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1 Introduction

One of the most interesting forms of nonlinear regression models with wide applications in economics

is the threshold regression model. The attractiveness of this model stems from the fact that it treats

the sample split value (threshold parameter) as unknown. That is, it internally sorts the data,

on the basis of some threshold determinants, into groups of observations each of which obeys the

same model. While threshold regression is parsimonious it also allows for increased flexibility in

functional form and at the same time is not as susceptible to curse of dimensionality problems as

nonparametric methods.

While there are several econometric studies on the statistical inference of this model, there is as

yet no available inference when the threshold variable itself is endogenous. Chan (1993) showed

that the asymptotic distribution of the threshold estimate is a functional of a compound Poisson

process. This distribution is too complicated for inference as it depends on nuisance parameters.

Hansen (2000) using a concentrated least squares (TR-CLS) approach developed a more useful

asymptotic distribution theory for both the threshold parameter estimate and the regression slope

coefficients under the assumption that the threshold effect becomes smaller as the sample increases.

Using a similar set of assumptions, Caner and Hansen (2004) studied the case of endogeneity in the

slope variables. They proposed a concentrated two stage least squares estimator (IVTR-C2SLS)

for the threshold parameter and a GMM estimator for the slope parameters. Gonzalo and Wolf

(2005) proposed subsampling to conduct inference in the context of threshold autoregressive models.

Seo and Linton (2005) allow the threshold variable to be a linear index of observed variables and

propose a smoothed least squares estimation strategy based on smoothing the objective function

in the sense of Horowitz’s smoothed maximum scored estimator. They show that their estimator

exhibits asymptotic normality but it depends on the choice of bandwidth.

In all these studies a crucial assumption is that the threshold variable is exogenous. It turns out,

however, that in economics many threshold variables depend on their dynamics. In this paper

we introduce the Threshold Regression with Endogenous Threshold variables (THRET) and the

Threshold Regression with both Endogenous Threshold and Slope variables (THRETS) models

and propose an estimation strategy that extends Hansen (2000) and Caner and Hansen (2004).

First of all, we show that the naive concentrated 2SLS estimator is an inconsistent estimator of the

threshold parameter. Instead, we propose concentrated two-stage least squares estimation (C2SLS)

procedure by augmenting the threshold regression with the inverse Mills ratio which resembles the

Heckman’s selection correction. Under similar assumption as in Caner and Hansen (2004) we show

that our estimators are consistent. Our estimation method also allows for endogeneity in the slope

variables. To examine the finite sample properties of our estimators we provide a thorough Monte

Carlo analysis that shows that for different sample sizes and parameter combinations our proposed
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estimators for the threshold parameter and the slope coefficients are relatively more efficient than

their existing competitors and their distributions have the correct means.

We consider an application of our estimation strategy to a problem that formed our original

motivation for thinking about THRET models. We revisit in Section 5 of the paper one of the most

important and ongoing debates in the growth empirics literature: the “institutions vs. geography”

debate. The key question in this debate is whether geography has direct effects on long-run economic

performance or if its influence is limited only to its effects on other growth determinants, such as

institutions. Attempts to resolve this debate have centered on the use of linear cross-country

regressions where the dependent variable is purchasing-power parity adjusted GDP per capita in

1995 while proxies for institutional quality, climate, disease ecology, macroeconomic policies, and

endowments form the set of regressors.

Acemoglu, Johnson, and Robinson (2001), Easterly and Levine (2003), and Rodrik, Subramanian,

and Trebbi (2004) conclude that geography’s influence on long-run income levels is solely indirect

through its effects on institutions, while Sachs (2003) argues that their conclusions are wrong once

a measure of malaria transmission is included. Sachs goes further by suggesting that the search

for mono-causal effects of fundamental growth determinants on growth may be misdirected. He

concludes that, “[t]here is good theoretical and empirical reason to believe that the development

process reflects a complex interaction of institutions, policies, and geography [Sachs (2003), p. 9].”

We have explored these points in other papers on the debate. For instance, Tan (2005) employs

regression tree methods similar to those used in Durlauf and Johnson (1996) to uncover multiple

regimes that classify countries into different convergence clubs. A related but conceptually different

approach to modeling parameter heterogeneity and nonlinearities has been taken by Durlauf,

Kourtellos, and Minkin (2001) and Mamuneas, Savvides, and Stengos, (2006). These papers

have employed varying coefficient models that allow the parameters of the model to vary smoothly

as opposed to abruptly in the case of sample splitting methods with a threshold variable. However,

these previous studies have assumed that the threshold variable is exogenous. This assumption may

be plausible if geography variables or, perhaps, ethnic fractionalization variables were responsible

for the threshold effect, but not if institutional quality was the threshold variable since the literature

has argued strongly that institutions are endogenous.

In terms of our findings, our results suggest that Sachs’ conclusion is only valid for countries with

quality of institutions above a threshold level. For low-quality institutions countries, the one factor

that appears to have a significant positive impact on economic performance is the degree of trade

openness. These results differ from the ones obtained from methods that either ignore the presence

of thresholds altogether or ignore the possible endogeneity of the threshold variable.

The paper is organized as follows. Section 2 describes the model and the setup. Section 3
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describes the estimator and the main arguments. Section 4 presents our extensive Monte Carlo

experiments. Section 5 illustrates our estimator via the empirical example discussed above and

section 6 concludes.

2 The Threshold Regression with Endogenous Thresholds

(THRET) model

We assume that {yi, xi, qi, ui}ni=1 is strictly stationary, ergodic and ρ−mixing and thatE(ui|Fi−1)=0
where yi is the dependent variable, xi is a p× 1 vector of covariates and qi is a threshold variable.

Let us first consider the simple case of endogeneity in the threshold alone so that xi is exogenous

and does not include qi. In this case the l×1 vector of instruments is given by zi = (z1i, z2i), where
z2i = xi.

Consider the following THRET model,

yi = x0iβ1 + u1i, qi ≤ γ (2.1)

yi = x0iβ2 + u2i, qi > γ (2.2)

qi = z0iπ + vi (2.3)

Equations (2.1) and (2.2) describe the relationship between the variables of interest in each of the

two regimes, qi is the threshold variable with γ being the sample split (threshold) value. Equation

(2.3) is the selection equation that determines the regime that applies. Note that qi is observed

but the sample split value is unknown.

The variance covariance matrix of the errors (u1i, u2i, v)
0 has the following properties. E(u1i, u2i) =

0, E(u1ivi) = σu1v 6= 0, E(u2ivi) = σu2v 6= 0, E(u21i) = σ21 > 0, E(u22i) = σ22 > 0, and

E(v2i ) = σ2v = 1 due to a normalization. Notice that if σu1v = σu2v = 0 then we get the exogenous

threshold model as in Seo and Linton (2005) that allow the threshold variable to be a linear index

of observed variables. If, further, qi is exogenously given then we get the threshold regression model

of Hansen (2000) and Caner and Hansen (2004). Estimation in these two latter models is based on

TR-CLS and IVTR-C2SLS, respectively.

One may be tempted to use a naive (plug-in) estimator as in the case of endogeneity in the slope and

3



use a naive concentrated two stage least squares method by replacing qi with the fitted values from a

first stage regression, bqi and then minimize the concentrated least squares criterion. However, such
a strategy will not work and the resulting estimator will not be consistent bγ∗NAIV E−CLS−γ = Op(1)

because the conditional mean zero property of the errors is not restored due to omitted bias

correction terms.

To see this let us define the indicator variable

Ii =

(
1 iff vi ≤ γ − z0iπ : Regime 1

0 iff vi > γ − z0iπ : Regime 2
(2.4)

Let us also assume that that joint distribution between u1i and vi is given as

µ
u1i
vi

¶
|xi, zi ∼ N

Ã
0,

Ã
σ2u1 σu1v

σu1v 1

!!
(2.5)

and using the following standard transformation

µ
ε1i
vi

¶
=

Ã
1 −σu1v
0 1

!µ
u1i
vi

¶
(2.6)

we can get that µ
ε1i
vi

¶
|xi, zi ∼ N

Ã
0,

Ã
σ21 − σ2u1v 0

0 1

!!
(2.7)

Similarly we can define the joint distribution between u2i and vi and also introduce ε2i in the same

way as we did ε1i to be uncorrelated with vi. Let κ1 = σu1v = ρ1σu1 , κ2 = σu2v = ρ2σu2 , and define

u1i = κ1vi + ε1i = κ1λ1 (γ − ziπ) + e1i (2.8)

u2i = κ2vi + ε2i = κ2λ2 (γ − ziπ) + e2i (2.9)

we have the following conditional expectations for each of the regimes

E(y|x1, z1, vi ≤ γ − z0iπ) = xiβ1 + κ1λ1i(γ − z0iπ) (2.10)
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E(y|x2, z2, vi > γ − z0iπ) = xiβ2 + κ1λ2i(γ − z0iπ) (2.11)

where λ1(γ − z0iθ) = −
φ(γ−z0iθ)
Φ(γ−z0iθ)

and λ2(γ − z0iθ) =
φ(γ−z0iθ)
1−Φ(γ−z0iθ)

are the inverse Mills bias correction

terms.

We can also rewrite the THRET model (2.1), (2.2), and (2.3) as a single equation. Let

λi = λi(γ−z0iπ) = d(γ)λ1i+(1−d(γ))λ2i, eλ1i = d(γ)λ1i, ei = d(γ)e1i+(1− d(γ)) e2i, δκ = (κ1 − κ2),

β = β2, and κ = κ2 then we get

yi = x0iβ + xi(γ)
0δβ + κλi(γ − z0iπ) + δκeλ1i ¡γ − z0iπ

¢
+ ei (2.12)

where di(γ) = I(qi ≤ γ) and xi(γ) = xidi(γ).

It is easy to see that in the case when the two regimes enjoy the same error structure u1 = u2, or

when there is no regime dependent heteroskedasticity, we simply get

yi = xiβ + xi(γ)
0δβ + κλi(γ − z0iπ) + ei (2.13)

and when ρ = 0 and hence κ = 0 we get Hansen’s (2000) Threshold Regression for exogenous

threshold and slope variables model,

yi = xiβ + xi(γ)
0δβ + ei (2.14)

It is also apparent that THRET is similar in nature to the case of the error interdependence

that exists in limited dependent variable models between the equation of interest and the sample

selection equation, see Heckman (1979). However, there is one important difference. While in

sample selection models, we observe the assignment of observations into regimes but the variable

that drives this assignment is taken to be latent, here, it is the opposite; we do not know which

observations belong to which regime (we do not know the threshold value), but we can observe the

threshold variable.

2.1 Estimation

Our estimation procedure proceeds in three steps. First, we estimate the parameter vector π in

the threshold equation (2.3) by Least Squares (LS). Second, we estimate the threshold estimate by

minimizing a concentrated two stage least squares (THRET-C2SLS) criterion using the estimates

of bπ from the first stage
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SC2SLS
n (β (γ) , δβ (γ) , δκ (γ) , κ (γ) , γ) =

nX
i=1

(yi − x0iβ − x0i(γ)δβ − κλi(γ − z0ibπ)− δκeλ1i ¡γ − z0ibπ¢)2
(2.15)

Third, we estimate the LS estimates of the slope parameters based on the split samples implied bybγTHRET−C2SLS.

This sum of squared errors criterion (2.15) implies that Hansen’s TR-CLS criterion which is used for

estimation of (2.14) will yield an inconsistent estimator for the THRET model given by equations

(2.1), (2.2), and (2.3), where

SCLS
n (β (γ) , δβ (γ) , δκ (γ) , γ) =

nX
i=1

(yi − x0iβ − x0i(γ)δβ)
2 (2.16)

since it be can be shown that SC2SLS
n (β, δβ, δκ, κ, γ) = SCLS

n (β, δ, γ) +Op(1).

Proposition 1: Consistency of C2SLS Estimator in THRET For the C2SLS estimator in

the case of endogenous threshold but exogenous slope variables defined as bγC2SLS =

argmin
¡
SC2SLS
n (γ)− e0e

¢
we have that bγTHRET−C2SLS

p→ γ0.

In the appendix we provide a proof that uses similar regularity conditions as Hansen (2000).

3 The Threshold Regression with Endogenous Threshold and

Slope model (THRETS)

In this section we generalize THRET to the more realistic case of a Threshold Regression with

Endogenous Threshold and Slope (THRETS) variables. THRETS takes the form of

yi = x0iβ + xi(γ)
0δβ + κλi(γ − z0iπ) + δκeλ1i ¡γ − z0iπ

¢
+ ei (3.17)

and

xi = Π
0zi + ηi (3.18)

where the l × 1 vector zi = (z1i, z2i) with z2i = x2i and E(ηi|zi) = 0, and where l ≥ p. π1 is the

parameter vector of the regression of qi on zi such that Π = (π1,Π2).
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Again we propose an estimation procedure based on three steps. First, we estimate the parameter

vector Π in the threshold equation (3.18) by LS . Second, we estimate the sample split (threshold)

value by minimizing a Concentrated Two Stage Least Squares (C2SLS) criterion using the estimates

of bΠ from the first stage

SC2SLS
n (β (γ) , δβ (γ) , δκ (γ) , κ (γ) , γ) =

nX
i=1

(yi− bx0iβ− bx0i(γ)δβ −κλi(γ− z0ibπ1)− δκeλ1i ¡γ − z0ibπ1¢)2
(3.19)

Third, we estimate the slope parameters using 2SLS or GMM on the split samples implied by the

estimate of γ.

Using a similar framework as in Caner and Hansen (2004) it can be shown that bγTHRETS−C2SLS =

argmin
¡
SC2SLSn (γ)− e0e

¢
is consistent.

4 Monte Carlo

We proceed below with an exhaustive simulation study that compares the small sample performance

of our estimator against existing estimators. In particular, when we allow for the endogeneity of the

threshold alone we compare THRET-C2SLS estimates of the threshold parameter against estimates

based on TR-CLS (Hansen, 2000) and a naive C2SLS estimator (NAIVE-C2SLS) that simply uses

the fitted values from a first stage as a threshold variable. We also compare the LS estimates of

the slope coefficients that are based on the subsamples implied by bγ. Likewise when we allow for
the endogeneity of both the slope and the threshold variable we compare our estimator against the

IVTR-C2SLS (Hansen, 2004), and the naive C2SLS estimator (NAIVE-C2SLS) that replaces both

the threshold and the slope variables with the fitted values from a first stage and then minimizes

a concentrated least squares criterion. In this case we compare the GMM estimates of the slope

coefficients for the various estimators.

The Monte Carlo design is based on the following threshold regression

yi =

(
x0iβ1 + ui, qi ≤ 2
x0iβ2 + ui, qi > 2

(4.20)

The threshold equation is given by

qi = 2 + 3z1i + 3z2i + vi (4.21)
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where vi, εi ∼ NIID(0, 1) and ui = σ2u (ρ0vi + (1− ρ0) εi) /

r³
ρ20 + (1− ρ0)

2
´
so that the

degree of the endogeneity is controlled via the correlation between ui and vi given by ρ =

ρ0/

r³
ρ20 + (1− ρ0)

2
´
. We specify ρ0 = 0.05, 0.50, and 0.95. We fix β2 = 1 and vary β1 by

examining various δ = β1 − β2, δ = (0.01, 0.05, 0.1, 0.25, 0.5, 1). First, we examine the case where

the threshold variable is the only endogenous variable xi = (1, x2i) and second, we look into

the more realistic case that allows for both endogeneity in the threshold and the slope variables

xi = (1, qi, x2i). Furthermore, we consider the implications of the degree of correlation between

the (excluded) instrumental variables zi and the exogenous slope variables x2i through zij =¡
ω0x2 + (1− ω0) ξij

¢
/

r³
ω20 + (1− ω0)

2
´
, where ξij ∼ NIID(0, 1) and ω0/

r³
ω20 + (1− ω0)

2
´

is the degree of correlation between zi and x2i. Finally, we consider sample sizes of 100, 200, and

500 using 1000 Monte Carlo simulations.

Tables 1-3 discuss the relative Mean Square Error (MSE) while Figures 1-7 present the Gaussian

kernel density estimates using Silverman’s bandwidth parameter of the Monte Carlo estimates

of the threshold coefficient γ and the difference of slope coefficients δ = β1 − β2 of the various

estimators.

First we consider the estimation of the threshold γ in 2.1, 2.2, and 2.3 in the case of endogeneity in

the threshold alone. Table 1(a) presents the relative MSEs of TR-CLS and NAIVE-C2SLS relative

to THRET-C2SLS estimator given by MSETR/MSETHRET and MSENAIV E/MSETHRET ,

respectively, across different values of δ, different quantiles and sample sizes n when ρ0 = 0.95

and ω0 = 0.95. For all δ and all sample sizes the relative MSEs show that THRET is relatively

more efficient than CLS and NAIVE-2SCLS. These efficiencies are largest for the right tail as shown

by the 95th quantile of standard error. Similarly, Table 1(b) demonstrates the relative efficiency

of THRET-C2SLS when there is endogeneity in both the threshold and slope variables using

MSEIV TR/MSETHRETS and MSENAIV E/MSETHRETS across different values of δ, different

quantiles and sample sizes n when ρ0 = 0.95 and ω0 = 0.95. Figures 1-2 show the corresponding

kernel density estimates of the threshold estimator for various values of δ. Figures 6-7 show

for δ = 0.5 the kernel density estimates of the threshold estimator for various degrees of

endogeneity ρ0 = 0.05, 0.50, 0.95.1 It is evident that the distribution of THRET-C2SLS and

THRETS-C2SLS centers around the true value and dominates its competitors in terms of efficiency.

Under the assumption of small thresholds effects in the sense that δβ,n → 0 as n → ∞, the

asymptotic distribution of the threshold estimator is a suitably modified version of the non-standard

distribution derived by Hansen (2000) and by Caner and Hansen (2000) for the case of exogenous

1We have conducted experiments across different degrees of threshold endogeneity (different values of ρ) and a
broad range of values of δ. Although these experiments are not reported in detail to conserve space, they are available
from the authors on request.
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and endogenous regressors, respectively. This is verified by the figures that we obtained for the

different values of δ.

In terms of slope coefficients our estimator performs at least as well as the respective competitors.

Tables 2(a) presents the relative MSEs of the LS estimates and Table 2(b) presents the relative

MSEs of the GMM estimates of the slope coefficient of the exogenous covariate of THRET and

THRETS, respectively. Similarly, Table 3 presents the relative MSEs of the GMM estimates of the

slope coefficient of the endogenous covariate. Figures 3-5 present the corresponding kernel density

estimates.

In the interests of robustness, we also investigated what happened when we varied the degree of

the correlation between the instrumental variables z and the exogenous slope variables x2. As in

the case of Heckman’s estimator, THRET-C2SLS and THRETS-C2SLS become more efficient as ω

decreases and the degree of multicollinearity between π0z and x is small. Furthermore, our findings

are also robust to regime dependent heteroskedasticity. Due to space limitations these experiments

are not reported in detail but they are all available from the authors on request.

5 Empirical Example

In this section, we revisit the institutions versus geography debate using our THRET methods,

as discussed in the Introduction. The data we use comes primarily from Easterly and Levine

(2003). As mentioned above, the dependent variable is the log of GDP per capita in 1995. We

include a variable that measures trade openness and a variable that measures ethnic diversity.

We also include a proxy for institutional quality, the average (over 1985-95) expropriation risk

variable, from the International Country Risk Guide (ICRG). Finally, we augment the Easterly-

Levine dataset with Sachs’ preferred malaria variable (MALFAL94p) from the Harvard Center

for International Development (CID). Following Acemoglu, Johnson, and Robinson (2001) we

instrument institutional quality (which is assumed to be endogenous) using the log of European

settler mortality.

We contrast results where the model is assumed to be linear against those where the model is a

THRETS model with institutional quality as the (endogenous) threshold variable. Table 4 presents

the results. Our objective in these exercises is not to embark on a thorough re-examination of

this important debate, but rather to highlight how taking Sachs’ methodological critique above

(see, Introduction) seriously can lead to new and important insights. In all cases, we find that our

THRETS-C2SLS results deliver more nuance interpretations of established findings.

For example, column 1 of Table 4 shows the linear 2SLS results for a regression of per capita GDP

on institutional quality and malaria. These results for the linear model appear to support Sachs’
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finding that “malaria transmission, which is strongly affected by ecological conditions, directly

affects the level of per capita income after controlling for the quality of institutions [Sachs (2003),

Abstract]”. However, our THRETS-C2SLS results (see, column 2 of Table 4) suggest that this

finding for malaria is only true when the quality of institutions is above a threshold level. Below

that threshold level, neither institutions nor disease ecology appears to have any effect on a country’s

economic performance. This result is maintained even if we include Easterly and Levine’s ethnic

diversity variable as another growth determinant (see column 4 of Table 4). In columns 5 and 6 of

Table 4 where we also include the trade openness variable as a growth determinant, we find that

Rodrik, Subramanian, and Trebbi (2004) may have under-sold the importance of macroeconomic

policies that promote a more open economy when they claim that “once institutions are controlled

for, trade is almost always insignificant [Rodrik, et al, Abstract]”. Their claims certainly appear

to be true when we assume a linear model (see, column 5 of Table 4). However, our THRETS-

C2SLS results suggest that for low-quality institutions countries, trade openness may be one of

the only factors that has a significant positive impact on economic performance. For high-quality

institutions countries, on the other hand, good institutions promote economic performance while

higher levels of ethnic diversity detract from it.2

We also carried out a series of robustness checks (unreported) where we included other

macroeconomic policy variables that are commonly employed in the literature, such as inflation

and real exchange rate overvaluation, as additional growth determinants. We also included other

fundamental determinants such as religious affiliation shares for Catholics, Muslims, and Other

Religions on the righthand-side. We carried out exercises that included various combinations of

these regressors along with those described above. In most cases, we found that the results for the

THRETS-C2SLS model differed substantially from those for the linear model. Overall, we conclude

that there is much evidence to suggest that there exists substantial heterogeneity in the growth

experiences of countries, and that studies that seek to promote mono-causal explanations for the

variation in long-run economic performance across countries are potentially misleading.

6 Conclusion

In this paper we propose an extension of Hansen (2000) and Caner and Hansen (2004) that deals

with the endogeneity of the threshold variable. We developed a concentrated two stage least squares

2As in Hansen (2000) we compute a heteroskedasticity corrected asymptotic confidence interval for threshold
estimate using a quadratic polynomial. One difference is that the nuisance parameters in the conditional variance
is estimated via a polynomial regression in q and q2 instead of q and q2. q and q2 are the fitted values from LS
regressions of q and q2 on the set of instruments z. Simulated coverage probabilities of a nominal coverage of 90%
interval provides support to our proposal. Due to space limitations these experiments are not reported but they are
all available from the authors on request.
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estimator that deals with the problem of endogeneity in the threshold variable by generating a

correction term based on the inverse Mills ratios to produce consistent estimates for the threshold

parameter and the slope coefficients. By means of an extensive simulation study we examine

the performance of our estimator when compared with its competitors. Our proposed estimator

performs well for a variety of sample sizes and parameter combinations. We illustrate the usefulness

of the proposed estimator by means of an empirical example from economic growth.
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Appendix

A Consistency of bγC2SLS. Proof of Proposition 1
Let us define the n× 1 vector Y , the n× p matrix X and the n× l matrix Z by stacking yi, xi and,

zi, respectively. We also define Xγ to be the n× l matrix with typical i − th row xi(γ) = xidi(γ),

where as before d(γ) = I(qi ≤ γ) and similarly Λγ to be the matrix with typical element d(γ)λ1i.

Let us also define the n× 1 vector Λ(γ) = d(γ)λ1(γ) + (1− d(γ))λ2(γ).

At γ0, Λ(γ0) = Λ(0), Xγ0 = X0, Λγ0 = Λ0. In the spirit of Hansen (2000), we define
eXγ = (Xγ ,Λγ),eX(γ) = (X,Λ(γ)), eX∗

γ = ( eXγ , eX(γ)− eXγ)) and using similar regularity conditions we assume that

1
n
eX 0
γ
eXγ

p→M(γ)
1
n
eX 0
γ0
eXγ0

p→M(γ0)
1
n
eX 0
γ0
eXγ

p→M(γ0)
1
n(
eX(γ0)− eXγ0)

0 eXγ
p→ 0

The last condition guarantees that asymptotically the matrix of cross products between eX∗
γ0
andeX∗

γ for γ ≥ γ0 is diagonal.

We also have that

p limn→∞
1
n

⎛⎝ eX 0
0
eX0 0³ eX(0)− eX0´0 eXγ

³ eX(γ)− eXγ

´0 ³ eX(γ)− eXγ

´ ⎞⎠ =

⎛⎝ M(γ0) 0

0 p limn→∞
1
n

³ eX(γ)− eXγ

´0 ³ eX(γ)− eXγ

´ ⎞⎠ = M(γ0, γ)

We then define the projection matrix spanned by the columns of eX∗
γ .

eP ∗γ = eX∗
γ

³ eX∗0
γ
eX∗
γ

´−1 eX∗0
γ (A.1)

Let us rewrite the model as

Y = Xθ +X0δ + ρΛ(0) + φΛ0 + ε (A.2)

or
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Y = eX(0)α+ eX0ψ + ε (A.3)

So we have

Sn(γ)− ε0ε = Y 0
³
I − eP ∗γ´Y − ε0ε (A.4)

Then as in Hansen (2000) for ψn = Cn−µ with C 6= 0 and 0 < µ < 1
2

n−1+2µ (Sn(γ)− ε0ε)

= n−1+2µ
∙³ eX(0)αn + eX0ψn + ε

´0 ³
I − eP ∗γ´³ eX(0)αn + eX0ψn + ε

´
− ε0ε

¸
= n−1

h
C 01 eX/(0)

³
I − eP ∗γ´ eX(0)C1 + C 02 eX/(0)

³
I − eP ∗γ´ eX0C2 + C 03 eX/

0

³
I − eP ∗γ´ eX0C3

i
+ op(1)

= C 01

³
X/(0)X(0)

n

´
C1 − C 01

µ
X/(0)X∗γ

n

¶µ
X∗0γ X∗γ

n

¶−1µ
X∗0γ X(0)

n

¶
C1+

C 02

³
X/(0)X0

n

´
C2 −C 02

µ
X/(0)X∗γ

n

¶µ
X∗0γ X∗γ

n

¶−1µ
X∗0γ X0

n

¶
C2+

C 03

µ
X
/
0X0

n

¶
C3 − C 03

µ
X
/
0X

∗
γ

n

¶µ
X∗0γ X∗γ

n

¶−1µ
X∗0γ X0

n

¶
C3 + op(1)

= C 0

"³
X∗00 X∗0

n

´
−
µ
X∗00 X∗γ

n

¶µ
X∗0γ X∗γ

n

¶−1µ
X∗0γ X∗0

n

¶#
C + op(1)

That is,

n−1+2µ
¡
Sn(γ)− ε0ε

¢
(A.5)

= C 0

⎡⎣Ã eX∗0
0
eX∗
0

n

!
−
Ã eX∗0

0
eX∗
γ

n

!Ã eX∗0
γ
eX∗
γ

n

!−1Ã eX∗0
γ
eX∗
0

n

!⎤⎦C + op(1)

It can be shown that

n−1+2µ
¡
Sn(γ)− ε0ε

¢ p→ C 0
h
M (γ0)−M (γ0, γ)M (γ)−1M (γ0, γ)

0
i
C (A.6)
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Let

b1(γ) = C 0
h
M (γ0)−M (γ0, γ)M (γ)−1M (γ0, γ)

0
i
C

Following similar arguments as in Hansen (2000, Lemma A.5) it can be shown that d
dγ b1(γ0) > 0

and b1(γ) is continuous and weakly increasing so that b1(γ) is uniquely minimized at γ0 over [γ0, γ].

A similar argument can be made for γ ∈ [γ, γ0], so that b2(γ) which is suitably defined is uniquely
minimized at γ0.

So uniformly over all values of γ,

n−1+2µ
¡
S∗n(γ)− ε0ε

¢ p→ b1(γ)1{γ>γ0} + b2(γ)1{γ≤γ0} (A.7)

Since bγC2SLS = argmin (S∗n(γ)− ε0ε) , we get that bγC2SLS p→ γ0.
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Figures 1(a) – (f) :  MC Kernel Densities of the Threshold Estimate (endogeneity in the threshold alone)  
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Note: “The solid line represents THRET-C2SLS, the dashed line represents TR-CLS, and the dotted line represents NAÏVE-CLS.” 
 
Figures 2(a) – (f) :  MC Kernel Densities of the Threshold Estimate (endogeneity in both the threshold and 
slope) 
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Note: “The solid line represents THRETS-C2SLS, the dashed line represents IVTR-C2LS, and the dotted line represents NAÏVE-
C2LS.” 



Figures 3(a) – (f) :  MC Kernel Densities of the Slope Coefficient  of the Exogenous Covariate (endogeneity in 
the threshold alone) 
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Note: “The solid line represents THRET-LS, the dashed line represents TR-LS, and the dotted line represents NAÏVE-LS.” 
 
Figures 4(a) – (f) :  MC Kernel Densities of the Slope Coefficient of the Exogenous Covariate (endogeneity in 
both the threshold and slope) 
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Note: “The solid line represents THRET-GMM, the dashed line represents IVTR-GMM, and the dotted line represents NAÏVE-
GMM.” 
 
 



Figures 5(a) – (f) :   MC Kernel Densities of the Slope Coefficient of the Endogenous Covariate  
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Note: “The solid line represents THRET-GMM, the dashed line represents IVTR-GMM, and the dotted line represents NAÏVE-
GMM.” 
Figures 6(a) – (c) :  MC Kernel Densities of the Threshold Estimate for various degrees of endogeneity  
(endogeneity in the threshold alone) 
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Note: “The solid line represents THRET-C2SLS, the dashed line represents TR-CLS, and the dotted line represents NAÏVE-CLS.” 
 
Figures 7(a) – (c) :  MC Kernel Densities of the Threshold Estimate for various degrees of endogeneity 
(endogeneity in both the threshold and slope) 
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Note: “The solid line represents THRETS-C2SLS, the dashed line represents IVTR-C2LS, and the dotted line represents NAÏVE-
C2LS.” 



Table 1(a): Relative Efficiency of Threshold Estimator γ̂  (Endogeneity in the threshold 
alone) 
 
 
                              
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

/TR THRETMSE MSE  /NAIVE THRETMSE MSE  
         Quantiles 

0.05 0.50 0.95 0.05 0.50 0.95 

δ = 0.01  
 
n = 100 2.565 4.134 239.8 506.7 614.7 275.4 

 
n = 200 2.184 2.095 727.7 2474 2471 2189.8 

 
n = 500 1.298 1.372 1.544 7432 28140 23941 

δ = 0.05       
 
n = 100 3.948 6.270 244.2 536.2 649.7 267.1 

 
n = 200 2.940 2.683 1096.3 2946 2285 2139 

 
n = 500 1.193 1.411 1.809 5312 14255 22876 

δ = 0.10       
 
n = 100 4.475 23.33 228.5 512.4 483.5 247.2 

 
n = 200 3.027 4.646 1289 2384 1610 2072 

 
n = 500 1.326 1.630 198.8 1767 4114 19016 

δ = 0.25       
 
n  = 100 17.71 230.2 121.1 220.8 137.9 114.5 

 
n  = 200 19.35 708.5 1371 742.0 292.3 1191 

 
n  = 500 5.367 676.1 2118 726.7 724.0 948.1 

δ = 0.50       
 
n  = 100 570.7 109.0 34.63 39.79 22.33 13.64 

 
n  = 200 4113 432.3 137.2 118.8 68.49 43.99 

 
n  = 500 67296 2964 574.8 152.6 242.9 138.1 

δ = 1.0       
 
n  = 100 182.3 21.57 5.248 13.64 5.197 2.585 

 
n  = 200 750.7 61.32 16.00 23.86 10.74 5.701 

 
n  = 500 4288 398.4 79.38 38.88 40.27 17.07 



Table 1(b): Relative Efficiency of Threshold Estimator of γ̂  (Endogeneity in both the 
threshold and the slope) 
 
 
 
                              
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

/IVTR THRETSMSE MSE  /NAIVE THRETSMSE MSE  
Quantiles  

0.05 0.50 0.95   0.05    0.50 0.95 

δ = 0.01  
 
n = 100 15.26 53.15 176.4 547.2 559.3 190.2 

 
n = 200 17.97 34.63 891.1 1607 2905 1325 

 
n = 500 6.346 9.382 1115 11380 23037 10522 

δ = 0.05       
 
n = 100 21.34 175.6 134.1 644.5 499.1 142.5 

 
n = 200 38.18 128.6 947.8 1859 2509 1208 

n = 500 9.463 22.74 4553 6246 9967 8900 

δ = 0.10       
 
n = 100 60.27 542.13 55.11 642.9 413.2 52.01 

 
n = 200 159.4 2987 875.9 1256 1169 903.8 

 
n = 500 36.60 14798 5003 2942 3266 4860 

δ = 0.25       
 
n  = 100 3259 494.7 42.04 154.8 121.8 31.96 

 
n  = 200 94242 2699 248.5 350.5 233.2 167.3 

 
n  = 500 904607 16650 2045 697.6 622.7 1068 

δ = 0.50       
 
n  = 100 7756 276.9 39.92 21.28 43.63 28.26 

 
n  = 200 67537 626.0 121.3 71.90 37.84 73.39 

 
n  = 500 232434 2798 328.5 54.19 76.45 164.3 

δ = 1.0       
 
n  = 100 49970 636.9 108.1 56.79 88.51 84.17 

 
n  = 200 247379 2345 281.7 131.5 111.5 176.2 

 
n  = 500 1188079 13853 1071 325.5 364.9 531.2 



 
 

 
Table 2(a): Relative Efficiency of the LS estimates of the Slope Coefficient of Exogenous 
Covariate 2̂δ  (Endogeneity in the threshold alone)  
 
 
                              
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

/TR THRETMSE MSE  /NAIVE THRETMSE MSE  
Quantiles  

0.05    0.50    0.95     0.05    0.50 0.95 

δ = 0.01  
 
n = 100 1.713 2.182 5.736 1.301 4.998 16.06 

 
n = 200 1.416 1.363 2.559 4.301 4.676 33.18 

 
n = 500 2.165 1.432 1.531 13.05 7.151 75.22 

δ = 0.05       
 
n = 100 1.780 2.455 7.457 2.105 4.960 16.60 

 
n = 200 1.556 1.481 4.298 3.766 4.701 31.43 

 
n = 500 2.226 1.415 1.544 10.908 6.194 59.80 

δ = 0.10       
 
n = 100 2.123 2.691 10.36 1.614 4.236 14.30 

 
n = 200 1.834 1.743 8.277 4.002 3.791 29.69 

 
n = 500 2.331 1.545 1.771 5.682 3.764 25.32 

δ = 0.25       
 
n  = 100 1.644 3.483 9.848 2.744 2.613 10.82 

 
n  = 200 3.244 2.619 7.732 2.313 2.074 5.593 

 
n  = 500 3.963 2.532 2.867 2.524 1.812 2.015 

δ = 0.50       
 
n  = 100 1.724 2.548 2.761 2.018 1.601 1.481 

 
n  = 200 2.841 2.71 2.333 1.488 1.403 1.765 

 
n  = 500 7.758 3.702 2.789 4.257 1.726 1.733 

δ = 1.0       
 
n  = 100 1.200 1.649 1.423 0.712 1.244 1.204 

 
n  = 200 1.434 2.168 2.066 1.530 1.509 1.513 

 
n  = 500 12.10 3.981 3.237 5.066 1.920 1.772 



 
 
Table 2(b): Relative Efficiency of the GMM Estimates of the Slope Coefficient of Exogenous 
Covariate 3̂δ  (Endogeneity in both the threshold and the slope) 

 
 
 
                              
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

/IVTR THRETSMSE MSE  /NAIVE THRETSMSE MSE  
Quantiles  

0.05    0.50   0.95    0.05    0.50    0.95 

δ = 0.01  
 
n = 100 2.114 1.758 2.023 49.84 21.87 25.30 

 
n = 200 1.739 1.459 1.510 27.32 27.32 28.93 

 
n = 500 1.896 1.463 1.327 18.94 22.75 30.15 

δ = 0.05       
 
n = 100 2.555 1.782 2.258 25.98 20.81 26.86 

 
n = 200 1.676 1.477 1.759 18.88 23.78 29.95 

 
n = 500 2.187 1.594 1.529 28.21 17.91 22.35 

δ = 0.10       
 
n = 100 2.276 1.653 2.112 25.19 17.72 20.09 

 
n = 200 3.079 1.564 2.029 17.23 18.91 19.72 

 
n = 500 2.008 1.608 1.590 11.58 11.40 14.64 

δ = 0.25       
 
n  = 100 2.077 1.603 1.958 12.53 12.16 14.25 

 
n  = 200 1.927 1.712 1.734 14.48 12.57 11.42 

 
n  = 500 2.400 1.607 1.770 9.173 8.474 10.49 

δ = 0.50       
 
n  = 100 2.294 1.508 1.988 17.518 10.52 11.74 

 
n  = 200 0.794 2.093 1.811 9.817 11.56 11.71 

 
n  = 500 3.031 2.743 2.405 10.20 7.856 10.05 

δ = 1.0       
 
n  = 100 2.649 2.857 2.585 20.35 17.57 16.11 

 
n  = 200 4.032 4.132 3.338 7.165 12.57 15.39 

 
n  = 500 19.07 8.875 4.877 9.201 11.09 12.86 



 
 
Table 3: Relative Efficiency of the GMM Estimates of the Slope Coefficient of Endogenous 
Covariate 2̂δ  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

/IVTR THRETSMSE MSE  /NAIVE THRETSMSE MSE  
Quantiles  

0.05 0.50    0.95     0.05    0.50     0.95 

δ = 0.01  
 
n = 100 440.8 337.9 179.4 4924 1671.2 3784 

 
n = 200 3508 703.2 269.2 10816 2004 4654 

 
n = 500 43847 1965 443.6 17849 2123 5150 

δ = 0.05       
 
n = 100 326.1 312.8 175.8 4559 1567 3027 

 
n = 200 1009 612.0 270.6 6998 1710 3629 

 
n = 500 2935 1845 450.9 4844 1288 2365 

δ = 0.10       
 
n = 100 296.3 236.1 171.8 3430 1327 2369 

 
n = 200 315.9 296.8 266.4 4913 1112 2402 

 
n = 500 305.2 397.7 435.8 1267 650.3 623.5 

δ = 0.25       
 
n  = 100 157.4 114.7 126.7 517.3 650.3 710.7 

 
n  = 200 126.6 126.1 129.0 362.1 402.0 414.8 

 
n  = 500 124.8 133.2 104.8 265.0 221.8 305.2 

δ = 0.50       
 
n  = 100 268.1 151.9 99.06 402.9 389.4 484.2 

 
n  = 200 306.8 235.9 132.0 201.1 265.6 446.0 

 
n  = 500 1441 495.5 208.9 450.3 324.7 399.3 

δ = 1.0       
 
n  = 100 755.1 473.1 215.6 258.8 569.1 809.8 

 
n  = 200 3581 1039 362.1 669.3 616.6 780.2 

 
n  = 500 101211 2608 657.4 14470 1863 833.2 



Table 4♦: Regressions of log GDP per capita in 1995 
 

 
Linear 

Regression 
(2SLS) 

 
THRETS 
(GMM) 

Linear 
Regression 

(2SLS) 
THRETS 
(GMM) 

Linear 
Regression 

(2SLS) 
THRETS 
(GMM) 

  
Avg. 

Expr.Risk 
≤ 0.515 

Avg. 
Expr.Risk 
> 0.515 

 
Avg. 

Expr.Risk 
≤ 0.515 

Avg. 
Expr.Risk 
> 0.515 

 
Avg. 

Expr.Risk 
≤ 0.547 

Avg. 
Expr.Risk 
> 0.547 

  90% CI =  
[0.483, 0.769]  90% CI =  

[0.483, 0.652]  90% CI =  
[0.500, 0.720] 

Dependent Variable: 
log GDP per capita 
(PPP basis) in 1995 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Average Expropriation 
Risk 1985-95 

7.697*** 
(2.197) 

5.516 
(6.311) 

6.204*** 
(1.553) 

7.656*** 
(2.103) 

7.938 
(7.113) 

7.558*** 
(2.232) 

6.684** 
(2.841) 

-6.998 
(14.909) 

8.570*** 
(2.838) 

MALFAL94P -1.277*** 
(0.365) 

-0.726 
(0.604) 

-1.604*** 
(0.410) 

-0.878* 
(0.460) 

-0.943 
(0.791) 

-1.056** 
(0.450) 

-0.876** 
(0.422) 

0.204 
(1.133) 

-0.759 
(0.485) 

Ethnic Diversity - - - -0.872* 
(0.448) 

0.176 
(0.512) 

-0.965** 
(0.443) 

-0.831* 
(0.428) 

-0.198 
(0.383) 

-1.156** 
(0.529) 

Openness - - - - - - 0.504 
(0.619) 

2.158** 
(0.991) 

-0.401 
(0.966) 

No. of observations 60 14 46 60 14 46 60 17 43 
 

 
 

 
 
 
 
 

 

                                                 
♦ All the regressions include a constant. Robust standard errors are in parentheses.  “***” denotes significance at 1%, “**” at 5%, and “*” at 10%.  The Average 
Expropriation Risk variable defers from Acemoglu, Johnson, and Robinson (2001) only in that it has been rescaled to take values from 0 to 1, with a higher score 
indicating higher less risk of expropriation. The lowest score for expropriation risk was 0.355 (Haiti) and the highest 1 (United States). We follow Acemoglu, 
Johnson, and Robinson (2001) and instrument for average expropriation risk using log settler mortality. 
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