1(r

(m)
t−i/m)3

(RVt)3/2
=
m1/2RTM

(RVt)3/2
(53)

where RVt is the traditional Realized Variance and we denote the Realized Third
Moment, RTMt =

∑m
i=1(r

(m)
t−i/m)3, in the numerator of (53). The MIDAS regression

model would involve the corresponding Weighted Realized Skewness

WRSkewt =
m1/2

∑m
i=1 mvi(θ)(r

(m)
t−i/m)3

(m
∑m

i=1wi(θ)(r
(m)
t−i/m)2)3/2

(54)

where the denominator of the (54) is WRVt defined in (6) and v(θ) and w(θ) are
different weight functions given that they refer to different moments of the process.
As above we can express (54) as a function of (53) and derive the conditions so
that the standard LS regression slope estimator would be unbiased when the true
parameterization is a corresponing MIDAS regression model. These results are also
in the online Appendix (part III) available from the author’s webpage.

6 Conclusions

The paper analyzes and relates the standard LS regression model with high frequency
volatility filters with the corresponding MIDAS NLS regression models and evaluates
the properties of the regression slope estimators for alternative high frequency volatil-
ity estimators as well as various continuous time models using their corresponding
higher-order moments. In this paper we assume that the true DGP is a MIDAS model
motivated by many empirical studies in financial economics and macroeconomics that
relate low frequency dependent variables with high frequency volatility measures.
The main findings of the paper are: First we show that the slope LS estimators of

the standard regression models with popular high frequency volatility estimators, such
as the Realized Variance (RV), is biased when the true model is the corresponding
MIDAS regression model. We parameterize this asymptotic bias in a general setting
as well as for various continuous time models where returns follow an OU model,
a two factor affi ne volatility model, among others. We find that the bias depends
on the persistence of the high frequency squared returns process and the cumulative
weighting scheme. The cumulative weighting term is negative for most decreasing
weights which assume a memory decaying pattern, whereas the correlation of squared
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returns is positive for the aforementioned continuous time models. We quantify the
bias for various continuous time models using empirically relevant parameters as well
as decreasing weights. This bias turns out to be negative and ranges from -15% for
near-flat weights to -90% for steep decreasing weights. Moreover, we derive the bias of
the LS slope estimator for alternative realized measures such as Realized Covariances,
Realized betas and Realized Skewness when the true model is a MIDAS regression.
The second main finding of the paper relates to the relative effi ciency of the slope

estimators of the LS and the MIDAS models. The asymptotic MSE is parameterized
in terms of the high frequency moments and for all the aforementioned continuous
time models. We find that the slope estimator in MIDAS regressions with high
frequency volatility estimators yields relatively more effi cient slope estimators than
the corresponding standard LS regression model with the traditional equally weighted
volatility filters (e.g. RV, RPV e.t.c). We quantify the MSEs for various continuous
time models, alternative weighting schemes and empirically relevant parameters. In
addition we examine analytically and numerically the Rsquared, usually employed in
empirical studies of predictive regression models, and we compare the standard LS
and MIDAS regression models. More importantly we derive conditions for relative
asymptotic MSE and variance effi ciency of the slope estimators of the LS and MIDAS
models which we also evaluate for various empirical models and parameters. Overall,
the MIDAS-NLS slope estimator turns out to be relatively more effi cient than the
standard LS estimator, under the various settings studied in the paper.
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Figure 1: Bias of γ̂RV for the OU model with BNS parameters
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Figure 2: Bias of γ̂RV for GARCH diffusion model with ABM and BZ parameters

0 50 100 150 200 250 300
0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Aggregation horizon

Bi
as

ABM ExpAlm θ2=0.05

ABM ExpAlm θ2=0.0005

ExpAlm θ2=0

BZ ExpAlm θ2=0.05

BZ ExpAlm θ2=0.0005

Figure 3: Bias of γ̂RV for the two factor affi ne model
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Figure 4: Bias of γ̂RV for ARMA models
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Figure 5: Bias curves of γ̂RV for the ARMA model for the Eurostockxx50 weighting schemes
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Figure 6: Bias curves of γ̂RV for the ARMA model for the French CAC weighting schemes
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Figure 7: Bias curves of γ̂RV for the ARMA model for the German DAX weighting schemes
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Figure 8: Ratios of MSE(γ̂RV )/MSE(γ̂WRV ) for the OU and ARMA model
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Figure 9: Ratios of MSE(γ̂RV )/MSE(γ̂WRV ) for the GARCH diffusion model
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Figure 10: Ratios of MSE(γ̂RV )/MSE(γ̂WRV ) for the two factor affi ne model
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Figure 11: Ratios of Avar(γ̂RV )/Avar(γ̂WRV ) for the OU model
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Figure 12: Ratios of Avar(γ̂RV )/Avar(γ̂WRV ) for the GARCH diffusion
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Figure 13: Ratio of R2
RV /R

2
WRV in OU model (BNS parameters)
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Figure 14: Ratio of R2
RV /R

2
WRV in GARCH diffusion models (ABM and BZ parameters)
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Figure 15: Ratio of Rsquares, R2
RV /R

2
WRV , in ARMA for alternative parameters
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Figure 16: Ratios of Avar(γ̂RCov)/Avar(γ̂WRCov) for the ARMA model of {(rztrmt)
2}
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Figure 17: Proposition 4 relative asymptotic effi ciency condition for Geometric weights
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Figure 18: Proposition 4 relative asymptotic effi ciency condition for Exponential Almon weights
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Appendix A: The Asymptotic Variance of γ̂WRV and the
relative effi ciency of γ̂WRV vis-a-vis γ̂RV
A1: The Asymptotic Variance of γ̂WRV .

The asymptotic variance (AVar) of the NLS γ̂WRV estimator in the MIDAS re-
gression model is given by equations (28) and (29) and can be expressed in terms of
the high-frequency moments below. The elements of D as given in equation (29) are
the following:

E

(
∂XRVt(θ)

∂θ

)
= m

m∑
i=1

∂wi
∂θ

E
(
r

(m)
t−i/m

)2

(55)

and

E

(
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)2

= m2

m∑
i=1

(
∂wi
∂θ

)2

E
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+2m2
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∂wj
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E
(

(r
(m)
t−i/m)2(r

(m)
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)
.

(56)
Hence from (56) and (55) above we obtain the var (∂XRVt(θ)/∂θ) :

var

(
∂XRVt(θ)

∂θ

)
= m2

m∑
i=1

(
∂wi
∂θ

)2
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∂wj
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The cross-product

WRV
∂XRVt(θ)

∂θ
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(
m
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)(
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)

= m2
m∑
i=1

wi∂wi
∂θ

(r
(m)
t−i/m)4 + 2m2

m∑
i=1

∑
i<j

wi∂wj
∂θ

(r
(m)
t−i/m)2(r

(m)
t−j/m)2(57)

yields

E

(
WRV

∂XRVt(θ)

∂θ

)
= m2

m∑
i=1

wi
∂wi
∂θ

E
(
r

(m)
t−i/m

)4

+2m2

m∑
i=1

∑
i<j

wi
∂wj
∂θ

E
(

(r
(m)
t−i/m)2(r

(m)
t−j/m)2

)
(58)

where E
(

(r
(m)
t−i/m)2(r

(m)
t−j/m)2

)
= cov((r

(m)
t−i/m)2, (r

(m)
t−j/m)2) + E(r

(m)
t−i/m)2E(r

(m)
t−j/m)2 =

cov((r
(m)
t−i/m)2, (r

(m)
t−j/m)2) +

(
E(r

(m)
t−i/m)2

)2

. From (57)(
E(WRV

∂XRVt(θ)

∂θ
)

)2

= m4

m∑
i=1

w2
i (
∂wi
∂θ

)2E(r
(m)
t−i/m)8 + 2m2

m∑
i=1

∑
j=i<j

wi
∂wj
∂θ

E(r
(m)
t−i/m)4(r

(m)
t−j/m)4

+4m4
m∑
i=1

∑
j=i<j

w2
i (
∂wj
∂θ

)2E(r
(m)
t−i/m)4(r

(m)
t−j/m)4

+2m2
m∑
i=1

∑
i 6=j

∑
j 6=k

∑
k 6=l

wi
∂wj
∂θ
wk

∂wk
∂θ
E((r

(m)
t−i/m)2(r

(m)
t−j/m)2(r

(m)
t−k/m)2(r

(m)
t−l/m)2)
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The remaining elements ofD are E(WRVt) = m
∑m

i=1wiE((r
(m)
t−i/m)2) = mE((r

(m)
t−i/m)2),

given
∑m

i=1wi = 1, and V ar(WRVt) = m2
∑m

i=1w
2
i V ar((r

(m)
t−i/m)2)

+ 2m2
∑m

i=1

∑
i<j wiwjCov((r

(m)
t−i/m)2, (r

(m)
t−j/m)2) withE(WRVt)

2 = var(WRV )+(E(WRV ))2.
For the exponential Almon and Geometric weighting schemes we set θ1 = 0 in the

two parameter polynomial without loss of generality to obtain the following deriv-
atives, respectively, for wi = eθ2i

2
/
∑m

k=1 e
θ2k2 : ∂wi/∂θ = (i2(eθ2i

2
)(
∑m

k=1 e
θ2k2) −

(eθ2i
2
)(
∑m

k=1 k
2eθ2k

2
))/(

∑m
k=1 e

θ2k2)2. Similarly for the geometric weights, wi = θi/
∑m

k=1 θ
k

the derivative is ∂wi/∂θ = (i(θi−1)(
∑m

k=1 θ
k)− (θi)(

∑m
k=1 kθ

k−1))/(
∑m

k=1 θ
k)2

Note that a simplified version of the AVar(γ̂WRV) in Andreou et al. (2010) is not
valid in our analysis with high-frequency volatility filters since E (∂XRVt(θ)/∂θ) 6= 0
is not valid in these types of MIDAS models.

A2: Relative effi ciency of γ̂WRV vis-a-vis γ̂RV
The γ̂RV is a biased estimator and thus the relative effi ciency of γ̂RV and γ̂WRV can

be examined using their mean squared errors (MSE). Then, the proposed estimator
γ̂WRV is relatively more effi cient than the γ̂RV if and only if:

MSE(γ̂RV )

MSE(γ̂WRV )
> 1⇐⇒ AV ar(γ̂RV ) + [bias(γ̂RV )]2

AV ar(γ̂WRV )
=

AV ar(γ̂RV )

AV ar(γ̂WRV )
+

[bias(γ̂RV )]2

AV ar(γ̂WRV )
> 1

For ease of exposition we assume E(∂XRVt(θ)
∂θ

) = 0 and thus the AV ar(γ̂WRV ) given
in equations (29) and (28) becomes:

AV ar(γ̂WRV ) =
ζ2
[
E
(
∂XRVt(θ)

∂θ

)2]2
E
(
∂XRVt(θ)

∂θ

)2[
E(WRVt)2E

(
∂XRVt(θ)

∂θ

)2
−
(
E
(
WRVt

∂XRVt(θ)
∂θ

))2]
−
[
E(WRVt)E

(
∂XRVt(θ)

∂θ

)2]2
= ζ2

E(WRVt)2−(E(WRVt))2−
[
E
(
∂XRVt(θ)

∂θ

)2]−1[
E
(
WRVt

∂XRVt(θ)
∂θ

)]2
= ζ2

V ar(WRVt)−
[
E
(
∂XRVt(θ)

∂θ

)2]−1[
E
(
WRV

∂XRVt(θ)
∂θ

)]2
Having AV ar(γ̂RV ) = ζ2/V ar(RVt) from (27), we can obtain the following neces-

sary and suffi cient condition using the ratio of MSEs:

[
V ar(RVt)+

1
ζ2

[Cov(RVt,XRVt(θ) γWRV ]2
][
V ar(WRVt)−

[
E
(
∂XRVt(θ)

∂θ

)2]−1[
E
(
WRVt

∂XRVt(θ)
∂θ

)]2]
[V ar(RVt)]

2 > 1

⇐⇒ [1 + [Cov(RVt,XRVt(θ) γWRV ]2

ζ2V ar(RVt)
][
V ar(WRVt)−

[
E
(
∂XRVt(θ)

∂θ

)2]−1[
E
(
WRVt

∂XRVt(θ)
∂θ

)]2
V ar(RVt)

] > 1.

Given that [bias(γ̂RV )]2/AV ar(γ̂WRV ) > 0, we can use the ratio of asymptotic
variances to assess the relative effi ciency. In particular, the suffi cient condition for
which the γ̂WRV is relatively more effi cient than the γ̂RV is:

AV ar(γ̂RV )/AV ar(γ̂WRV ) > 1 (59)
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The condition in (59) is written equivalently as follows:

V ar(WRVt)−
[
E
(
∂XRVt(θ)

∂θ

)2
]−1 [

E
(
WRVt

∂XRVt(θ)
∂θ

)]2

V ar(RVt)
> 1. (60)

Given V ar(RVt) > 0 then (60) becomes:

V ar(WRVt)−
[
E

(
∂XRVt(θ)

∂θ

)2
]−1 [

E

(
WRVt

∂XRVt(θ)

∂θ

)]2

> 0 (61)

which can be expressed in terms of high frequency moments:
m∑
i=1

w2
i V ar((r

(m)
t−i/m)2) + 2

m∑
i=1

∑
i<j

wiwjCov((r
(m)
t−i/m)2, (r

(m)
t−j/m)2)−

−

[
m∑
i=1

wi
∂wi
∂θ

E(r
(m)
t−i/m)4+

m∑
i=1

∑
i6=j

wi
∂wj
∂θ

E((r
(m)
t−i/m)2(r

(m)
t−j/m)2)

]2
m∑
i=1

( ∂wi∂θ )
2
E(r

(m)
t−i/m)4+2

m∑
i=1

∑
i<j

∂wi
∂θ

∂wj
∂θ

E((r
(m)
t−i/m)2(r

(m)
t−j/m)2)

> 0

(62)

The elements of condition (60) are given in the Appendix A1. Note that this condition
is satisfied both for the Exponential Almon and Geometric weights and alternative
continuous time models such as the OU and GARCH diffusion models which we do
not show here for conciseness given that Proposition 3 presents numerical results for
condition (60).

Appendix B: The Asymptotic Variance of γ̂WRCov and relative
effi ciency of γ̂WRCov vis-a-vis γ̂RCov
B1: The Asymptotic Variance of γ̂WRCov

The asymptotic variance (AVar) of the NLS γ̂WRCov estimator is given by equa-
tions (43) and (44) and the elements of D as given in equation (44) are the following:

E(WRCovt) = m
m∑
i=1

viE
(
rz,i,trm,i,t

)
= mE

(
rz,i,trm,i,t

)
(63)

given
∑m

i=1 vi = 1 and

E

(
∂XRCovt(θ)

∂θ

)
= m

m∑
i=1

∂vi
∂θ

E (rz,i,trm,i,t) . (64)

Then

E

(
∂XRCovt(θ)

∂θ

)2

= m2

m∑
i=1

(
∂vi
∂θ

)2

E (rz,i,trm,i,t)
2 + 2m2

m∑
i=1

∑
i<j

∂vi
∂θ

∂vj
∂θ

E (rz,i,trm,i,trz,j,trm,j,t)

= m2

m∑
i=1

(
∂vi
∂θ

)2

E (rz,i,trm,i,t)
2 . (65)
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Hence from (65) and (64) we obtain the

var

(
∂XRCovt(θ)

∂θ

)
= m2

m∑
i=1

(
∂vi
∂θ

)2

var (rz,i,trm,i,t)

+2m2

m∑
i=1

∑
i<j

∂vi
∂θ

∂vj
∂θ

cov ((rz,i,trm,i,t), (rz,j,trm,j,t))

= m2

m∑
i=1

(
∂vi
∂θ

)2

var (rz,i,trm,i,t) . (66)

The cross-product

WRCov ∂XRCovt(θ)
∂θ

=

(
m

m∑
i=1

virz,i,trm,i,t

)(
m

m∑
i=1

∂vi
∂θ
rz,i,trm,i,t

)
= m2

m∑
i=1

vi
∂vi
∂θ

(
rz,i,trm,i,t

)2
+ 2m2

m∑
i=1

∑
i<j

∂vi
∂θ

∂vj
∂θ

(rz,i,trm,i,trz,j,trm,j,t)
(67)

yields

E

(
WRCov

∂XRCovt(θ)

∂θ

)
= m2

m∑
i=1

vi
∂vi
∂θ

E
(
rz,i,trm,i,t

)2
. (68)

Following the multivariate supOU models with Stochastic Volatility in Barndorff-
Nielsen and Stelzer (2011, 2013) the {(rz,i,trm,i,t)2} follows an ARMA(1,1) and {(rz,i,trm,i,t)}
is uncorrelated. Hence the asymptotic variances of γ̂WRCov and γ̂RCov can be simpli-
fied when {(rz,i,trm,i,t)} is an uncorrelated process with a non-zero mean, i.e. when
E (rz,i,trm,i,t) = µ, or when {(rz,i,trm,i,t)} is a martingale difference process i.e.
E (rz,i,trm,i,t) = 0. In the latter case equations (64) and (63) become zero and the
AVar(γ̂WRCov) simplifies to:

AVar (γ̂WRCov) =
ζ2E

(
∂XRCovt(θ)

∂θ

)2[
E(WRCov)2E

(
(∂XRCovt(θ)

∂θ
)2
)
−
(
E
(
WRCov ∂XRCovt(θ)

∂θ

))2
] .
(69)

B2: Relative effi ciency of γ̂WRCov vis-a-vis γ̂RCov
Let us consider for simplicity that the cross-products of the two asset returns

{rz,i,trm,i,t} follows a White Noise (WN) process such that:
(i) E(rz,i,trm,i,t) = 0, V ar(rz,i,trm,i,t) = E(rz,i,trm,i,t)

2 = c2 <∞ ∀ i = 1, ...,m

(ii) Cov(rz,i,trm,i,t, rz,j,trm,j,t)
(i)
= E(rz,i,trm,i,trz,j,trm,j,t) = 0 ∀ i, j = 1, ...,m, i 6= j.

Assumption (ii) implies that γ̂RCov is an unbiased estimator and the relative
effi ciency of γ̂RCov and γ̂WRCov can be examined in terms of their asymptotic variances.
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Using the asymptotic variance expressions in Section 5.1 we obtain the following
expression for the ratio:

AV ar(γ̂RCov)
AV ar(γ̂WRCov)

=
E(WRCovt)

2E
(
∂XRCovt(θ)

∂θ

)2
−
(
E
(
WRCovt

∂XRCovt(θ)
∂θ

))2
E(RCovt)

2E
(
∂XRCovt(θ)

∂θ

)2
= E(WRCovt)

2

E(RCovt)
2 −

(
E
(
WRCovt

∂XRCovt(θ)
∂θ

))2
E(RCovt)

2E
(
∂XRCovt(θ)

∂θ

)2 = A−B
(70)

Given that WRCovt = RCovt +XRCovt then A in (70) can be written as

A = E(WRCovt)
2

E(RCovt)
2 = E(RCovt)

2+E(XRCovt)
2+2Cov(RCovt,XRCovt)

E(RCovt)
2

= E(RCovt)
2+E(XRCovt)

2

E(RCovt)
2 = 1 + E(XRCovt)

2

E(RCovt)
2

since Cov (RCovt, XRCovt) = 0 due to the WN assumption of {rz,i,trm,i,t}. In par-
ticular, E(RCovt) = E (

∑m
i=1 rz,i,trm,i,t) =

∑m
i=1E (rz,i,trm,i,t)

(i)
= 0 and thus

Cov (RCovt, XRCovt) = E(RCovtXRCovt) = E [(
∑m

i=1 rz,i,trm,i,t) (m
∑m

i=1 v
∗
i rz,i,trm,i,t)]

= m
∑m

i=1 v
∗
iE(rz,i,trm,i,t)

2 +m
∑m

i=1

∑
i 6=j v

∗
jE(rz,i,trm,i,trz,j,trm,j,t)

(i),(ii)
= mc2

∑m
i=1 v

∗
i = 0, since

∑m
i=1 v

∗
i = 0.

Hence, (70) reduces to

AV ar(γ̂RCov)

AV ar(γ̂WRCov)
= 1 +

E (XRCovt)
2

E (RCovt)
2 −

(
E
(
WRCovt

∂XRCovt(θ)
∂θ

))2

E (RCovt)
2E
(
∂XRCovt(θ)

∂θ

)2 (71)

which provides an expression to evaluate relative assumptotic effi ciency depending on
whether the difference between the last two expressions is positive or negative. Hence
based on (71) the proposed estimator γ̂WRCov is more effi cient than the γ̂RCov if and
only if:

AV ar(γ̂RCov)
AV ar(γ̂WRCov)

> 1 ⇐⇒ E(XRCovt)
2

E(RCovt)
2 −

(
E
(
WRCovt

∂XRCovt(θ)
∂θ

))2
E(RCovt)

2E
(
∂XRCovt(θ)

∂θ

)2 > 0

⇐⇒ E (XRCovt)
2 >

(
E
(
WRCovt

∂XRCovt(θ)
∂θ

))2
E
(
∂XRCovt(θ)

∂θ

)2 , since E (RCovt)
2 > 0.

Thus, the necessary and suffi cient condition for relative effi ciency, AV ar(γ̂RCov) >
AV ar(γ̂WRCov), is equivalent to:

E (XRCovt)
2 >

[
E

(
WRCovt

∂XRCovt(θ)

∂θ

)]2
[
E

(
∂XRCovt(θ)

∂θ

)2
]−1

(72)

which involves the following moments expressed in terms of the high frequency process:
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E (XRCovt)
2 = E (m

∑m
i=1 v

∗
i rz,i,trm,i,t)

2

= m2
∑m

i=1(v∗i )
2E
(
r2
z,i,tr

2
m,i,t

)
+
∑m

i=1

∑
j 6=i
v∗i v
∗
jE (rz,i,trm,i,trz,j,trm,j,t)

(ii)
= m2

∑m
i=1(v∗i )

2E (rz,i,trm,i,t)
2

(i)
= m2c2

∑m
i=1(v∗i )

2

E
(
∂XRCovt(θ)

∂θ

)2

= E
(
m
∑m

i=1
∂v∗i (θ)

∂θ
rz,i,trm,i,t

)2

= m2c2
∑m

i=1(∂vi(θ)
∂θ

)2 since ∂v∗i (θ)

∂θ
= ∂vi(θ)

∂θ
,

E
(
WRCovt

∂XRCovt(θ)
∂θ

)
= E

[
(m
∑m

i=1 virz,i,trm,i,t)
(
m
∑m

i=1
∂vi(θ)
∂θ

rz,i,trm,i,t

)]
= m2c2

∑m
i=1 vi(

∂vi(θ)
∂θ

).

Consequently, (72) can be expressed as a function of the high frequency moments
to yield:∑m

i=1(v∗i )
2 >

[∑m
i=1 vi(

∂vi(θ)
∂θ

)
]2 [∑m

i=1(∂vi(θ)
∂θ

)2
]−1

⇐⇒
∑m

i=1 v
2
i − 1

m
>
[∑m

i=1 vi(
∂vi(θ)
∂θ

)
]2 [∑m

i=1(∂vi(θ)
∂θ

)2
]−1

, since v∗i = vi − 1/m.

Therefore, the estimator γ̂WRCov is more effi cient than the γ̂RCov if and only if:

m∑
i=1

v2
i −

[
m∑
i=1

vi(
∂vi(θ)

∂θ
)

]2 [ m∑
i=1

(
∂vi(θ)

∂θ
)2

]−1

>
1

m
. (73)
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