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Abstract

The paper evaluates the performance of several recently proposed tests

for structural breaks in conditional variance dynamics of asset returns. The

tests apply to the class of ARCH and SV type processes as well as data-

driven volatility estimators using high-frequency data. In addition to testing

for the presence of breaks, the statistics identify the number and location of

multiple breaks. We study the size and power of the new tests for detecting

breaks in the second conditional variance under various realistic univariate

heteroskedastic models, change-point hypotheses and sampling schemes. The

paper concludes with an empirical analysis using data from the stock and

FX markets for which we find multiple breaks associated with the Asian and

Russian financial crises. These events resulted in changes in the dynamics of

volatility of asset returns in the samples prior and post the breaks.
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Introduction

On this twentieth anniversary of Rob Engle’s seminal paper on ARCH it is

worth reflecting on some of the outstanding questions in the literature. It has

long been conjectured that stock market volatility exhibit occasional breaks.

Diebold (1986), Hendry (1986) and Lamoureux and Lastrapes (1990) were

among the first to suggest that persistence in volatility may be overstated

with the presence of structural breaks. More recent and related evidence is

provided by Diebold and Inoue (2001), Granger and Hyung (1999), Mikosch

and Starica (1999), among others, which shows that the presence of breaks

may also explain the findings of long memory, particularly in volatility.

There is a substantial literature on testing for the presence of breaks in

linearly dependent stochastic processes (see for instance Bai (1994, 1997),

Bai and Perron (1998) interalia). There is a temptation to apply the tests

for ARMA-type processes in the context of ARCH or Stochastic Volatil-

ity (SV) models. For instance, one could view squared returns as an ARMA

process and proceed with the application of tests suggested for testing breaks

in the mean. Unfortunately, things are not so simple. The resemblance be-

tween ARMA and GARCH or discrete time SV models is deceiving (see e.g.

Francq and Zakoïan (2000a,b)). It took many years of research after the orig-

inal work of Engle (1982) to clarify the asymptotics of GARCH(1,1) processes

(see, for instance, Lee and Hansen (1984) and Lumsdaine (1996)) and the

asymptotics of more general univariate and multivariate GARCH processes

(see Ling and McAleer (2002 a,b)). Recently, Carrasco and Chen (2001)

present a comprehensive study which shows that most univariate GARCH

processes are β-mixing. This result precludes the application of many afore-

mentioned tests for structural breaks that require a much stronger mixing

condition.1

The purpose of this paper is to explore recent advances in the theory of

change-point estimation for strongly dependent processes including ARCH

and SV models. Some early attempts to test for a break in a GARCH are

found in Chu (1995) and Lundberg and Terasvirta (1998). A number of

recent papers have shown the consistency of CUSUM type change-point es-

timators for a single break and least squares tests for multiple breaks. The

tests are not model-specific and apply to a large class of (strongly) depen-

1Most tests proposed for linear processes impose φ-mixing or strong mixing conditions

which are not satisfied by ARCH processes. For a general treatment of estimating the

weak GARCH models, see Francq and Zakoïan (2000b).
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dent ARCH and SV type specifications given appropriate stationarity condi-

tions. The theoretical developments are described in a series of recent papers,

see in particular Kokoszka and Leipus (1998, 1999, 2000) and Lavielle and

Moulines (2000). So far only limited simulation and empirical evidence is

reported about these tests. We enlarge the scope of applicability by suggest-

ing several improvements that enhance the practical implementation of the

proposed tests. This paper focuses on the Kokoszka and Leipus (2000) and

Lavielle and Moulines (2000) tests and proposes three types of extensions.

First, we find via simulations that the VARHAC estimator proposed by den

Haan and Levin (1997) yields good properties for the CUSUM-type estima-

tor of Kokoszka and Leipus (2000). Simulation evidence is also presented for

the application of this test to the multiple breaks setting using a sequential

sample segmentation approach similar to that of Inclán and Tiao (1994).

Second, the series used in the tests so far are either squared or absolute re-

turns. We suggest the application of these tests to more precise measures

of volatility, including the high frequency data-driven processes studied by

Andersen et al. (2001), Andreou and Ghysels (2002), Barndorff-Nielsen and

Shephard (2000), among others. Third, the finite sample performance of

these new tests is assessed via extensive Monte Carlo simulations for realistic

univariate GARCH models, single and multiple breaks as well as different

algorithms and information criteria for the multiple breaks case.

The empirical application examines various financial series, including eq-

uity index returns for several financial markets in the Hong Kong, Japan,

the U.K. and U.S. as well as FX market series. Our empirical analysis is

particularly complementary to Granger and Hyung (1999) who use the tests

proposed by Inclán and Tiao (1994) and Bai (1997) to examine breaks in

the absolute returns. The advantage of the Kokoszka and Leipus as well as

Lavielle and Moulines tests is their validity under a wide class of strongly

dependent processes, including long memory, GARCH-type and nonlinear

models. The Inclán and Tiao test applies in principle to independent series

and is designed to find a break in the (unconditional) variance with unknown

location. We show via Monte Carlo that the Inclán and Tiao test has nev-

ertheless power and only minor size distortions when applied to strongly

dependent data, though it is not as powerful as the Kokoszka and Leipus

and Lavielle and Moulines tests.

The paper is organized as follows. In section 2 we describe the various

tests. Section 3 presents the Monte Carlo design and results. Section 4

contains the empirical application and a final section concludes.
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1 Test statistics for breaks in volatility dy-

namics

A classical statistical problem is to test the homogeneity of a process or the

parameter constancy of models. There is a substantial literature on this

question known as a change-point problem. The task is to test if a change or

structural break has occurred somewhere in a sample and, if so, to estimate

the time of its occurrence. The simplest form of departure from stationarity is

a change in mean at some (unknown) point in the sample. This problem has

received a great deal of attention, see for instance Csörgo and Horváth (1997)

for a literature review. Financial returns series typically have constant mean,

but exhibit noticeable and complex clustering patterns in volatility (see e.g.

Bollerslev et al. (1994) for a survey of stylized facts). Such processes pose

some non-trivial challenges as detecting a change in variance in an ARCH

model can be rather difficult.2 This section provides a brief discussion of

the Kokoszka and Leipus (2000) as well as the Lavielle and Moulines (2000)

tests for single and multiple breaks as well as the volatility series to which the

tests can be applied to in order to test for change points in the second-order

dynamics of a process.

1.1 CUSUM type tests

Let the asset returns process, rt, be a strongly dependent e.g. β-mixing

process with finite fourth moment. A large class of ARCH and SV models
are β-mixing (see, for instance, Carrasco and Chen, 2001) that satisfy these
assumptions.3 Define the process of interest Xt = |rt|δ for δ = 1, 2 which
represents an observed measure of the variability of returns. Given that the

measurable functions of mixing processes are mixing and of the same size (see

White (1984, Theorem 3.49)) thenXt = G(rt, . . . , rt−τ), for finite τ , is also β-
mixing. The choice of δ is of course important. For δ = 2 we look at squared
returns which is the parent process parametrically modelled in ARCH or

SV-type models. Alternatively, when δ = 1, we examine absolute returns,

which is considered as another measure of risk, see for instance the Power-

2One could for instance think of extreme cases, where there is no change in the uncon-

ditional moments but only a perturbation in the conditional variance dynamics.
3Examples that form exceptions in this class are Integrated GARCH (IGARCH) or

Fractionally IGARCH (FIGARCH) models which are not covariance stationary.
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ARCH models (Ding et al., 1993). It is worth mentioning that long memory

features have also been established in the absolute returns (e.g. Ding et al.,

1993, Granger and Ding, 1996). Although the tests analyzed here apply to

some long memory volatility models they are beyond the scope of this paper.4

Without an explicit functional form for the second conditional moment, the

tests discussed in this section will examine whether there is evidence of struc-

tural breaks in the dynamics of stock returns volatility. If we find a break,

one must conclude that when fitting ARCH or SV-type processes, there will

be instability in their parametric structure. We can take this reasoning a

step further and think of sampling returns intra-daily, denoted r(i),t for some

intra-day frequency i = 1, . . . ,m, and form data-driven estimates of daily

volatility by taking sums of squared intra-day returns. This is an exam-

ple of Xt = G(r(1),t, . . . , r(m),t). The high frequency process is β-mixing, and

so is the daily sampled sum of intra-day squared returns, or various other

empirical measures of quadratic variation. Using the notation of Andreou

and Ghysels (2002) Xt = (QV i)t which are locally smoothed filters of the

quadratic variation using i days of high-frequency data. The case of QV 1

corresponds to the filters studied by Andersen et al. (2001) and Barndorff-

Nielsen and Shephard (2000). The details of the various specifications for

the Xt process will be discussed in the last subsection.

In order to test for breaks in an ARCH(∞) Kokoszka and Leipus (1998,

2000) consider the following process:

UT (k) =


1/
√

T

k∑
j=1

Xj − k/(T
√
T )

T∑

j=1

Xj


 (1.1)

where 0 < k < T , Xt = r
2

t
. The returns process {rt} follows an ARCH(∞)

process, rt = ut

√
ht, ht = a +

∑
∞

j=1 bjr
2

t−j, a ≥ 0, bj ≥ 0, j = 1, 2, with finite

fourth moment and errors ut that can be non-Gaussian. The CUSUM type

estimator k̂ of a change point k∗ is defined as:

k̂ = min{k : |UT (k)| = max
1≤j≤T

|UT (j)|} (1.2)

The estimate ˆk is the point at which there is maximal sample evidence for a
break in the squared returns process. In the presence of a single break it is

4Results on change-point tests for volatility models with long memory can be found in

Andreou (2002).
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proved that ˆk is a consistent estimator of the unknown change-point k∗ with
P{|k∗ − ˆk| > ε} ≤ C/(δε2

√
n), where C is some positive constant and δ

depends on the ARCH parameters and |k∗ − k̂| = Op(1/n) (Kokoszka and
Leipus, 1998, 2000). Under the null hypothesis of no break:

UT (k)→D[0,1] σB(k) (1.3)

where B(k) is a Brownian bridge and σ2 =
∑
∞

j=−∞Cov(Xj,X0). Conse-
quently, using an estimator σ̂, one can establish that under the null:

sup{|UT (k)|}/σ̂ →D[0,1] sup{B(k) : kε[0, 1]} (1.4)

which establishes a Kolmogorov-Smirnov type asymptotic distribution.5

The computation of the Kokoszka and Leipus (1998, 2000) test (hence-

forth K&L test) is relatively straightforward, with the exception of σ̂ appear-

ing in (1.4). The authors suggest to use a Heteroskedasticity and Autocor-

relation Consistent (HAC) estimator applied to the Xj process. There are a

number of such estimators, depending on the kernel function one uses. Ex-

amples of kernels which have been used by econometricians include: Hansen

(1982) and White (1984) use the truncated kernel; the Newey and West

(1987) estimator uses the Bartlett kernel; and the estimator of Gallant (1987)

uses the Parzen kernel and that of Andrews (1991) uses the Quadratic Spec-

tral (QS) kernel. We have experimented with a number of estimators in

addition to the procedure of den Haan and Levin (1997) who propose a HAC

estimator without any kernel estimation, which is called the Vector Autore-

gression Heteroskedasticity and Autocorrelation Consistent (VARHAC) esti-

mator. This estimator has an advantage over any estimator which involves

kernel estimation in that the circular problem associated with estimating the

optimal bandwidth parameter can be avoided. This estimator involves fit-

ting a parametric autoregressive model and choosing the order of AR using

for instance the AIC. The Monte Carlo evidence reported in den Haan and

Levin (1997) indicates that the VARHAC estimator performs better than the

nonprewhitened and prewhitened kernel estimators in many cases. Although

we have not done a systematic study of various kernel HAC estimators versus

the VARHAC estimator, we found via simulations that the latter is reliable.

5Critical values can be found in most textbooks on nonparametric methods. The 90

%, 95 % and 99 % percentile (two-sided test) critical values are, respectively: 1.22, 1.36

and 1.63.
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Hence all the results in the paper are based on the VARHAC estimator for

σ̂ appearing in (1.4).

The advantage of the K&L test is its validity under a wide class of

processes, including long memory, GARCH-type and nonlinear time series

models. In a study closely related to ours Granger and Hyung (1999) use

a different test, proposed by Inclán and Tiao (1994) for linear models with

breaks such as those proposed by Chen and Tiao (1990) and Engle and Smith

(1999). Aggarwal et al. (1999) also apply this test to GARCH models. The

Inclán and Tiao test (henceforth I&T test) applies in principle to indepen-

dent series and is designed to find a break in the (unconditional) variance

with unknown location. The test statistic is defined as:

IT =

√
T/2max

k

|Dk| (1.5)

where Dk =

[(∑
k

j=1
Xj/

∑T
j=1Xj

)
− k/T

]
. It is interesting to note that the

asymptotic distribution of the statistic in (1.5) is the same as in (1.4), that is

the supremum of Brownian bridge and hence the same Kolmogorov-Smirnov

type asymptotic distribution. In the Monte Carlo simulations we will exam-

ine how the Inclán and Tiao test performs in non-independent settings, trans-

formations that yield independent processes and compare it to the Kokoszka

and Leipus test.

The Kokoszka and Leipus test is also adapted for the multiple breaks

hypothesis. The number of breaks is determined following a sequential sam-

ple segmentation approach similar to that of Inclán and Tiao (1994) and

Bai (1997). The simulations present some encouraging results regarding the

performance of the test for further theoretical investigation in the multiple

breaks case. The test is applied to a few sample segments given the appro-

priate significance level adjustment.

1.2 Least squares type tests

The change-point literature has recently dealt with the unknown multiple

change points question in weakly dependent processes in a least-squares con-

text. For instance, Bai (1994), Bai and Perron (1998) and Liu et al. (1997)

use the Hájek-Rényi inequality to establish the asymptotic distribution of the

test procedure. Recent work by Lavielle and Moulines (2000) has greatly in-

creased the scope of testing for multiple breaks. They prove the Hájek-Rényi
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inequality results for weakly as well as strongly dependent processes, the lat-

ter being α-mixing which include long memory and ARCH-type processes.6

The number of breaks is estimated via a penalized least-squares approach

similar to Yao (1988). In particular, Lavielle and Moulines show that an

appropriately modified version of the Schwarz criterion yields a consistent

estimator of the number of change-points.

Consider the following generic model:

Xt = µ∗

k
+ εt t∗

k−1
≤ t ≤ t∗

k
1 ≤ k ≤ r (1.6)

where t
∗

0
= 0 and t

∗

r+1
= T, the sample size. The indices of the breakpoint

and mean values µ
∗

k
, k = 1, . . . , r are unknown. It is worth recalling that

Xt is a generic process. In practical applications, equation (1.6) applies
to squared returns, absolute returns, high-frequency data-driven volatility
estimates, etc. The Lavielle and Moulines tests are based on the following
least-squares computation:

QT (t) = min
µ∗
k
,k=1,...,r

r+1∑

k=1

tk∑

t=tk−1+1

(Xk − µ
k
)2 (1.7)

Estimation of the number of break points involves the use of the Schwarz or
Bayesian information criterion and hence a penalized criterion QT (t) + β

T
r,

where r is the number of break points and βT = 4 log(T )/T 1−2d
.
7 It is shown

under mild conditions that the change-point estimator is strongly consistent

with T rate of convergence. The Lavielle andMoulines simultaneously detects

multiple breaks as opposed to the sequential adaptation of the Kokoszka and

Leipus test. It is worth noting that the Kokoszka and Leipus statistic in (1.1)

can be weighted by (k(T − k)T−1)γ, 0 ≤ γ < 1, as suggested in Kokoszka
and Leipus (1998, equation 1.3, p. 386) which is then equivalent to the

weighted least squares objective function when γ = 0.5. This brings out

some similarities between the objective functions of the above two tests.
Given the asymptotic nature and sequential application of change-point

tests in subsamples we may obviously end up with relatively small samples.
It will therefore be important to appraise the power and size properties of

these change-point tests in small samples via Monte Carlo simulations.

6
The latter are β-mixing which imply α-mixing.

7
This formula allows for the possibility of long memory, with d Hosking’s long-range

dependence parameter.
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1.3 Empirical processes

Following the above discussion the CUSUM and least squares tests are ap-

plied to the generic process Xt which represents the squared or absolute re-

turns, both of which are regarded as alternative measures of risk. A departure

from the limited number of applications found in the literature so far is to use

estimates of conditional volatility which are based on high frequency data.

The logic for considering such empirical processes is that squared returns

can be viewed as noisy realizations of the underlying conditional volatility

process (see Andersen and Bollerslev (1998) for a discussion). Hence, instead

of considering the daily return process and square it, we can take advantage

of high frequency intra-daily data to obtain daily estimates of volatility.8 Us-

ing the notation r(m),t to represent high frequency data on day t sampled with

frequency m we can study sums of squared returns r2(m),t for different values

of m, to produce the daily volatility measure: (i) σ̂
QV 1
t

=
∑

m

j=1
r
2

(m),t+1−j/m
,

t = 1, ..., T, where for the 5-minute sampling frequency the lag length is

m = 288 for financial markets open 24 hours per day (e.g. FX markets)

as in Andersen et al. (2001), Andreou and Ghysels (2002) and Barndorff-

Nielsen and Shephard (2000) or (ii) One-day Historical Quadratic Variation

(introduced in Andreou and Ghysels, 2002) defined as the sum of m rolling

QV estimates: σ̂
HQV 1

t
= 1/m

∑
m

j=1QV 1(m),t+1−j/m, t = 1, ..., T. The intra-

day volatilities are denoted as QV i,HQV i for window lengths i = 1, 2, 3.

Clearly, the regularity conditions for squared daily returns can be trans-

planted to these more efficient filtering schemes like QV i (as discussed in

section 1.1).

2 The Monte Carlo Design and Results

The aim of this section is to evaluate the performance of the Kokoszka and

Leipus (1998, 2000) in (1.4) as well as Inclán and Tiao (1994) tests in (1.5)

(also referred to as K&L and I&T tests, respectively) in detecting breaks in

the volatility dynamics of financial asset returns. The observed absolute or

squared returns transformations are the series monitored for single and mul-

tiple breaks. The simulation design examines the size and power properties

8We refrain here from a discussion of the diffusion details of this class of estimators as

well as definitions of quadratic variation. For details we refer the reader to Andersen et

al. (2001), Andreou and Ghysels (2002) and Barndorff-Nielsen and Shephard (2000).
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of the Kokoszka and Leipus and Lavielle and Moulines tests for GARCH type

processes that can be considered as representative models of financial asset

returns. Kokoszka and Leipus (2000) report simulation results that focus on

the sampling distribution of the change-point estimator ˆk for an ARCH(1)

process. They find that its sampling distribution depends on the location

of the change-point, the size of the variance change and its source. The ex-

tensive results presented in this section complement some early simulation

evidence of these tests in establishing their power for univariate and bivari-

ate GARCH processes and a number of alternative change-point hypotheses

often encountered in asset returns. The robust character of the test is also ex-

amined in the presence of outliers given the stylized fact of jumps or extreme

observations observed in volatility and absolute returns which may lead to

spurious nonlinearities or IGARCH effects (e.g. Lamoureux and Lastrapes

(1990), van Dijk et al. (1999)).

The apparent similarity of the CUSUM-type statistics in K&L and I&T

calls for an interesting comparison which brings about the connection be-

tween these two tests and their power in detecting change-points in GARCH

processes as well as jumps in financial markets. For comparison purposes

both tests in (1.4) and (1.5) are evaluated for absolute and squared returns

whereas the I&T test is also applied to the residuals of a GARCH process

given that this test is originally designed for independent processes. First we

discuss the simulation design followed by an analysis of the results.

2.1 Simulation design

The simulated returns processes are generated from a univariate Normal-

GARCH process given by:

ri,t = ui,t

√
hi,t

hi,t = ωi + αiu
2

i,t−1
+ β

i
hi,t−1, t = 1, ..., T and i = 0,1.

(2.1)

where ri,t is the returns process generated by the product of ui,t which is

i.i.d.(0,1) and the volatility hi,t that has a GARCH(1,1) specification. This

process without change points is denoted by i = 0 whereas a break in any

of the parameters of the process is symbolized by i = 1. The models used

in the simulation study are representative of financial markets data with the

following set of parameters that capture a range of degrees of volatility per-

sistence (measured by α0 + β
0
). The vector parameters (ω0, α0, β0

) in (2.1)
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describes the following Data Generating Processes: DGP1: (0.4,0.1, 0.5) and

DGP2: (0.1, 0.1,0.8) which are characterized by low and high volatility per-

sistence, respectively. The sample sizes of T = 500, 1000, 3000 are chosen so

as to examine not only the asymptotic behavior but also the small sample

properties of the tests. The small sample features are particularly relevant

for the sequential application of the tests in subsamples.

The model without breaks (i = 0) denotes the processes under the null

hypothesis. Under the alternative hypothesis the returns process is assumed

to exhibit breaks and four hypotheses are considered to evaluate the power

of the tests. The simulation study first examines the single change-point

followed by the multiple breaks hypothesis. In the context of (2.1) we study

a single break in the conditional variance ht which can also be thought as

a permanent regime shift in volatility at change points πT (π = .3, .5, .7).

Such breaks may have the following sources. HA

1
: a change in the volatility

dynamics (or persistence), βi. H
B
1

: a change in the intercept, ωi. H
C
1

:

a change in the tails of u0,t to u1,t ∼ N(0, σu), (σu = 1.1, 1.5 ) at t =
πT + 1, ..., T . HD

1
: outliers in the error, u0,t to u1,t ∼ N (µ

u
, 1), with jump

sizes µ
u
= 4, 5 and frequencies at given regular dates of a daily sample, ∆·tj,

(where ∆ = 250,500 and tj = 1, 2, ...,∆/T ) and zero otherwise.9 The sample

sizes are T = 1000 and 3000 observations to match the empirical analysis

as well as the large samples encountered in financial asset returns series of

relatively high sampling frequency.

For the multiple breaks case we examine the alternative hypothesis that

there are two breaks (or equivalently three segments) where the change points

occur in model (2.1) as follows:

r1,t = u1,t

√
h1,t, h1,t = ω1 + α1u

2

1,t−1 + β1h1,t−1 if 1 < t ≤ [πT ]

r2,t = u2,t

√
h2,t, h2,t = ω2 + α2u

2

2,t−1 + β
2
h2,t−1 if [πT ] < t ≤ [2πT ]

r3,t = u3,t

√
h3,t, h3,t = ω3 + α3u

2

3,t−1 + β
3
h3,t−1 if [2π] < t ≤ T

(2.2)

where π = 0.33 and uj,t ∼ N (0, σuj
), j = 1, 2, 3 and uncorrelated.10 Under

the null hypothesis the simulated process (2.1) holds whereas under the al-

9
In our experiment the above simple jump process would facilitate the evaluation of

the test’s power in the presence of controlled outliers.
10
The multiple change point model can be extended to more than two breaks and some

preliminary simulation results with four breaks show that the tests share good properties,

partly because of the large sample sizes encountered in financial asset returns. Therefore,

for conciseness and comparison with other studies we report the two breaks case.
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ternative hypothesis of multiple change points the process (2.2) is simulated

with different sources of breaks as described under HA
1
,HB

1
,HC

1
HD

1
above.

In order to detect the two breaks at 0.33 (πT ) and 0.66 of the sample (2πT )

we first apply the Kokoszka and Leipus (2000) test to the total sample (T ) of

Xt and if a break is detected an algorithm similar to that of Inclán and Tiao

(1994) is applied according to which the sample is segmented and the test

is applied again to each subsample following sequential sample segmentation

whenever a break is detected. The simulation design sequentially applies

the test for upto 5 segments. Hence a 1% significance level is applied to

each segment. The Lavielle and Moulines (2000) test is also applied to the

multiple breaks process (as well as single break case mainly for comparison

purposes with the K&L and I&T tests). This test simultaneously detects the

number of change points and dates the breaks. The Lavielle and Moulines

is a least squares type test and in order to detect multiple breaks one may

apply a grid search approach or a more efficient algorithm based on dynamic

programming suggested in Bellman and Roth (1969) and reintroduced in Bai

and Perron (1998, 2002). Two information criteria are used for the penalty

function: the BIC (Bayesian Information Criterion) and its modification by

Liu et al. (1997) denoted LWZ. The simulation as well as empirical analysis

is performed using the GAUSS programing language.

The simulation investigation is organized as follows: First, we consider

the application of the I&T, K&L and L&M tests in model (2.1) to evaluate

their size and power under the single break hypothesis. The alternative

hypotheses aim to examine the power of the test in detecting breaks due

to either changes in the parameters (defined by HA

1
,HB

1
) or the error of

the GARCH process (defined by HC
1
,HD

1
). The former are interesting for

studying the parameter constancy of the GARCH dynamics whereas the

latter for examining the distributional homogeneity of the process. Both are

the underlying assumptions in many asset pricing relationships and Value

at Risk (VaR). Second, we evaluate the performance of the K&L and L&M

tests for multiple breaks for the alternative hypotheses mentioned above.

2.2 Simulation Results

The simulation results commence with the evaluation of the K&L test when

the underlying process is a Normal-GARCH(1,1). Table 1 reports only minor

size distortions for GARCH models with low persistence (e.g. DGP1 where

a0 + β
0
= 0.6). These minor distortions remain as the sample size increases

11



from T = 500 to 3000. For the high-persistent process (DGP2) the test suffers

more serious distortions up to 20%. The power of the K&L test is evaluated

by a number of alternative hypotheses as defined in the previous section. The

results in Table 1 suggest that the tests have good power in detecting breaks

under the following alternative hypotheses: Break in the constant (HB
1
) or

dynamics (HA
1
) of volatility. The power of the test is demonstrated even

for small changes (e.g. a 0.1 increase) in β
0
for all DGPs. Similar results

apply to the alternative of a small change in the error term (HC

1
). The

power of the tests increases with T in all DGPs. Note that the high nominal
power for the persistent GARCH process (DGP2) needs to be weighted by
the size distortions for this process. In H

D
1
the presence of outliers or short-

lived jumps, which are evident in financial markets, do not seem to have an
adverse effect on the test. The power of the K&L test is also evaluated for
early change-points for HA

1
,H

B

1
,H

C

1
and the results show that the K&L test

can detect breaks that occur as early as at π = 0.3 of the sample.
The size and power properties of the K&L test are compared with those

of I&T. The latter is derived for independent series but has been applied
to processes that exhibit dependence (Aggarawal et al., 1999, Granger and
Hyung, 1999). Therefore we examine the properties of the test for (rt)

2
, |rt|

as well as the errors of the GARCH process (ut)2 where ut = rt/
√
ht yields

an independent series. Table 2 presents the nominal size and power simu-

lation results of the I&T test under the same null hypothesis of a Normal-

GARCH(1,1) and all the alternative hypotheses discussed above. Let us

first compare the performance of the I&T for (rt)
2 and |rt|. The I&T test

for (rt)
2 suffers from size distortions (above 10%) for all DGPs and sample

sizes but appears to have good power in detecting even small changes in the

GARCH coefficients or the error process (shown by the alternative hypotheses

H
A
1
,H

B
1
,H

C
1
) for large T . Nevertheless, its performance is adversely affected

by outliers which appear to be consistently detected as change-points. If in-

stead we adopt the |rt| transformation we note some interesting differences.

The I&T test for |rt| appears seriously under-sized and with relatively less

power, when compared with (rt)2 for any of the alternative hypotheses. How-
ever, it is interesting to note that for large T (e.g. 1000, 3000) and highly

persistent GARCH processes (e.g. DGP2) the I&T test has good power

properties and is not susceptible to outliers as opposed to (rt)
2. Finally we

examine the I&T test for (ut)2 which is by design an independent series. The
size of the I&T statistic for (ut)2 is near the nominal 5% level. The I&T

test for (ut)
2 has power in detecting even small changes in the variance of
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error term (demonstrated by HC
1
) and is not seriously affected by outliers

(HD
1
) for large samples, T = 3000. This evidence complements the results in

Inclán and Tiao for i.i.d. series in that it shows that this test can be applied

to the residuals of a GARCH for which it would have power to detect breaks

only in the error term for very large samples. This statement is supported by

the simulation results for the HA
1
and HB

1
for (ut)2 which show that it lacks

power in detecting breaks in the conditional variance. The reason ut lacks

power is due to the standardization of the returns process rt/
√
ht that offsets

the corresponding changes in rt and
√
ht and yields an i.i.d. error process,

ut.

In Table 3 we report the Lavielle and Moulines test simulation results

for a single break. This table reports the frequency distribution of the num-

ber of change points - to make it comparable with the simulation results for

multiple breaks that follow. The test appears to have good size properties

for either information criterion (BIC or LWZ) and for both DGPs and re-

turn transformations. For the persistent GARCH (DGP2) the LWZ criterion

performs better than the BIC in terms of size. The test appears to have

good power overall for a single break except when there is a small change

in the coefficients of either the constant or dynamics of the GARCH model.

This results is evident in the low persistent GARCH and in particular when

the LWZ is used. However, the L&M test with the LWZ criterion seems to

have relatively more power in detecting changes in the GARCH error than

the BIC. Both criteria appear robust to the outliers. Comparing the L&M

and K&L simulation results we observe that the latter performs relatively

better when the size of change is small (e.g. 0.1 increase in the parame-

ters of DGP1) but suffers from relatively higher size distortions in persistent

GARCH processes.

The remaining simulation analysis addresses the multiple breaks hypothe-

ses given in model (2.2). Table 4 reports the K&L results using a sequential

sample segmentation approach. The frequency distribution of the number of

breaks under the alternative hypotheses is reported. The results show that

the K&L has good power only for large and non-monotone (rather than small

and gradual) changes in the GARCH parameters for any of the DGPs but

for the absolute rather than the squared returns transformations. Similarly

it shares good power for detecting changes in the variance of the error term

in the GARCH process. As the sample size (T ) increases the performance of

the test improves even for small change points. The Lavielle and Moulines

multiple breaks results are reported in Table 5. The frequency distribution
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of the number of change points is reported for the alternative hypotheses,

the two information criteria and two breaks. The results show that the L&M

has good power in detecting the two change points especially when the BIC

is applied to r
2

t
for small and gradual changes and when applied to either re-

turn transformation for large changes. In contrast, the LWZ underestimates

the number of breaks in the GARCH parameters. Generally the L&M test

has less power in detecting small and/or monotone (gradual) changes in the

GARCH parameters as opposed to large and non-monotone changes. This

is a common feature shared by the L&M and K&L tests. It is interesting to

note that in detecting changes in the distribution of the GARCH process the

absolute rather than squared returns transformation yields relatively higher

power with the BIC. Overall increasing the sample size, T , and the number of

segments, tk, improves the power of the test especially when the size of change

is small. For large breaks the L&M and K&L share similar power. However

for small or monotone changes the K&L has relatively more power and is

computationally less demanding than the L&M test. The latter however has

better size properties and does not overpredict the number of breaks.

3 Empirical Results

There is a plethora of empirical evidence that squared asset returns exhibit

dynamic heteroskedasticity (e.g. Bollerslev et al., 1994) and absolute returns

feature long-range dependence (e.g. Granger and Ding, 1996). Empirical

studies recognize that the existence of breaks or regime changes in financial

markets affects volatility and long-range dependence in stock returns (e.g.

Lamourex and Lastrapes, 1990, Mikosch and Starica, 1999, Granger and

Hyung, 1999, Diebold and Inoue, 2001).

The empirical analysis aims to complement the simulation evidence in the

following directions. We examine the change-point hypothesis in volatility

dynamics of international stock market indices and FX returns. The empiri-

cal performance of the tests, discussed in the previous sections, is evaluated

by examining the relation of the change-points to economic events detected

not only in the squared and absolute returns but also to a family of data-

driven volatility filters. Moreover, we estimate the volatility in subsamples

prior and post breaks in an attempt to verify changes in the dependence of

the series. The empirical analysis also complements the simulation results

to tests for multiple breaks using the Lavielle and Moulines least-squares
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test as well as the Kokoszka and Leipus sequential sample segmentation test

(henceforth K&L and L&M, respectively).

The empirical analysis is performed using data from the stock and FX

markets. The four international stock market returns indices, the Financial

Times Stock Exchange 100 index (FTSE), the Hang-Seng Index (HSI), the

Nikkei 500 index (NIKKEI) and the Standard and Poors 500 index (S&P500)

are studied over the period 4/1/1989 - 19/10/2001 at daily frequency (sample

size, T = 3338). The data source is Datastream. The choice of the sample is

based on the recent experience of the Asian and Russian financial crises. We

also study the Yen vis-à-vis the US dollar returns over the period 1/12/1986-

30/11/1996 at 5-minute sampling frequency. The data source is Olsen and

Associates. The original sample is 1,052,064 five-minute return observations

(2653 days · 288 five-minute intervals per day). The returns for some days

were removed from the sample to avoid having regular and predictable market

closures which affect the characterization of the volatility dynamics. For the

description of the data removed refer to Andersen et al. (2001). The final

sample includes 705,024 five-minute returns reflecting T = 2448 trading days.

The empirical analysis commences with investigating the hypothesis of a

single break in the four international stock market indices. The results in

Table 6 provide evidence that neither the K&L nor the I&T tests support

the null hypothesis of homogeneity in the absolute or squared returns of the

stock market indices over the sample 1989-2001. These results hold for two

alternative nonparametric estimators of (rt)
2 and |rt| used for standardizing

the maxUT (k) statistic defined in section (1.1): the VARHAC estimator and

the Nonlinear Least Squares (NLS) variance estimator of the ARMA(1,1)

for squared and absolute returns (Francq and Zakoian, 2000b). The overall

picture of the four stock market returns indices dates the change point in

1997 and in particular in the summer months of 1997 for the FTSE, HKI

and NIKKEI. The same change-point dates are also supported by the I&T

test. Using the simulation evidence in Table 2 we note that for large sample

sizes T the I&T test for |rt| is well-behaved in terms of size and power and

is not distorted by outliers. It is interesting to note that the extension of

the I&T statistic by Kim et al. (2000) (also reported in Table 6 as BT (C))
does not detect any change-points. One possible explanation can be the poor

power performance of the test in the presence of highly persistent GARCH

processes as documented in Kim et al. and as is supported by the estimation

of GARCH models for the four stock market indices (presented in the last

Table).
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The change-points detected in the three international stock market indices

in Table 6 refer to the Asian crisis period. However the single change point

hypothesis can mask the existence of multiple breaks which implies that in

dating change-points it is advisable to follow a multiple breaks procedure.

The results of two tests are summarized in Table 7. In the Lavielle and

Moulines test we adopt two penalty function criteria, the first is the Bayesian

Information Set (BIC) and the second is a modified BIC as proposed in Liu et

al. (1996) (denoted by LWZ in Table 7) and we set the number of segments

tk equal to 3 and 5. The empirical findings show that irrespective of the

choice of tk the L&M test consistently detects the same number of breaks.

Specifically the combination of the BIC and |rt| tends to predict the largest
number of breaks whereas the pair of LWZ and (rt)

2 the smallest number of

change-points. The latter result is consistent with the conservatism of the

LWZ found in the simulation analysis. The Asian crisis period appears to

be a common break in the above combinations (of processes and information

criteria) and in all stock market indices that is revealed in different months of

1997. In July and August 1997 we detect the first change-points associated

with the Asian crisis in the FTSE, HSI and NIKKEI followed by the October

1997 change-point in the S&P500 as well as the NIKKEI.11 A second common

break in the stock indices that is revealed in the L&M procedure is associated

with the Russian crisis. In July 1998 we detect change-points in the FTSE

and the S&P500 followed by the August 1998 break in the NIKKEI. Table

8 reports the results of multiple breaks from the Kokoszka and Leipus test

sequential application. Comparing the results from the two tests we observe

that the latter test detects a larger number of breaks especially when applied

to the |rt| process even at the 1% significance level. The two multiple change-

point tests detect some common breaks in the same year mainly that of 1997.
As a final empirical application we test for change-points in the FXmarket

applying the K&L test to the family of high-frequency volatility filters that

estimate the Quadratic Variation (QV) of diffusion processes with stochastic

volatility (briefly discussed in section 1.3). These high-frequency volatility
estimates have been introduced by Merton (1980) and applied in Poterba

and Summers (1986), French et al. (1987) and Hsieh (1991) interalia. More
recently Andersen and Bollerslev (1998) reintroduced these filters using in-

11A detailed chronology of the Asian financial crisis events

in 1997 and 1998 produced by N. Roubini can be found at

http://www.stern.nyu.edu/nroubini/asia/AsiaChronology1.hml.
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traday data, similar to Hsieh (1991). Based on a continuous time diffusion

process Andersen and Bollerslev (1998) estimate the one-day Quadratic Vari-

ation (QV 1) which is also called integrated volatility and defined as the sum

of the squared returns, r2
(m),t, for the intraday frequency m, to produce the

daily volatility measure: QV 1, discussed in section 1.3, using 5-minute sam-

pling frequency the lag length ism = 288 for financial markets open 24 hours

per day (e.g. FX markets). QV 1 can be considered as an efficient estimate

of the quadratic variation of a stock returns process. One reason for their

efficiency being that they utilize the high-frequency intraday data informa-

tion. The QV 1 filter is generalized in Andreou and Ghysels (2002) using the

results in Foster and Nelson (1996) to increase the window length k = 2,3

days in QV k and to suggest rolling instead of block sampling schemes. The

rolling estimation method yields the one-day Historical Quadratic Variation

(HQV 1) defined as the sum of m rolling QV estimates, as discussed in sec-

tion 1.3, which is also extended to a k window length, HQV k. The rolling

estimation method yields smooth volatility filters which answers one of the

criticisms of the QV 1 filter (see for instance Barnidoff-Nielsen and Shep-

hard, 2001). The K&L and I&T tests are applied to these estimates of the

quadratic variation and compared with the results for (rt)
2. The results in

Table 8 reveal the existence of a single change-point that is detected in all

the QV type filters by the Umax/σ̂V ARHAC and IT even at the 1% signifi-

cance level as opposed to the mixed evidence of a change-point in (rt)
2 and

|rt|. This change-point in the quadratic variation of the YN/US$ series is

consistently estimated by the high-frequency volatility filters to be located

on the 8/2/1993 and 9/2/1993 and is associated with the highest increase of

the YN vis-à-vis the US dollar since the 1970s and the possibility of Central

Bank interventions (as published in the Asian Wall Street Journal dated 23rd

February, 1993).

The empirical analysis so far applied single and multiple breaks test pro-

cedures and identified the common dates estimated by the above tests as

change-points. In an approach to verify that there was indeed a structural

change in the asset returns processes we examine the volatility character-

istics of the series in alternative subsamples - prior and after the breaks.

The results in Table 9 report the estimated MLE parameters from a Normal

GARCH(1,1). The varying estimated coefficients of volatility persistence

and unconditional variance over the subsamples can be considered as further

supportive empirical evidence that complements the change-point tests.
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4 Conclusions

There is a substantial literature on testing for the presence of breaks in lin-

early dependent stochastic processes. The purpose of this paper is to explore

recent advances in the theory of change-point estimation, using various new

CUSUM type change-point estimators and tests for multiple breaks in the

context of volatility models. The tests are not model-specific and apply to

a large class of strongly dependent processes such as ARCH and SV type

processes and were developed in a series of recent papers in particular by

Kokoszka and Leipus (1998, 1999, 2000) and Lavielle and Moulines (2000).

We focus on the Kokoszka and Leipus (2000) and Lavielle and Moulines

(2000) tests which monitor nonlinear transformations of returns processes

(in square and absolute returns) without the need to specify any particu-

lar, restrictive functional form of the process. Moreover, the CUSUM type

test of Kokoszka and Leipus and the RSS minimization type test of Lavielle

and Moulines are characterized by relative computational simplicity which

is an additional advantage for the complex nonlinear structure of financial

time series. So far only limited simulation and empirical evidence is reported

about these tests. We enlarge the scope of applicability by suggesting sev-

eral improvements that enhance the practical implementation of the proposed

tests. The extensive simulation investigation regarding the performance of

the Kokoszka and Leipus test provides evidence that the test has good power

properties in detecting even small changes in all the GARCH parameters and

the error and appears robust to outliers, but suffers some size distortions in

the persistent GARCH case.12 For the multiple breaks hypothesis we find

that both tests share good power properties especially the BIC criterion in

the RSS of Lavielle and Moulines. We also suggest the application of these

change-point tests to more precise measures of volatility, including the high

frequency data-driven processes studied by Andersen et al. (2001), Andreou

and Ghysels (2000), Barndorff-Nielsen and Shephard (2000), among others.

The empirical analysis examines various financial series, including equity

index returns for several financial markets in the Hong Kong, Japan, the

U.K. and U.S. The data series are similar to several prior studies, particularly

Granger and Hyung (1999) who consider a longer but less recent sample. The

applications of the Kokoszka and Leipus as well as the Lavielle and Moulines

12
The IGARCH type of models violate the assumption of finite fourth moments required

by the Kokoszka and Leipus tests.
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tests detect change-points in the volatility dynamics which are associated

with the Asian and Russian financial crises. The empirical analysis is also

performed using high frequency data from the FX markets. The above tests

are applied to the Yen/US$ class of data driven volatility filters in an attempt

to provide more efficient approximations of the quadratic variation of the

process for which we also detect change-points.
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Table 1: Nominal Size and Power of the Kokoszka and Leipus (2000) test for a single
change-point in the volatility based on a GARCH process.

Samples, T 500 1000 3000

Kokoszka & Leipus Statistic Umax/σHAC Umax/σHAC Umax/σHAC

Returns Transformations rt 
2 |rt | rt 

2 |rt | rt 
2 |rt |

H0 : Univariate GARCH, r0,t = u0,t h0,t , h0,t = ω0 + α0u0,t−1
2

+ β0h0,t−1, with ω0,α0,β0:

DGP1: (0.4, 0.1, 0.5) 0.059 0.072 0.061 0.078 0.061 0.067
DGP2: (0.1, 0.1, 0.8) 0.171 0.165 0.187 0.185 0.212 0.205

H1
A : Break in the dynamics of volatility, β0 (increase of 0.1) at 0.5T.

DGP1: β0 = 0.5 to β1 = 0.6 0.273 0.280 0.492 0.473 0.945 0.926
DGP2: β0 = 0.8 to β1 = 0.9 0.978 0.978 0.999 0.999 1.000 1.000

H1
A : Break in the dynamics of volatility, β0 (increase of 0.1) at 0.3T.

DGP1: β0 = 0.5 to β1 = 0.6 0.190 0.204 0.382 0.390 0.838 0.825
DGP2: β0 = 0.8 to β1 = 0.9 0.934 0.942 0.996 0.999 1.000 1.000

H1
B : Break in the constant of volatility, ω0 (increase of 0.1) at 0.5T.

DGP1: ω0 = 0.4 to ω1 = 0.5 0.210 0.204 0.353 0.353 0.809 0.787
DGP2: ω0 = 0.1 to ω1 = 0.2 0.718 0.702 0.913 0.915 1.000 1.000

H1
B : Break in the constant of volatility, ω0 (increase of 0.1) at 0.3T.

DGP1: ω0 = 0.4 to ω1 = 0.5 0.148 0.153 0.254 0.262 0.674 0.634
DGP2: ω0 = 0.1 to ω1 = 0.2 0.552 0.573 0.851 0.844 0.999 0.999

H1
C : Break in the error, u0 ∼ N0,1 (increase σu1 = 1.1) at 0.5T

DGP1: u1 ∼ N0,1.1 0.287 0.277 0.548 0.520 0.921 0.917
DGP2: u1 ∼ N0,1.1 0.449 0.437 0.710 0.700 0.982 0.975

H1
C : Break in the error, u0 ∼ N0,1 (increase σu1 = 1.1) at 0.3T

DGP1: u1 ∼ N0,1.1 0.195 0.199 0.329 0.333 0.833 0.804
DGP2: u1 ∼ N0,1.1 0.376 0.386 0.548 0.548 0.932 0.923

H1
D : Outliers in the error, u0 ∼ N0,1 (μu1 = 5 every 250 observations).

DGP1: u1 ∼ N5,1 0.019 0.046 0.015 0.039 0.005 0.044
DGP2: u1 ∼ N5,1 0.039 0.115 0.046 0.134 0.062 0.145

Notes: The Kokoszka and Leipus (2000) test statistic is defined as Uk =
1
T
∑j=1

k rj
2
−

k
T

1
T
∑j=k+1

T rj
2 . The maxUTk is

standardized by the VARHAC estimator, σHAC, which is applied to Xt that represents either squared or absolute returns of the GARCH
model. The normalized statistic Umax/σHAC converges to the sup of a Brownian Bridge with asymptotic critical value 1.36 at the 5%
significance level. The Normal GARCH (1,1) model is simulated (1,000 replications) where the superscirpts 1 and 0 in the variables
and coefficients in the Table denote the cases with and without change-points, respectively.
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Table 2: Nominal Size and Power of the Inclan and Tiao (1994) test for a single change-point in
the volatility based on a GARCH process.

Samples, T 500 1000 3000
Inclan & Tiao Statistic IT IT IT
Returns Transformations rt 

2 |rt | ut 
2 rt 

2 |rt | ut 
2 rt 

2 |rt | ut 
2

H0 : Univariate GARCH, r0,t = u0,t h0,t , h0,t = ω0 + α0u0,t−1
2

+ β0h0,t−1, with ω0,α0,β0:

DGP1: (0.4, 0.1, 0.5) 0.133 0.000 0.038 0.131 0.000 0.041 0.165 0.000 0.042
DGP2: (0.1, 0.1, 0.8) 0.286 0.000 0.038 0.337 0.005 0.041 0.353 0.003 0.051

H1
A : Break in the dynamics of volatility, β0 (increase of 0.1) at 0.5T

DGP1: β0 = 0.5, β1 = 0.6 0.404 0.001 0.047 0.633 0.023 0.047 0.966 0.294 0.058
DGP2: β0 = 0.8, β1 = 0.9 0.989 0.621 0.047 1.000 0.969 0.046 1.000 1.000 0.047

H1
B : Break in the constant of volatility, ω0 (increase of 0.1) at 0.5T

DGP1: ω0 = 0.4, ω1 = 0.5 0.276 0.002 0.047 0.519 0.014 0.043 0.883 0.131 0.044
DGP2: ω0 = 0.1, ω1 = 0.2 0.786 0.121 0.043 0.959 0.385 0.047 1.000 0.981 0.032

H1
C : Break in the error, u0 ∼ N0,1 (increase σu1 = 1.1) at 0.5T

DGP1: u1 ∼ N0,1.1 0.610 0.057 0.242 0.806 0.133 0.461 0.993 0.685 0.910
DGP2: u1 ∼ N0,1.1 0.599 0.046 0.247 0.823 0.128 0.432 0.994 0.668 0.929

H1
D : Outliers in the error, u0 ∼ N0,1 (μu1 = 5 every 250 observations).

DGP1: u1 ∼ N5,1 0.357 0.000 0.231 0.271 0.000 0.112 0.219 0.000 0.079
DGP2: u1 ∼ N5,1 0.505 0.001 0.257 0.500 0.002 0.136 0.481 0.002 0.079

Notes: The Inclán and Tiao (1994) statistic IT = T/2 max|Dk | where Dk = ∑j=1
k rj

2/∑j=1
T rj

2
−

k
T is specified for independent

processes. It also converges to the sup of a Brownian Bridge with asymptotic critical value 1.36 at the 5% significance level.
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Table 3: Size, Power and Frequency Distribution of the number of change-points obtained
with the Lavielle and Moulines (2000) test when there is a single break at 0.5T of the sample in

the GARCH process.
Samples, T 1000 1000
Lavielle & Moulines BIC LWZ BIC LWZ
Segments, tk = 5
Returns rt 

2 |rt |
Number of Breaks 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2

H0 : Univariate GARCH, r0,t = u0,t h0,t , h0,t = ω0 + α0u0,t−1
2

+ β0h0,t−1, with ω0,α0,β0:

DGP1: (0.4, 0.1, 0.5) 0.96 0.03 0.01 1.00 0.00 0.00 0.98 0.02 0.00 1.00 0.00 0.00
DGP2: (0.1, 0.1, 0.8) 0.88 0.07 0.05 1.00 0.00 0.00 0.93 0.07 0.00 1.00 0.00 0.00

H1
A : Break in the dynamics of volatility with parameters β0,β1

DGP1: 0.5,0.6 0.72 0.24 0.04 1.00 0.00 0.00 0.79 0.20 0.01 1.00 0.00 0.00
DGP1: 0.5,0.8 0.00 0.95 0.05 0.00 1.00 0.00 0.00 0.93 0.07 0.00 1.00 0.00
DGP2: 0.8,0.7 0.21 0.75 0.03 0.85 0.15 0.00 0.20 0.75 0.05 0.84 0.16 0.00
DGP2: 0.8,0.4 0.00 0.72 0.28 0.00 1.00 0.00 0.00 0.86 0.14 0.00 1.00 0.00

H1
B : Break in the constant of volatility with parameters ω0,ω1

DGP1: 0.4,0.5 0.85 0.14 0.01 1.00 0.00 0.00 0.82 0.18 0.00 1.00 0.00 0.00
DGP1: 0.4,0.8 0.00 0.94 0.06 0.38 0.62 0.00 0.00 1.00 0.00 0.36 0.64 0.00
DGP2: 0.1,0.3 0.00 0.94 0.06 0.18 0.82 0.00 0.00 0.99 0.01 0.13 0.87 0.00
DGP2: 0.1,0.5 0.00 0.86 0.14 0.00 1.00 0.00 0.00 0.95 0.05 0.00 1.00 0.00

H1
C : Break in the variance of the error with parameters σu0 ,σu1

DGP1: 0,1.1 0.01 0.49 0.50 0.01 0.94 0.05 0.01 0.57 0.42 0.01 0.95 0.04
DGP1: 0,1.5 0.00 0.63 0.37 0.00 0.97 0.03 0.00 0.58 0.42 0.00 0.97 0.03
DGP1: 0,3 0.00 0.60 0.40 0.00 0.98 0.02 0.00 0.53 0.47 0.00 0.93 0.07

H1
D : Outliers in the error, u0 ∼ N0,1 (μu1 = 5 every 250 observations).

DGP1: u1 ∼ N5,1 0.99 0.01 0.00 1.00 0.00 0.00 0.99 0.01 0.00 1.00 0.00 0.00
DGP2: u1 ∼ N5,1 0.98 0.02 0.00 1.00 0.00 0.00 0.92 0.06 0.02 1.00 0.00 0.00

Notes: The Lavielle and Moulines (2000) test is described in section 1.2. The Bayesian Information Criterion (BIC) and its
modification by Liu et al. (1997) denoted as LWZ are used. The simulations focus on DGP1, DGP2, T = 1000 for 500 trials. For
comparison purposes the alternative hypotheses of change points are similar to the K&L simulations (Table 1) and extended to larger
breaks. Reported is the frequency distributionn of the breaks detected. The highlighted numbers refer to the true number of
change-points in the simulated process.
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Table 4: Size, Power and Frequency Distribution of the number of change-points obtained
with the Kokoszka and Leipus (2000) test when there are two breaks at 0.33T and 0.67T of the

sample in the GARCH process.
Samples, T 1000 3000
Returns rt 

2 |rt | rt 
2 |rt |

Number of Breaks 0 1 2 ≥ 3 0 1 2 ≥ 3 0 1 2 ≥ 3 0 1 2 ≥ 3

H1
A : Break in the dynamics of volatility with parameters β0,β1,β2

DGP1:
0.5,0.6,0.8 0.00 0.88 0.01 0.11 0.00 0.00 0.87 0.13 0.00 0.87 0.13 0.00 0.00 0.00 1.00 0.00
0.5,0.6,0.3 0.00 0.60 0.39 0.01 0.00 0.00 0.99 0.01 0.00 0.00 0.99 0.01 0.00 0.00 1.00 0.00
DGP2:
0.8,0.5,0.8 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00

H1
B : Break in the constant of volatility with parameters ω0,ω1,ω2

DGP1:
0.4,0.5,0.8 0.00 0.39 0.61 0.00 0.00 0.00 0.71 0.29 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
0.4,0.8,0.4 0.00 0.53 0.39 0.08 0.00 0.00 0.77 0.23 0.00 0.30 0.66 0.04 0.00 0.00 0.99 0.01
DGP2:
0.1,0.2,0.5 0.00 0.01 0.99 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.99 0.01 0.00 0.00 1.00 0.00
0.1,0.5,0.8 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
0.1,0.5,0.1 0.00 0.06 0.94 0.00 0.00 0.00 0.98 0.02 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
0.1,0.3,0.1 0.00 0.20 0.78 0.02 0.00 0.00 0.97 0.03 0.00 0.00 0.99 0.01 0.00 0.00 0.99 0.00

H1
C : Break in the variance of the error with parameters σu0 ,σu1 ,σu2

DGP1:
0,1.5,3 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
0,3,5 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00

Notes: The K&L test (see notes in Table 1) is applied following a sequential sample segmentation approach and the frequency
distribution of the change-points is reported. The highlighted numbers refer to the true number of breaks in the simulated process.
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Table 5: Size, Power and Frequency Distribution of the number of change-points obtained
with the Lavielle and Moulines (2000) test when there are two breaks at 0.33T and 0.67T of the

sample in the GARCH process.

Samples, T 1000 1000
Lavielle & Moulines BIC LWZ BIC LWZ
Returns rt

2 |rt |
Number of Breaks 0 1 2 ≥ 3 0 1 2 ≥ 3 0 1 2 ≥ 3 0 1 2 ≥ 3
Segments tk

H1
A : Break in the dynamics of volatility with parameters β0,β1,β2

DGP1:
0.5,0.6,0.8 5 0.00 0.95 0.05 0.00 0.01 0.99 0.00 0.00 0.00 0.98 0.02 0.00 0.06 0.94 0.00 0.00

3 0.00 1.00 0.00 0.00 0.01 0.99 0.00 0.00 0.00 0.97 0.03 0.00 0.02 0.98 0.00 0.00
0.5,0.6,0.3 5 0.14 0.47 0.39 0.00 0.94 0.04 0.02 0.00 0.16 0.56 0.28 0.00 0.93 0.07 0.00 0.00

3 0.20 0.50 0.28 0.00 0.97 0.03 0.00 0.00 0.19 0.62 0.19 0.00 0.96 0.04 0.00 0.00
DGP2:
0.8,0.5,0.8 5 0.00 0.03 0.90 0.06 0.70 0.19 0.11 0.00 0.01 0.00 0.99 0.36 0.06 0.58 0.00 0.00

3 0.03 0.97 0.00 0.00 0.68 0.32 0.00 0.00 0.00 0.01 0.99 0.00 0.51 0.08 0.41 0.00

H1
B : Break in the constant of volatility with parameters ω0,ω1,ω2

DGP1:
0.4,0.5,0.8 5 0.05 0.91 0.04 0.00 0.66 0.34 0.00 0.00 0.04 0.94 0.02 0.00 0.63 0.37 0.00 0.00

3 0.02 0.97 0.01 0.00 0.52 0.48 0.00 0.00 0.05 0.94 0.01 0.00 0.69 0.31 0.00 0.00
0.4,0.8,0.4 5 0.09 0.00 0.90 0.01 0.92 0.00 0.08 0.00 0.09 0.02 0.89 0.00 0.92 0.00 0.08 0.00

3 0.02 0.00 0.98 0.00 0.90 0.00 0.10 0.00 0.09 0.01 0.90 0.00 0.97 0.00 0.03 0.00
DGP2:
0.1,0.2,0.5 5 0.00 0.82 0.18 0.00 0.01 0.99 0.00 0.00 0.00 0.67 0.30 0.03 0.00 1.00 0.00 0.00

3 0.00 0.91 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.72 0.28 0.00 0.00 1.00 0.00 0.00
0.1,0.5,0.8 5 0.00 0.18 0.79 0.03 0.00 0.99 0.01 0.00 0.00 0.36 0.60 0.04 0.00 0.96 0.04 0.00

3 0.00 0.20 0.80 0.00 0.00 1.00 0.00 0.00 0.00 0.34 0.66 0.00 0.00 0.91 0.09 0.00
0.1,0.5,0.1 5 0.00 0.00 0.95 0.05 0.01 0.00 0.99 0.00 0.00 0.00 0.94 0.06 0.00 0.00 1.00 0.00

3 0.00 0.00 1.00 0.00 0.01 0.00 0.99 0.00 0.00 0.00 1.00 0.00 0.02 0.00 0.98 0.00
0.1,0.3,0.1 5 0.00 0.00 0.99 0.01 0.77 0.00 0.23 0.00 0.02 0.02 0.93 0.03 0.75 0.02 0.23 0.00

3 0.01 0.02 0.97 0.00 0.68 0.00 0.32 0.00 0.04 0.00 0.96 0.00 0.71 0.02 0.27 0.00

H1
C : Break in the variance of the error with parameters σu0 ,σu1 ,σu2

DGP1:
0,1.5,3 5 0.00 0.78 0.22 0.00 0.00 0.98 0.02 0.00 0.00 0.37 0.56 0.07 0.00 0.96 0.04 0.00

3 0.00 0.97 0.03 0.00 0.00 1.00 0.00 0.00 0.00 0.53 0.47 0.00 0.00 1.00 0.00 0.00
0,3,5 5 0.00 0.76 0.24 0.00 0.00 0.96 0.04 0.00 0.00 0.00 0.81 0.19 0.00 0.00 0.98 0.02

3 0.00 0.96 0.04 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
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Table 5: Continued. Size, Power and Frequency Distribution of the number of change-points
obtained with the Lavielle and Moulines (2000) test when there are two breaks at 0.33T and

0.67T, T = 3000 of the sample in the GARCH.
Samples, T 3000 3000
Lavielle & Moulines BIC LWZ BIC LWZ
Returns rt

2 |rt |
Number of Breaks 0 1 2 ≥ 3 0 1 2 ≥ 3 0 1 2 ≥ 3 0 1 2 ≥ 3
Segments tk

H1
A : Break in the dynamics of volatility with parameters β0,β1,β2

DGP1:
0.5,0.6,0.8 5 0.00 0.92 0.08 0.00 0.00 1.00 0.00 0.00 0.00 0.79 0.21 0.00 0.00 1.00 0.00 0.00
0.5,0.6,0.3 5 0.00 0.91 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.77 0.22 0.01 0.00 1.00 0.00 0.00
DGP2:
0.8,0.5,0.8 5 0.00 0.00 0.96 0.04 0.00 0.00 1.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00 1.00 0.00

H1
B : Break in the constant of volatility with parameters ω0,ω1,ω2

DGP1:
0.4,0.5,0.8 5 0.00 0.90 0.10 0.00 0.01 0.99 0.00 0.00 0.00 0.92 0.08 0.00 0.03 0.97 0.00 0.00
0.4,0.8,0.4 5 0.00 0.00 0.99 0.01 0.09 0.00 0.91 0.00 0.00 0.09 0.91 0.00 0.00 0.98 0.02 0.00
DGP2:
0.1,0.2,0.5 5 0.00 0.45 0.54 0.01 0.00 1.00 0.00 0.00 0.00 0.16 0.82 0.02 0.00 0.98 0.02 0.00
0.1,0.5,0.8 5 0.00 0.01 0.99 0.00 0.00 0.35 0.65 0.00 0.00 0.01 0.94 0.05 0.00 0.39 0.61 0.00
0.1,0.5,0.1 5 0.00 0.00 0.99 0.01 0.01 0.00 0.99 0.00 0.00 0.00 0.96 0.04 0.00 0.00 1.00 0.00
0.1,0.3,0.1 5 0.00 0.00 0.99 0.01 0.01 0.00 0.99 0.00 0.00 0.00 0.97 0.03 0.01 0.00 0.99 0.00

H1
C : Break in the variance of the error with parameters σu0 ,σu1 ,σu2

DGP1:
0,1.5,3 5 0.00 0.74 0.26 0.00 0.00 0.98 0.02 0.00 0.00 0.00 0.75 0.25 0.00 0.87 0.13 0.00
0,3,5 5 0.00 0.64 0.34 0.02 0.00 0.99 0.01 0.00 0.00 0.00 0.83 0.17 0.00 0.00 0.99 0.00

Notes: Please refer to the notes in Table 3.
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Table 6: Testing for a single change-point in the volatility of daily Stock Market Indices (SMI)
over the period 1989-2001

Change-point Statistics
SMI Returns

Change-point Kokoszka & Leipus Test Inclan & Tiao Tests

k∗ maxUk∗
maxUk∗


σHAC

maxUk∗


σARMA
IT BTC

FTSE |rt | 05/06/97 1.917 5.862* 6.665* 4.414* 0.599
rt 

2 04/08/97 2.238 5.266* 3.511* 9.195* 1.249

HSI |rt | 14/08/97 3.460 4.619* 5.828* 4.954* 0.321
rt 

2 18/08/97 7.104 2.181* 1.291 8.583* 0.556

NIKKEI |rt | 31/07/97 1.521 3.091* 3.806* 2.905* 0.449
rt 

2 21/10/97 1.836 1.972* 1.305 4.427* 0.684

S&P500 |rt | 04/02/97 2.395 6.882* 7.181* 5.837* 0.356
rt 

2 26/03/97 2.718 4.888* 1.665* 11.103* 0.678

Notes: (1) The Stock Market Index (SMI) series refer to the Financial Times Stock Exchange index 100 (FTSE100), the Hang-Seng
Index (HSI), the Nikkei 500 (NIKKEI), the Standards and Poors 500 index (S&P500). The daily sample over the period 4/1/1989 to
19/10/2001 yields T = 3338 observations. The series rt := logpt − logpt−1 represents the returns on each index. The change-point tests
are applied to the rt2 and |rt| transformations as well as ut2 where ut is the residual from the GARCH. (2) The Kokoszka and Leipus
(1998, 2000) reported maxUk∗ is the maximum of the statistic, Uk =

1
T
∑j=1

k rj
2
−

k
T

1
T
∑j=k+1

T rj
2 which is standardized by

nonparametric estimators, Heteroskedastic Consistent (σHAC) and ARMA estimators (σARMA) of squared and absolute returns. The
normalized statistic maxUk∗ /σ converges to the sup of a Brownian Bridge. (3) The Inclán and Tiao (1994) statistic
Dk = ∑j=1

k rj
2/∑j=1

T rj
2

−

k
T specified for iid processes normalized as IT = T/2 max|Dk |also converges to the sup of a Brownian

Bridge and is extended in Kim et al. (2000) for GARCH processes to be BTC = C T max|Dk | where C2and κ are constants that are
estimated by substituting the quasi-MLEs of the GARCH(1,1) ω, α,


β and T−1 ∑j=1

T rj
4 to ω, α, β and Erj

4. (4) k∗ refers to the

location of the break and the * symbol attached to statistics denotes that the null hypothesis of no structural change is rejected using the
asymptotic critical value of 1.36.
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Table 7: Testing for multiple change-points in the volatility of daily Stock Market Indices
(SMI) over the period 1989-2001

Lavielle and Moulines Test
SMI Process Selection Criterion Number & Location of Breaks

FTSE |rt | BIC -2.616(2), -2.610(1) 2 3/11/92, 1/8/97
LWZ -2.599(1), -2.549(0) 1 1/8/97

rt 
2 BIC -2.123(1), -2.070(0) 1 10/7/98

LWZ -2.112(1), -2.069(0) 1 10/7/98

HSI |rt | BIC -1.121(3), -1.117(2) 3 3/7/92, 24/1/95, 15/8/97
LWZ -1.108(1), -1.074(0) 1 15/8/97

rt 
2 BIC 2.005(1), 2.009(0) 1 15/8/97

LWZ 2.010(0) 0

NIKKEI |rt | BIC -1.874(2), -1.867(1) 2 15/9/92, 30/7/97
LWZ -1.857(1), -1.851(0) 1 20/8/98

rt 
2 BIC -0.457(2), -0.452(1) 2 15/9/92, 14/10/97

LWZ -0.448(0) 0

S&P500 |rt | BIC -2.525(3), -2.513(2) 3 27/12/91, 5/1/96, 28/7/98
LWZ -2.492(2), -2.491(1) 2 20/8/91, 3/2/97

rt 
2 BIC -1.602(1), -1.559(0) 1 14/10/97

LWZ -1.591(1), -1.559(0) 1 14/10/97

Notes: For brief data description refer to note 1, Table 6. The Lavielle and Moulines test is described in section 1.2. The number of
segments for multiple breaks denoted by m is set equal to 3. The selection criteria BIC and LWZ refer to the Bayesian or Schwarz
Information Criterion and modified BIC proposed in Liu et al. (1997).
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Table 8: Sequential sample segmentation approach of the Kokoszka and Leipus (2000) test for
detecting multiple breaks in stock market returns

Kokoszka and Leipus Test
SMI Process Subsamples k maxUTk∗

σ̂HAC
Number

(observat.) Observ. Date of Breaks
FTSE |rt | 1-3338 2197 5/6/97 5.861* 4

1-2197 1021 2/12/92 3.508*
2198-3338 2497 30/7/98 1.366*
1021-2197 1631 5/4/95 2.041*

rt
2 1-3338 2239 4/8/97 5.265* 4

1-2239 991 21/10/92 2.744*
992-2239 1556 21/12/94 1.734*
992-1556 1279 29/11/93 2.507*

HSI |rt | 1-3338 2247 18/8/97 4.619* 6
1-2247 1630 4/4/95 1.815*
2248-3338 2554 19/10/98 2.818*
1-1630 1239 4/10/93 2.416*
1240-1630 1404 23/5/94 2.540*
1405-1630 1534 21/11/94 1.953*

rt
2 1-3338 2249 18/8/97 2.181* 2

2250-3338 2554 22/10/98 2.072*

NIKKEI |rt | 1-3338 2237 31/7/97 3.091* 5
1-2237 966 16/9/92 2.476*
2238-3338 2792 16/9/99 2.161*
1-966 293 16/2/90 3.119*
2238-2792 2365 27/1/98 1.716*

rt
2 1-3338 2295 21/10/97 1.972* 4

1-2295 966 16/9/92 2.470*
2296-3338 2861 22/12/99 1.757*
1-966 295 20/2/90 2.162*

S&P500 |rt | 1-3338 2110 4/2/97 6.841* 4
1-2110 776 30/12/91 4.143*
2111-3338 2495 28/7/98 1.863*
780-2110 1776 25/10/95 2.130*

rt
2 1-3338 2146 26/3/97 4.888* 3

1-2146 779 31/12/91 3.159*
780-2146 1814 18/12/95 2.343*

Notes: The test is based on a sequential sample segmentation approach with a 1% significance level for each segment.
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Table 9: Testing for a single change-point in high-frequency volatility filters in the YN/US$
during the period 1986-1996

Change-point Statistics
Volatility Kokoszka & Leipus Inclan & Tiao & extention

Filters k∗ maxUk∗
maxUk∗


σHAC

maxUk∗


σARMA
IT BTC

|rt | 26/4/91 0.3538 1.493* 1.589* 1.996* 0.451
rt 

2 - 0.2676 1.120 1.273 1.151 0.260

QV1 9/2/93 0.3445 1.925* 3.845* 2.302* -
QV2 9/2/93 0.3443 1.262 7.685* 2.301* -
QV3 9/2/93 0.3442 1.021 11.212* 2.300* -

HQV1 8/2/93 0.3428 1.804* 4.222* 2.291* -
HQV2 8/2/93 0.3429 1.207 8.467* 2.292* -
HQV3 9/2/93 0.3432 0.948 12.435* 2.294* -

Notes: (1) The Yen vis-a-vis the US dollar returns over the period 1/12/1986-30/11/1996 at the 5 minute sampling frequency is
analysed for structural changes. The data source is Olsen and Associates. The original sample is 1,052,064 five-minute return
observations (2,653 x 288 five-minute intervals per day). The returns for some days were removed from the sample to avoid having
regular and predictable market closures which affect the characterization of volatility dynamics. The final sample includes 705,024
five-minute returns reflecting N=2448 days. (2) The one-day Quadratic Variation (QV1) is the sum of squared returns rm,t for the
intraday frequency m, to produce the daily volatility measure: QV1 = ∑j=1

m rm,t+1−j/m
2 , t = 1, ...,Tdays, where for the 5-minute sampling

frequency the lag length is = 288 observations for financial markets open 24 hours per day. In QV2 and QV3 the window length is
k = 2,3 days, respectively. The rolling estimation method yields the one-day Historical Quadratic Variation (HQV1) defined as the sum
of m rolling QV estimates: HQV1 = 1/m∑j=1

m QV1m,t+1−j/m, t = 1, ...,Tdays, which is also extended to a k window length, HQVk.(3)

The tests are described in the notes of Table 6.
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Table 10: Estimating volatility dynamics in subsamples prior and post the change-points of
stock market returns indices.

SMI Process Subsamples k∗ Normal GARCH(1,1) Estimates
(observations) Date ω α β

FTSE rt 
2 1-3338 0.003[4.409] 0.067[10.46] 0.919[111.8]

1-2484 13/7/98 0.003[3.669] 0.058[6.744] 0.915[64.18]
2485-3338 0.017[2.839] 0.100[4.410] 0.845[22.40]

HSI rt 
2 1-3338 0.016[15.80] 0.124[19.29] 0.855[128.6]

1-2248 15/8/97 0.023[18.71] 0.134[17.04] 0.810[97.42]
2249-3338 0.029[4.387] 0.092[7.462] 0.878[63.48]

NIKKEI rt 
2 1-3338 0.005[6.979] 0.134[16.33] 0.859[105.4]

1-966 16/9/92 0.002[2.206] 0.229[11.11] 0.801[58.14]
967-2290 14/10/97 0.007[4.959] 0.080[7.805] 0.877[52.79]
2291-3338 0.011[3.125] 0.100[5.752] 0.875[41.36]

S&P500 rt 
2 1-3338 0.0007[4.712] 0.039[12.979] 0.958[294.4]

1-2291 15/10/97 0.0003[3.256] 0.018[7.796] 0.979[409.1]
2292-3338 0.013[3.440] 0.075[5.801] 0.883[42.41]

Note: The Moulines and Lavielle (2000) multiple breaks results in Table 7 for the absolute and squared returns processes are used to
create various subsamples of each stock market return index. The estimated Normal GARCH(1,1) coefficients as well as the
Power-ARCH coefficients are reported for the total sample (T=1-3338) as the various subsamples determined by the estimated break
points. Although not all subsamples have equal size some are approximately equal which allow for a better comparison of the estimated
parameters. The bold parameters emphasize the change in the size of the volatility estimates in most subsamples (especially the
parameters referring to the constant and ARCH effects of dynamic volatility).
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