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Abstract

How does digitalization transform the macroeconomic production function? Within

an endogenous technology choice framework, we find that sectors with more digi-

tal capital exhibit a higher elasticity of substitution between value-added and inter-

mediate inputs and within value-added, between capital and labor. The shift in the

elasticity of substitution is consistent with a higher complementarity of input-specific

productivities. We also find that digitalization contributes to Hicks-neutral technical

change in value added. Not all types of digital capital have a significant impact on

the production function.
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1 Introduction

Digital technology is pervasive in the production processes of industrial and service sec-
tors, and its continuous development as a general-purpose technology has had a transfor-
mative impact on society.1 Despite these facts, our knowledge and understanding of the
effect of digital technology on the macroeconomy are still rather limited. In this paper,
we focus on the effects of digitalization on the supply side. Specifically, we ask how dig-
italization alters production possibilities by examining how digital intensity affects the
key parameters of sectoral production functions, namely the elasticity of substitution and
productivity. Such effects can change fundamental properties of the economy’s growth
trajectory and its dynamic adjustment to sectoral shocks.

We shed some light on this question by combining sectoral production and input data
with a theory of factor demand that accounts for endogenous technology choice. The lat-
ter is an essential ingredient for understanding changes in the way inputs such as labor
and capital are used to produce. The mere possibility of choosing efficiency for each input
enhances the elasticity of substitution between factors as firms can choose the more ap-
propriate technologies. Moreover, it makes clear that technological innovation can have
an impact on production by changing the trade-off between the efficiencies of different
inputs. The technology frontier is of central importance in this respect. We provide fur-
ther motivation for the existence of such a frontier in the Appendix of the paper using a
task-based model.

While the empirical specification is formulated based on the model implications for
input demand, the effects of digital intensity on production are yet to be determined by
the data. We proxy digitalization using capital-related measures. The level of digital-
ization in a specific sector is measured as the share of digital capital in overall capital -
that is, digitalization is regarded as the process when non-digital capital gets substituted
for or complemented by digital capital.2 The capital-based measure allows us to further
differentiate between the effects of three types of digital capital - information technology

1See e.g. Bresnahan (2002) for the classification of digitalization as general-purpose technology.
2This definition assumes that digitalization is a broad and profound change in the production struc-

ture. We acknowledge that it may not encompass all types of digitalization, but we assess it as reasonable
approximation for our purposes. The installation of digital capital is always concomitant with a transfor-
mation of the interaction between capital and labor, which might - but does not necessarily have to - lead
to the displacement of labor. For example, sending a letter via email (using digital capital - a computer) has
replaced a physical letter on paper (using non-digital capital - a typewriter), but a person writing the letter
is necessary in any case. Also, ordering food online as opposed to ordering it by phone changes the nature
of interaction between labor and capital, but it still requires the same amount of labor (a person placing the
order).
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(IT), communication technology (CT) and software and databases (SoftDB).3 Distinguish-
ing between these types of capital is important, because they have exhibited different
growth rates over the last decades, while they can have different effects on the interaction
between inputs.

Using an instrumental variables approach, we find that digitalization has a positive
impact on the elasticity of substitution. A 1% increase in the information technology cap-
ital share raises the elasticity of substitution between capital and labor by 0.095 and the
elasticity between value-added and intermediate inputs by 0.131. Our estimates of the ef-
fect of digitalization on the elasticity of substitution between capital and labor are robust
to accounting for the level of development. Moreover, the results are robust to using alter-
native measures of digital intensity and alternative instruments. A second key takeaway
from our results is that the effects are not uniform across the different components of dig-
ital technologies that we consider. Only IT intensity significantly increases the elasticity
of substitution between capital and labor. The elasticity of substitution between value-
added and intermediate inputs is increasing in both IT and SoftDB capital intensities. CT
intensity appears to be insignificant in all of our empirical specifications.

Interpreted through the lens of the model, empirical results suggest that digital inno-
vation through information technology and software and databases makes input-specific
technologies more complementary. Hence, digitalization channels innovations towards
Hicks-neutral technical change. In line with this interpretation, we also find that a higher
investment intensity in SoftDB leads to a similar increase in labor augmenting and capi-
tal augmenting productivity. These results are verified using independently constructed
total factor productivity measures from KLEMS.

Furthermore, we exploit the structure of the model to back out the implied technology
frontiers for labor and capital, and for valued added and intermediate inputs.

The rest of the paper is structured as follows: Section 2 contextualizes our research
in existing literature. Section 3 describes the theoretical and the empirical methodology.
Section 4 presents the results and demonstrates the shifts in technology frontiers due to
digitalization. Section 5 concludes. Appendix A includes a further description of the
data, model derivations, additional empirical results and a description of the sector codes
in the KLEMS database.

3The definitions of the different types of digital capital are based on the KLEMS database: IT = Computer
hardware, CT = Telecommunications equipment, SoftDB = Computer software and databases.
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2 Related literature

The literature on digitalization mostly focuses on the question of its impact on produc-
tivity. It generally agrees that digital technologies have had a positive impact4, yet with
a decreasing pace after around the year 20005. The reason for the limited overall bene-
fits of digital technologies are explained as "one time event" (Gordon (2017)), diminishing
returns of IC technologies on productivity growth (Gordon (2015)) or a weaker growth
in capital deepening (Ollivaud, Guillemette, and Turner (2016)). The effects may vary on
the analyzed time frame (Cette, Clerc, and Bresson (2015), Van Ark (2016)) or IT measure-
ments applied (Acemoglu, Dorn, Hanson, Price, et al. (2014)). In addition, productivity
gains may be different for routine and non-routine/abstract tasks (e.g. Autor, Levy, and
Murnane (2003), Autor, Katz, and Kearney (2006)).

In line with the above mentioned literature, we find positive effects of digitalization on
labor and capital productivity growth, but this effect depends on the digital capital type
and is only significant for SoftDB. Thus, we agree that the specification of digitalization is
decisive for the measured effects and their interpretation. The distinct effects of different
capital types (IT, CT and SoftDB) in this paper are an indication for the complex operating
mode of digitalization.

Regarding the general effects of technical change on elasticities of substitution, Knoblach
and Stöckl (2020) show that elasticity of substitution is not an immutable parameter but is
shapeable by technology and subject to technical and non-technical factors. Oberfield and
Raval (2021) demonstrate that the U.S. aggregate capital-labor elasticity of substitution is
not constant but evolves over time. Moreover, the level of development, specifically the
capital-labor ratio, has an effect on the aggregate EOS. This effect depends primarily on
the quantity of capital and is not dependent of the type of capital, i.e. whether capital
is digital or non-digital capital. The sign and size of the effect depends on specifications
of the production structure, i.e. on the mobility of primary inputs between sectors and
on the level of substitutability of intermediate inputs in the production of final goods
(cf. Miyagiwa and Papageorgiou (2007), Papageorgiou and Saam (2008) and Xue and Yip
(2013)).

A microfoundation for the adaptation of the EOS after technical change is given by the
endogenous technology choice literature. In this setup, firms are able to choose produc-

4See e.g. Van Reenen, Bloom, Draca, Kretschmer, Sadun, Overman, and Schankerman (2010), Bresnahan,
Brynjolfsson, and Hitt (2002), Stiroh et al. (2001), Van Ark (2016)

5See e.g. Stiroh (2002),Brynjolfsson and Hitt (2003), Gordon (2015), Cette, Clerc, and Bresson (2015),
Graetz and Michaels (2018), Gallipoli and Makridis (2018), Dauth, Findeisen, Suedekum, and Woessner
(2021), Byrne, Oliner, and Sichel (2013)
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tivity factors (technologies) endogenously from all optimal available technologies, which
are allocated on a technology frontier. The curvature of the frontier is a measure for the
elasticity of substitution between technologies, which is linked to the elasticity of sub-
stitution between inputs. A general description of this approach can be found in Jones
(2005), León-Ledesma and Satchi (2019), Growiec (2008), Growiec (2013), Growiec (2018)
and Growiec (2008). Caselli and Coleman (2006) applies this approach to the usage of cap-
ital in high- and low-income countries and the question of complementarity to high- and
low-skilled labor. We deploy the endogenous technology choice framework in our the-
oretical model to digitalization and differentiate in our empirical model between digital
and non-digital capital.

While this approach has the advantage of keeping the nature of technical change gen-
eral and omitting assumptions about specific characteristics of technologies, an alterna-
tive framework for thinking about the effects of technical change on the elasticity of sub-
stitution is to assume certain technical features. In the case of automation, Alonso, Berg,
Kothari, Papageorgiou, and Rehman (2022) presumes in a quantitative model a higher
elasticity of substitution for automated production structures. Also, Adachi (2021) spec-
ifies the analysis on automation and uses US data on robot imports to estimate a higher
elasticity of substitution between robots and labor as compared to general capital goods.
In the same vain, Eden and Gaggl (2018) specifies a quantitative model in which ICT cap-
ital interacts differently with routine and non-routine labor. Using an exogenous fall in
the relative price of ICT capital and an exogenous increase in the depreciation rate, the
paper argues through simulation that the concominant rise in the relative demand for ICT
capital leads to an increase in the overall EOS between capital and labor as ICT capital has
a relatively higher EOS with labor.

Automation itself can be modelled using a task-based approach, which especially al-
lows to disentangle the displacement effect (using capital instead of labor for a specific
task) and the productivity effect (higher demand for labor due to higher overall pro-
ductivity) (Acemoglu and Restrepo (2019) and Acemoglu and Restrepo (2018a)). Fur-
thermore, the literature differentiates between routine tasks (when computers are able to
substitute for labor) and non-routine tasks (when computers complement labor). Autor,
Levy, and Murnane (2003) finds that automation leads to measurable changes in the com-
position of job tasks. In Appendix A3, we apply the task-based approach to digitalization
and provide a formal link between the model of technology choice and the task-based
setup often used in automation-related literature. Specifically, we show that while in the
task-based approach the allocation of tasks to inputs is determined in equilibrium, differ-
ent allocations correspond to tracing a technology frontier. We derive the corresponding
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convexity of this frontier and characterize which factors determine this convexity.
Moreover, while the literature on automation often focuses on the displacement ef-

fect, we regard digitalization as a broader technical development, which also encom-
passes non-automated digital production processes. In line with the literature on high
complementarities between digital and human capital6, digitalized work may include
non-routine or creative tasks. In this context, the incentives for firms to digitalize are to
increase labor productivity with a complementary use of digital capital instead of replac-
ing labor with capital. Therefore, our analysis allows for a very heterogenous group of
tasks and of digital technologies and also provides empirical evidence for different types
of digital capital.

3 Methodology

We will rely on a quasi-structural approach to identify unobserved elements of the pro-
duction process. Below we present the theoretical setup, the econometric model, data and
measurements and discuss identification.

3.1 Theoretical Setup

The theoretical model we employ is simple enough so that it is amenable to direct empir-
ical analysis using a standard input demand model. At the same time, it allows for the
possibility that technological shifts can affect production endogenously.

We assume a multisector economy with supplier-customer relations between all sec-
tors, i.e. the final output of each sector is used both for private consumption and also for
further processing in other sectors (intermediate goods). Production in each sector is the
result of two different layers of choice. The first layer of choice takes technology as given,
while the second layer allows for technology choice.

The first layer is akin to a standard optimization problem of the representative firm in
sector i. It engages in a two-stage budget allocation, where it initially decides how much
to produce internally and how much to procure as intermediate inputs, and then, given
a determined allocation for value-added production, it chooses how much capital and

6Literature has studied the effects of digitalization - and more recently of automation - on the labor share
and skills and has found a high level of complementarity between digital tasks and human capital. (e.g.
Spitz-Oener (2006), Autor, Levy, and Murnane (2003), Autor (2015)). Our findings corroborate their results
and provide a theoretical microfoundation for an increased complementarity of productivities in digitalized
production processes.
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labor to employ. Intermediate goods are assumed to be the total quantity of other sectors’
output used in a sector’s production as specified in the KLEMS database (cf. Section 3.3).

While the above decisions are ultimately about quantities, the resulting choice for each
input is combined with a corresponding efficiency unit. Hence, in the second layer of
choice, we allow for input-specific productivities that are partially chosen by firms at
each step of production. For factor inputs such as labor and capital, choosing produc-
tivity can be formally linked to choosing which production tasks are best performed by
different types of labor and capital. We illustrate such a link in Appendix A3 using a task
assignment model. In the automation literature, equilibrium determines a threshold for
tasks over which tasks cannot be automated (see i.e. Acemoglu and Restrepo (2018a,b)).
This yields an efficiency term for aggregate capital and labor. We illustrate that such ag-
gregate efficiency terms arise also in a more general setting where technologies do not
necessarily automate tasks but allow for complementarities between types of labor and
capital. Importantly, we derive the implicit aggregate efficiency frontier between labor
and capital and clarify how technical change can affect it. Nevertheless, for our purposes,
it is sufficient to directly study the trade-off between different levels of labor and capital
productivities and how firms allocate these appropriately.7

The maintained production setup implies that changes in the demand for the final
sectoral output or in the supply of inputs to production (primary factors, productivity
parameters, intermediate inputs) change optimal input quantities and endogenous pro-
ductivities in both nested production functions (value added and final output).

In the upper nesting, final output (yi,t) is produced employing sectoral i’s value added
(VAi,t) and the intermediate good (Xi,t) as follows:

yi,t =

(
(1 − λi)

(
νVA

i,t ezVA
i,t VAi,t

) σ̃i−1
σ̃i + λi

(
νX

i,te
zX

i,t Xi,t

) σ̃i−1
σ̃i

) σ̃i
σ̃i−1

(1)

where λi and σ̃i are the share parameter of the effective intermediate input and the
elasticity of substitution (EOS), respectively. In the lower nesting, the production function
for value-added in sector i is as follows:8

VAi,t =

(
αi(ν

k
i,te

zk
i,t ki,t)

γ̃i−1
γ̃i + (1 − αi)(ν

l
i,te

zl
i,t li,t)

γ̃i−1
γ̃i

) γ̃i
γ̃i−1

(2)

7A framework which is useful to think about this issue is the one developed in the endogenous technol-
ogy choice literature, such as Jones (2005), Caselli and Coleman (2006), Growiec (2013), Growiec (2018) and
León-Ledesma and Satchi (2019). In this strand of literature, firms are considered to choose both the factor
combination as well as factor-specific productivities (technologies).

8This nested structure of CES production functions avoids issues with elasticity interpretation arising in
production functions with more than two inputs, see e.g. Sato (1967).
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where αi,t and γ̃i,t are the share parameter of effective capital and the EOS between ef-
fective capital and effective labor, respectively. Both the capital and labor inputs refer to
sector-specific aggregates, and can consist of qualitatively different units. More specif-
ically, the capital stock ki consists of digital and non-digital capital, while li can consist
of workers with different skills. Effective units are the result of firm decisions about the

employment of inputs as well as their productivity (ezVA
i,t , ezX

i,t,e
zk
i,t ,e

zl
i,t
), up to an exogenous

component (νVA
i,t , νX

i,t, νk
i,t, νl

i,t).
Finally, the exogenous productivity processes (νVA

i,t , νX
i,t, νk

i,t, νl
i,t) follow an idiosyncratic

but deterministic growth path:9

ln(v)q
i,t = ln(v)q

i,t−1 + gq
i , for q ∈ {VA, X, k, l}

We follow the expenditure minimization (dual) approach as we do not have to specify
the demand side of the market, and can therefore accommodate imperfect competition
in product markets as well as price rigidities.10 Conditional on technology, the cost-
minimizing choices for (ki,t, li,t) and (VAi,t, Xi,t) yield standard relative demand functions
for each nest, where

(
pVA

i,t , pX
i,t, wi,t, pk

i,t

)
are the corresponding input prices:

αi

1 − αi

(
ki,t

li,t

)− 1
γ̃i

νk
i,te

zk
i,t

νl
i,te

zl
i,t

1− 1
γ̃i

=
pk

i,t

wi,t
(3)

1 − λi

λi

(
VAi,t

Xi,t

)− 1
σ̃i

νVA
i,t ezVA

i,t

νX
i,te

zX
i,t

1− 1
σ̃i

=
pVA

i,t

pX
i,t

(4)

Since the input choices of the firms are conditional on the technology combinations, we
call the resulting production functions conditional production functions.11 Each combi-
nation of technologies defines a specific production function that firms can choose and
for which they have to select combinations of inputs according to their cost minimization
objective. We next characterize the optimal choice of input-specific technologies and the
implications for observable factor demand.

9We follow the literature in assuming a specific functional form for the exogenous productivity processes
as joint identification of the bias in technical progress and the EOS is impossible (Diamond, McFadden, and
Rodriguez, 1978).

10Another advantage of estimating production related parameters using optimization conditions instead
of directly estimating the production function is the robustness of the results to the presence of normaliza-
tion. Please see Appendix A6 in the Appendix.

11This type of production function is also called local production function (as in Growiec (2018)) or short-
run production function (as in León-Ledesma and Satchi (2019)).
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3.1.1 Technology choice

New technologies can only be adopted once they have been invented and become part of
a technology menu. The technology frontier consists of the most efficient feasible technol-
ogy combinations. For empirical tractability, we assume that this process of innovation is
exogenous to the model.12

Specifically, we assume that the set of technologies that firms can choose from are
specified in the technology frontier (cf. Caselli and Coleman (2006) and Growiec (2008)):

(
ezk

i,t

)ωk/l
i

+ θk/l
i

(
ezl

i,t

)ωk/l
i

= Bk/l (5)(
ezVA

i,t

)ωVA/X
i

+ θVA/X
i

(
ezX

i,t

)ωVA/X
i

= BVA/X (6)

where B defines the overall level of productivity, and ω and θ change the shape and thus
the trade-off between both productivities.13 The invention of new digital technologies is
an exogenous change to the technology frontier, which results in a new set of techniques.
Depending on the type of innovation, these new techniques might allow firms to exploit
new trade-offs between input-specific productivities, which can alter the level and curva-
ture of the technology frontier.14

The cost-minimizing choice for productivities (ezVA
i,t , ezX

i,t , ezk
i,t , ezl

i,t) yields optimal rela-

tive productivities as follows, with a similar expression for
(

e
zVA
i,t

e
zX
i,t

)
:

(
ezk

i,t

ezl
i,t

)ωk/l
i − γ̃i−1

γ̃i

=
αi

1 − αi
θk/l

i

(
νk

i,tki,t

νl
i,tli,t

) γ̃i−1
γ̃i

(7)

For interior choices (ω > γ̃
γ̃−1 ), if labor and capital are gross substitutes, then the rela-

tive endogenous productivities are increasing functions of the relative factor supplies as
well as the relative exogenous productivities. Hence, holding everything else constant,
higher relative exogenous productivity in one factor translates to higher relative endoge-
nous productivity in the same factor. The opposite holds when labor and capital are gross
complements; firms will choose to enhance the productivity of the factor which is rela-

12Such innovation can of course subsume digital technical change, which can manifest itself in an exoge-
nous fall in the production cost for digital capital and hence a higher value share of digital capital in all
sectors. The qualitative change in the composition of capital will affect the aggregate efficiency factor of
this input. Similar effects can arise for the other inputs as well.

13ω, θ and B are exogenous parameters and strictly positive.
14In Appendix A9, we show that such aggregate productivity trade-offs arise in a microfounded model

of task assignment.
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tively scarce in terms of efficient units.
Combining equation (7) and the corresponding one for value-added and intermediate

inputs with the relative demand equations for factors in (3)-(4) and imposing that the
relative share parameters and the frontier relative share are identical i.e. αi

1−αi
= θl/k

i , the
relative demand equation for capital and labor is as follows

ln
(

ki,t

li,t

)
=

ωk/l
i,t γ̃i − (γ̃i − 1)

ωk/l
i − (γ̃i − 1)

ln
(

αi

1 − αi

)
−

ωk/l
i γ̃i − (γ̃i − 1)

ωk/l
i − (γ̃i − 1)

ln

(
pk

i,t

wi,t

)

+
ωk/l

i (γ̃i − 1)

ωk/l
i − (γ̃i − 1)

ln

(
νk

i,t

νl
i,t

)
(8)

= γiln
(

αi

1 − αi

)
− γiln

(
pk

i,t

wi,t

)
+ (γi − 1)(gk

i − gl
i)t (9)

where γ ≡ ωk/l(γ̃−1)
ωk/l−(γ̃−1) is the mapping that relates the conditional elasticity (γ̃) to the

unconditional elasticity (γ), the latter being the reduced form parameter. We have also
normalized initial productivities to be equal, νk

i,0 = νl
i,0.15

For interior technology choices, relative factor demands for inputs which are gross
substitutes are decreasing in relative prices, while exogenous biased technical progress
increases further the demand for the more productive input. Inspecting the mapping
from the conditional to the unconditional elasticity, we can see that the only way in which
the technology frontier, and thus digitalization, can affect the unconditional EOS between
factors is through its curvature, ω:

γi =
ωk/l

i γ̃i − (γ̃i − 1)

ωk/l
i − (γ̃i − 1)

= γ̃i +
(γ̃i − 1)2

ωk/l
i − (γ̃i − 1)

(10)

In an interior solution, allowing firms to choose technologies results in additional respon-
siveness to changes in the relative factor prices, and hence a higher unconditional EOS
compared to the conditional EOS between factors.

The resulting specification in (9) clarifies that the elasticity of substitution can be het-
erogeneous across sectors (or time) because technologies are different or because the EOS
between labor and capital for a fixed technology is different. Since our aim is to quantify
the effects of the former, we have to allow for such effects in our econometric specification,
which we now turn to.

15For more information on the calculations, see Appendix A2. An analogous calculation holds for the
relative demand for value-added and intermediate inputs.
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3.2 Econometric Model

Given the availability of panel data at the country-sector level, we can exploit both the
time-series dimension to control for unobserved fixed effects, and both the times series
and cross-sectional dimensions to identify the marginal effects of digital intensity on the
elasticities of substitution. Hence, using data on relative quantities and prices for the
factors of production, we can in principle proceed with estimating the production coeffi-
cients from the corresponding reduced form model.

There are nevertheless two key challenges that we need to address. The first challenge
is that relative prices are endogenous due to the presence of unobserved demand and
supply shocks. In order to identify the true slope of these relative demand curves we
need to resort to some form of exogenous variation to supply, such as a relative marginal
cost shifter. Following the industrial organization literature (see e.g. Hausman (1996)
and Nevo (2001)), we will utilize relative prices of the same aggregate goods in other
geographic markets (in our case U.S. data), which can be considered as proxies of relative
marginal costs, while we also discuss later how we deal with the possibility of common
shocks between the US and Europe. The second challenge has to do with identifying the
effect of digitalization on these coefficients. We will directly allow them to be functions of
covariates Xi,t, which will include measures of digital intensity. Allowing for functional
coefficients results in the following econometric specification for equation (9):

ln
(

ki,t

li,t

)
= c0(Xi,t) + c1(Xi,t)ln

(
pk

i,t

wi,t

)
+ c2(X̄i,t)t + ϵi,t (11)

where X̄i,t is the time average of covariates Xi,t. Using a Taylor expansion around X̃ ,
the centered values of vector X , and denoting by (cT

0,j, cT
1,j, cT

2,j)
T the vector of Taylor co-

efficients for the jth order, the resulting empirical specification is as follows, where we
estimate (cT

0,1, c1,0, cT
1,1, c2,0, cT

2,1), the reduced form coefficients, using a within group esti-
mator.16

16While we have estimated specifications up to second order, in most cases only linear terms are signif-
icant, if any. We thus only present the first order terms of the approximation. Employing semi-parametric
methods to estimate these functions could be an alternative approach (see e.g. Hastie and Tibshirani (1993);
Durlauf, Kourtellos, and Minkin (2001) for reduced form and Cai, Das, Xiong, and Wu (2006) for instru-
mental variable varying coefficient models). Due to the relatively large number of covariates, and more
importantly, our desire to leverage conventional methods for testing for weak identification and instru-
ment exogeneity with panel data, we choose a global approximation to these functions and not a local
approximation, which is implied by the use of kernel methods in the aforementioned approaches.
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ln
(

ki,t

li,t

)
= ci

0,0 + cT
0,1X̃i,t + c1,0ln

(
pk

i,t

wi,t

)
+ cT

1,1X̃i,t ⊗ ln

(
pk

i,t

wi,t

)
+c2,0t + cT

2,1X̄i,t ⊗ t + ui,t (12)

Hence, the implied estimate for the linearized form of the EOS between capital and
labor is equal to γ̂i,t = c1,0 + cT

1,1X̃i,t, while the relative growth rate of productivities is
equal to ĝVA/X

i := gVA
i − gX

i = c2,0 + cT
2,1X̄i,t.

Share parameters αi,t are recovered using

ln
(

αi,t

1 − αi,t

)
=

1
γ̂i,t

ln
(

ki,t

li,t

)
+ ln

(
pk

i,t

wi,t

)
− γ̂i,t − 1

γ̂i,t

[
(ĝk

i − ĝl
i)t
]

(13)

which is computed at the estimated elasticities and growth rates, and re-projecting on
covariates X̃i,t using a fixed effects estimator to purge ci

0,0 and ui,t. A similar approach is
followed for estimating (σi,t, λi,t, gVA/X

i ).17

This econometric approach can be further rationalized by expanding equation (10)
around γ̃i = γ̄ and ωi = ω̄, where we get that

γi ≈ ω̄k/lγ̄ − (γ̄ − 1)
ω̄k/l − (γ̄ − 1)

− ω̄k/l(γ̄ − 1)2

(ω̄k/l − (γ̄ − 1))2
˜̃ωk/l

i +
(ω̄k/l)2γ̄

(ω̄k/l − (γ̄ − 1))2
˜̃γi (14)

where ˜̃ω is the deviation of ω from ω̄ and ˜̃γ is the deviation of γ̃ from ¯̃γ. An identical ex-
pression may be derived for the value-added-intermediate inputs elasticity. Technology-
related factors that can potentially shift the unconditional elasticity will be part of ˜̃ω,
while non-technology related factors will be related to ˜̃γt. For example, if ˜̃ωi,t = β1X̃ 1

i,t
and ˜̃γi,t = β2X̃ 2

i,t , then the relevant reduced form coefficients identified in our empir-

ical specification (c1,1) are pinned down by −β1
ω̄k/l(γ̄−1)2

(ω̄k/l−(γ̄−1))2 and −β2
(ω̄k/l)2γ̄

(ω̄k/l−(γ̄−1))2 . The
empirical results presented in Tables 1 and 2 directly report the estimates of the latter.

3.3 Data and Measurements

We employ (unbalanced) panel data from the EU KLEMS Growth and Productivity ac-
counts, which includes yearly observations in 1995-2017 of 1- or 2-digit sectors for 28
European economies, including the UK.18 We aim to analyze the effect of digitalization

17In order to signify that parameters are functions of covariates, for brevity, we add a time index (t) in
addition to the sector index (i).

18Data are publicly available and can be obtained here. See also O’Mahony and Timmer (2009) for
methodology.
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on different sectors, so our unit of analysis, indexed by i, is at the country-industry level.19

Intermediate inputs are calculated in KLEMS by applying supply and use tables (SUTs)
for each sector, which trace the supply and use of all commodities in the economy and
thus indicate the composition of each sector’s intermediate input. Similarly, SUTs con-
tribute to the calculation of the components of value added in each sector. 20

While price indices for value-added, gross output and intermediate goods are readily
available, we need to impute the sectoral wage rates and the rental rates of capital. We
recover the price of capital by dividing the estimated capital compensation by the chain
linked volume of the capital stock since CAPi,t = pk

i,tKi,t. In EU KLEMS, pk,i,t is computed
using the user cost of capital formula (see e.g. Jorgenson (2005)), which takes into account
both the nominal rate of return, the rate of depreciation and changes in the price of invest-
ment per industry. Similarly, we impute wages by dividing labor compensation to hours
worked for the employed. It is also worth noting that our theoretical model is entirely
consistent with the KLEMS measurement methodology.21 The only difference is that we
allow for input-specific productivities, while KLEMS assumes total factor productivities
for gross output and value added correspondingly.22

We measure digitalization using three complementary measures that summarize the
intensity of use of such technologies in the production process: the lagged share of the
Information Technology (IT) capital stock to the total capital stock, and the correspond-
ing capital stock shares for Communication technology (CT) and Software and Databases
(SoftDB).23 Our classification is based on capital as opposed to labor, which is sometimes
used in related literature (see e.g. Gallipoli and Makridis (2018)) as we do not have infor-

19We exclude sectors which may include non-market activities such as public sector, education, health
and home production. We also excluded the real estate sector due to large swings in prices. In Appendix
A4 we report the corresponding sectors we use.

20Cf. Timmer, O’Mahony, and Van Ark (2007).
21The KLEMS methodology employs a translog production function, which can approximate any pro-

duction function which is homogeneous of degree one, as in our case. More particularly, sectoral output
growth is expressed as follows:

∆lnYi,t = νx∆lnXi,t + vK∆lnKi,t + vL∆lnLi,t + ∆lnAi,t (15)

≡ vx∆lnXi,t + vVA∆lnVAi,t + ∆lnAY
i,t (16)

where vj are values shares, vVA∆lnVAi,t ≡ vK∆lnKi,t + vL∆lnLi,t + ∆lnAVA
i,t , and ∆lnAi,t ≡ ∆lnAY

i,t +

∆lnAVA
i,t . Intermediate input measures can be further decomposed into energy, materials and services, and

are constructed using supply and use tables from the National Accounts, and are available for many coun-
tries after 1995, which is the starting point of our sample (O’Mahony and Timmer, 2009).

22This difference does not affect the estimation of the elasticities as they are based on relative demand
equations where TFP cancels out by construction, and not on the assumed production function.

23For information about the shares IT, CT and SoftDB in overall capital, refer to Table 5 for sectoral in-
formation and Table 6 for country shares in Appendix A5. Figures 4 and 3 in the same appendix show
histograms of sectoral and country intensities.
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mation on the share of IT related occupations in the KLEMS database. The approach is
nevertheless similar, as we are looking at the digital intensity of one of the main factors of
production to characterize the digital intensity of the production process.24 Focusing on
capital has also the advantage of looking at more granular classifications such as IT, CT
and SoftDB. In the case of SoftDB, we also investigate the share of investments in SoftDB
out of total investment because we consider data as highly depreciable, and hence past
data might have little added value for production in the current period.

Expressing digitalization related capital as a fraction of the total capital stock is impor-
tant for distinguishing between economic growth due to capital deepening, which may
naturally lead to an increase in the use of digital technologies, and the qualitative effect of
structural change due to digital transformation. For more details on measurement please
refer to Appendix A1.

Beyond IT, CT and SoftDB, in the set of covariates Xi,t used for modeling the varying
coefficients, we control both for technological and non-technological factors that might
influence the EOS. A prime non-technological factor that affects the EOS at highly aggre-
gated sectoral levels is the level of development, as measured by the lagged capital to
labor ratio. As mentioned in the introduction, the level of development can have positive
or negative effects on the EOS, depending on primary factor mobility and substitutability
between intermediate inputs and final goods. For technological factors, we control for
factors that do have a large technological component that is nevertheless not focused on
digital technology, such as investment and capital intensity in research and development
(R&D).

3.4 Identification

Given the final model specification in (11), the errors ui,t are likely to contain input de-
mand disturbances that we have not explicitly modelled, such as other stochastic relative
input demand shocks and wedges. In related literature (Atalay, 2017; Miranda-Pinto and
Young, 2022) researchers derived estimating equations based on total output, where to-
tal factor productivity (TFP) was part of the error, and a prime source of endogeneity as
final output prices are correlated with TFP shocks. This necessitated the use of demand
shifters such as military spending as instruments. In our case we use relative factor de-
mand equations for estimating the elasticities of substitution. Any common component
of input-specific productivities which would feature as a total factor productivity shock

24In Appendix A1, we employ the data used by Gallipoli and Makridis (2018) and show that their IT
intensity index, which is based on occupation-level data, is correlated with IT capital expenditures. We use
the latter to construct the measure of IT digital intensity.
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cancels out in (9).
Moreover, our estimating equations feature relative input demand shocks. Hence,

identification necessitates the use of relative input supply shifters as instruments. For
this purpose, we utilize (lagged) relative prices in the United States, both for the labor
to capital price ratio and the value-added to intermediate input price ratio. Variation in
relative prices in the US should capture variation in relative marginal costs of production
for these inputs which can have a common component with those in Europe. A justifi-
cation for a strong common component would be the common outsourcing of material
and other inputs to East Asian countries such as China. At the same time, relative input
prices in the US should be uncorrelated with sectoral relative input demand disturbances
in Europe. This would be less likely in the presence of global demand disturbances that
affect relative input demand in the US and in Europe. A specific example of this is the
presence of input financing frictions where the distortion to the relative price of value-
added and intermediate goods in the US may be correlated with the distortion in Europe.
We control for such disturbances using time fixed effects and the CBOE Volatility index
(VIX) in alternative specifications. The identifying assumption is that controlling for time
fixed effects or the VIX is sufficient to purge this common component.25 We present es-
timates in both cases, with qualitatively similar results. Another source of endogeneity
which is specific to the capital to labor demand equation is that we allow for the lagged
level of development (capital to labor ratio) to affect the EOS. Due to within differencing
to remove fixed effects, the error becomes correlated with the interaction term between
relative prices and the lagged capital to labor ratio. We instrument the latter using the
corresponding variable in the US.

We test both for instrument relevance and instrument exogeneity. For both demand
equations and all the reported specifications, we fail to reject the overidentifying restric-

25As an example of why controlling for time fixed effects is sufficient, consider the value-added - inter-
mediate input choice, where limited commitment places an upper bound on how much of the firm revenue
(η) may be used to buy inputs. This leads to a constraint of the form ζ1VAiPVA

i + ζ2XiPX
i ≤ ηpi,tyi,t, where

η is the share of revenue that can be used to finance expenditure proportions ζ1 on value-added and ζ2
on intermediate inputs respectively (See e.g. Bigio and La’O (2020); Miranda-Pinto and Young (2022).) In
our case this yields a relative demand equation which is distorted by the Lagrange multiplier µi,t only if
ζ1 ̸= ζ2:

1 − λi
λi

(
VAi
Xi

)− 1
σi

(
νVA

i,t

νX
i,t

)1− 1
σi

=
pVA

i
pX

i
+

1 − ζ1µi,t

1 − ζ2µi,t
(17)

A log-linear approximation yields a distortion equal to (ζ2 − ζ1)µ̄µ̃i,t. Absent significant heterogeneity
in (ζ2 − ζ1)µ̄, time fixed effects absorb the common variation in µi,t due to global disturbances, while
idiosyncratic effects are absorbed by the error and are by construction uncorrelated across country-sectors.
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tions and reject underidentification. We have assessed the robustness of our results with
respect to weak identification by employing identification robust inference procedures
which are consistent with heteroscedasticity and autocorrelation in the errors (see Finlay,
Magnusson, and Schaffer (2013)). We report robust confidence sets based on inverting the
Conditional Likelihood Ratio test which has been shown to have good power properties
when the number of endogenous regressors increases (Moreira, 2003).

4 Empirical Results

We next present and discuss the empirical results for all production function parameters.
As a brief preview of the results, the main message is that only IT intensity increases
all elasticities of substitution, while data intensity appears to be important for the value-
added-intermediate input elasticity, as well as productivity in value-added. Importantly,
CT intensity is not significant in any of the specifications.

4.1 Elasticities of Substitution

Table 1 presents the estimates for the elasticity of substitution between capital and labor.
The constant component of the elasticity (which corresponds to c1,0 in specification 12)
yields a value for γ close to 0.184, which is consistent with estimates in the literature
(Gechert, Havranek, Irsova, and Kolcunova, 2022) and implies gross complementarity
between labor and capital. IT capital intensity has a significantly positive impact, as a
1% increase in intensity is associated with a 0.095 increase in the elasticity. CT intensity
and Software-database intensity have no significant impact. As we mentioned earlier in
the paper, we also find that the level of development (lagged capital to labor ratio) is also
associated with a higher EOS, with a similar impact to IT intensity.

To investigate further the heterogeneity of these estimates within sectors, we estimate
specification (2) for service and non-service sectors. Restricting the sample to service sec-
tors yield similar estimates for the constant, IT and Development level components (0.205,
0.051 and 0.109 respectively). For the non-service sectors the corresponding estimates are
0.196, 0.061 and 0.102 (please see Table 4 in Appendix A4 for the classification). We fur-
thermore check the robustness of our results along several dimensions. Most important
are specifications (5) and (6), where in (5) we change our definition of IT intensity to a def-
inition based on skills by measuring the proportion of high-skilled labor at the sectoral
level, while in (6) we use relative prices from Japan instead of the US as an instrument. In
both cases, the results for digital intensity are qualitatively similar.
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(1) (2) (3) (4) (5) (6)

Capital to Labor ratio
(

k
l

)
w
pk 0.059 0.184 0.183 0.123 0.167 0.111

[-0.100,0.218] [0.089,0.279] [0.087,0.279] [-0.033,0.280] [0.075,0.260] [-0.046,0.268]
(0.041, 0.327)

IT share ×
(

w
pk

)
0.137 0.095 0.092 0.123 0.124

[-0.009,0.283] [0.048,0.142] [0.046,0.139] [0.003,0.244] [0.062,0.186]
( 0.039,0.184)

CT share ×
(

w
pk

)
-0.001

[-0.007,0.005]

Inv. share ×
(

w
pk

)
SoftDb 0.020

[-0.106,0.147]
R&D 0.006

[-0.069,0.081]

Cap. share ×
(

w
pk

)
SoftDb -0.035

[-0.149,0.080]
R&D -0.005

[-0.013,0.004]

Devel. Level×
(

w
pk

)
0.099 0.101 0.099 0.036 0.112

[0.043,0.154] [0.064,0.139] [0.059,0.140] [0.002,0.007] [0.082,0.143]
(0.030, 0.171)

VIX 0.026 0.005 5.190 2.356 -0.032 0.011
[-0.015,0.070] [-0.016,0.026] [-1.775,12.160] [-0.777,5.489] [-0.059,-0.004] [-0.018,0.040]

No. Observations 3481 4153 4153 5323 1371 4690

Country-Sector Fixed Effects ✓ ✓ ✓ ✓ ✓ ✓

Time Fixed Effects - - ✓ ✓ - -
Underidentification test (p-value) 0.0011 0.0023 0.0000 0.0000 0.0512 0.0119
J test (p-value) 0.8259 0.8222 - - 0.7349 0.0581

Table 1: Impact of Digitalization on the EOS between k and l. For brevity we do not present interaction terms of digital intensities with time, as well as other controls.

Specification (1) includes all interaction terms of relative prices with factors that can potentially affect the elasticity (IT, CT, SoftDb and Research intensity, Level of Develop-

ment), interaction terms of the constant and time trend with the aforementioned factors, and linear-quadratic terms in the VIX. Spec. (2) drops jointly insignificant terms while

Specification (3) includes time-fixed effects instead of the VIX. Spec. (4) reports the estimates obtained without controlling for digitalization-related heterogeneity. Spec. (5)

re-estimates spec. (2) using a skills-based definition of IT intensity. Spec. (6) uses relative prices from Japan as an instrument for European relative prices. All specifications

report conventional 95% confidence sets (CS) in []. For the benchmark spec. (2), in (, ) we report the projection of the robust CS based on inverting the Conditional LR test.
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(1) (2) (3) (4) (5) (6)
Value added to Intermediate Inputs ratio VA

X
pX

pVA 0.468 0.584 0.610 0.683 -0.080 0.258

[0.255,0.682] [0.428,0.740] [0.444,0.776] [0.532,0.834] [-0.354,0.195] [-0.029,0.545]
( 0.415, 0.752)

IT share ×
(

pX

pVA

)
0.144 0.131 0.131 -0.469 0.174

[0.020,0.268] [0.023,0.239] [0.022,0.239] [-0.945,0.008] [-0.011,0.360]
( 0.011, 0.367 )

CT share ×
(

pX

pVA

)
-0.057

[-0.147,0.033]

Inv. share ×
(

pX

pVA

)
SoftDb -0.123

[-0.350,0.103]
R&D 0.166 0.148 0.146 -0.007 0.236

[0.050,0.281] [0.038,0.258] [0.037,0.256] [-0.158,0.143] [0.088,0.383]
(0.029, 0.270)

Cap. share ×
(

pX

pVA

)
SoftDb 0.301 0.183 0.187 -0.054 0.289

[0.134,0.467] [0.092,0.274] [0.096,0.277] [-0.265,0.156] [0.142,0.436]
( -0.024,0.282)

R&D 0.007 0.008 0.008 0.004 0.006
[0.003,0.012] [0.004,0.010] [0.004,0.012] [-0.001,0.010] [0.001,0.013]

(0.032, 0.242)
( 0.003, 0.012)

Devel. Level×
(

pX

pVA

)
0.082

[-0.044,0.208]
VIX 0.020 0.020 -0.047 -0.005 0.011 0.023

[0.003,0.037] [0.004,0.037] [-0.393,0.299] [-0.211,0.200] [-0.024,0.047] [0.001,0.045]
No. Observations 3765 3765 3765 4475 1320 4281

Country-Sector Fixed Effects ✓ ✓ ✓ ✓ ✓ ✓

Time Fixed Effects - - ✓ ✓ - -
Underidentification test (p-value) 0.0000 0.0000 0.0000 0.0000 0.0006 0.0001
J test (p-value) 0.2978 0.2532 0.2545 - 0.5344 0.1957

Table 2: Impact on the Elasticity of Substitution between VA and X. Please see Table 1 for details regarding specifications (1) to (6).
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Similar to Table 1, Table 2 shows that a larger share of IT-related capital stocks brought
forward from the last period positively affect the EOS between value-added and interme-
diate inputs. In particular, the marginal effect is estimated to be relatively large (0.131).26

Furthermore, there is some evidence that a higher intensity in SoftDB and R&D is posi-
tively associated with the EOS. Sectors in which the existing capital share of IT technology
as well as R&D investment share is higher, have higher substitution possibilities between
production that takes place within the firm and production outsourced to other firms.
Despite allowing for heterogeneity in σ, the constant coefficient component is also signif-
icant (0.584), indicating that part of this elasticity could be due to other factors that do
not vary across time and space. Switching down heterogeneity yields an EOS of 0.683.
Again, restricting the sample to service sectors yields similar estimates for the constant,
IT, SoftDB and Research capital intensities (0.410, 0.200, 0.319 and 0.179 respectively). For
the non-service sectors the corresponding estimates are 0.493, 0.145, 0.270 and 0.157

Finally, we have performed similar robustness checks as in Table 1. Using a skill-
based definition does not yield a statistically significant effect of IT intensity, yet we take
this result as non-conclusive as sectoral data on skills are only available after 2008 and
not for all sectors, resulting in a smaller sample. Using Japanese data for constructing the
instrument yields the same empirical insights as our main specification (2).

4.2 Productivity

Given the estimates of the elasticities of substitution, the share parameters and the rela-
tive growth rates of productivities, we use the corresponding production functions and
the process for each productivity to back out their levels and growth rates.27 Table 3 re-
ports the results for each input-specific productivity we recovered using our approach, as
well as the estimates based on the total factor productivity in value-added provided in the
KLEMS database. A higher share of investment in software and databases leads to higher
labor and capital productivity growth, while higher capital intensity in information and
communications technology does not seem to positively contribute to input-specific pro-
ductivity growth. 28

Assuming that the endogenous and exogenous productivities of our theoretical model
have similar attributes, our results in Table 3 support the finding of high complementarity

26The underidentification test (Kleibergen-Paap rk LM statistic) has p-value = 0.0000 and the Hansen
J-statistic has p-value = 0.2532.

27Please see Appendix A2 for the way we recover unobserved productivities.
28The same holds for value-added productivity growth, although the result is statistically significant once

we drop the insignificant lagged values of productivity growth.
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between productivities. Because digitalization has almost the same impact on the growth
rates of labor and capital productivity, their ratio must remains fairly constant with higher
levels of digital intensity.

Furthermore, we also find that intermediate inputs’ productivity growth is positively
affected by a higher share of research and development in capital brought forward, while
there are negative effects of research investment intensity, possibly due to organizational
inertia due to necessary investment-related organizational adjustments, which entail tem-
porary inefficiencies in production.

Our results are indeed conditional on the way we recover these unobserved produc-
tivities and our prior estimates of the model parameters. We have nevertheless checked
the robustness of our finding by utilizing the sectoral total factor productivity measure
which is available in the KLEMS database, and we find very similar results in the case
of software and database investment intensity. Total factor productivity growth is also
increasing in the corresponding investment intensity in software and databases.

While the finding that IT intensity is not significant but SoftDB intensity is may be sur-
prising at first sight, we interpret this as evidence that the installation of digital hardware
alone cannot account for an increase of productivity, but it is the effective use of it through
software and data that drives productivity gains. Allowing for an interaction between IT
intensity and SoftDB capital intensity yields a statistically significant coefficient for the
KLEMS-TFP data, which corroborates our earlier claim about complementarities between
the installation of hardware and its use. There is nevertheless no further strong evidence
of this complementarity in the (more noisy) input-specific productivity measures.29

4.3 Share Parameters

In our extensive estimation exercises, we have additionally investigated whether the
share parameters are affected by digitalization, with little evidence of such a relation-
ship. We relegate these results to Table 7 in Appendix A7. The constant estimates for α

and λ are 0.3154 and 0.5720 respectively.

29In alternative specifications, we have investigated for complementarity between SoftDB and IT in both
the capital and the investment shares. We found some evidence of complementarity in the investment share
for the productivity growth of capital, yet the result was non-robust to accounting for such complementar-
ities in the capital share.
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∆νVA ∆νX ∆νL ∆νK ∆νVA
KLEMS,TFP

IT share 0.047 0.040 -0.030 -0.097 0.011
[-0.074,0.168] [-0.057,0.137] [-0.114,0.053] [-0.294,0.101] [-0.017,0.039]

CT share 0.069 0.073 -0.026 -0.035 -0.007
[-0.046,0.183] [-0.050,0.195] [-0.055,0.004] [-0.074,0.005] [-0.029,0.016]

Inv. share
R& D -0.189 -0.186 0.005 0.018 0.005

[-0.339,-0.040] [-0.332,-0.041] [-0.014,0.024] [-0.004,0.039] [-0.009,0.018]
SoftDb 0.028 0.017 0.033 0.030 0.029

[-0.030,0.087] [-0.038,0.071] [0.009,0.056] [0.000,0.059] [0.005,0.053]
SoftDb × IT share 0.008

[-0.007,0.024]

Cap. share
R&D 0.114 0.112 0.039 0.006 0.015

[0.003,0.225] [0.016,0.208] [0.006,0.071] [-0.033,0.045] [-0.009,0.039]
SoftDb -0.066 -0.072 0.021 0.013 0.029

[-0.160,0.028] [-0.154,0.011] [-0.027,0.069] [-0.045,0.072] [-0.002,0.060]
SoftDb × IT share 0.022

[0.007,0.038]

Devel. Level -0.103 -0.070 0.165 0.255 0.175
[-0.347,0.141] [-0.283,0.142] [-0.008,0.339] [0.051,0.465] [0.080,0.270]

VIX -0.043 -0.038 -0.067 -0.063 -0.061
[-0.092,0.007] [-0.081,0.006] [-0.100,-0.034] [-0.100,-0.026] [-0.075,-0.047]

No.of Obs. 3607 3606 4288 4043 4646
C-S F.E. ✓ ✓ ✓ ✓ ✓
≥ 2 lags ✓ ✓ ✓ ✓ ✓
t & t2 ✓ ✓ ✓ ✓ ✓

Table 3: Impact of Digitization on Input Specific Productivity Growth. The Table presents
the results of regressing the imputed input-specific productivity growth and the KLEMS
TFP growth data on the same set of covariates employed in Tables 1 and 2. Estimates are
obtained using the Arellano-Bond estimator. All specifications report conventional 95%
confidence sets in [.]. The input-specific productivity growth series are obtained using the
estimates of (c2,0, c2,1) in equation 12 and the corresponding production function. Please
see Appendix A2 for more details.

4.4 Digitalization and Shifting Technology frontiers

We employ the structure of the model to back-out the implied shifts in the technology
frontier. As evident from (14) and the discussion that follows, the estimated reduced
form coefficients for each elasticity relevant factor are nonlinear functions of (ω̄k/l, γ̄) and
(ω̄VA/X, σ̄) respectively, as the structural coefficients that relate ( ˜̃ωk/l

i,t , ˜̃γi,t) and ( ˜̃ωVA/X
i,t , ˜̃σi,t)

to those factors. This relationship is useful for deriving the corresponding estimates of
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ωi,t, which are used in Figure 1 for illustration purposes.

Figure 1: We plot the log-linear approximations to the average technology frontiers
(across country-sector), for capital-labor (left) and value-added and intermediate in-

puts (right), vK,t ≈ − θ̄K/L
t

ω̄K/L
t B̄

(evL,t)ω̄K/L
t + 1

ω̄K/L
t

log(B̄) and vVA,t ≈ − θ̄VA/X
t

ω̄VA/X
t B̄

(evL,t)ω̄VA/X
t +

1
ω̄VA/X

t
log(B̄), for every three years in the sample. The main plots calibrate θ to its average

value over time, while the sub-plots allow for θ to vary and depict the sample realiza-
tions. (θK/L

i , θVA/X
i ) are obtained using (αi, λi). In both cases B̄ is normalized as it is not

identified.

In particular, we have employed the reduced form estimates obtained from the rela-
tive demand equations to back out the implied estimates of γ̄ and γ̃i,t using that γ̃i,t ≈
γ̄ exp

(
ω̄[k/l2]

(γ̄k/l−(γ̄−1))2
˜̃γi,t

)
and the estimates of ωk/l

i,t using that ωk/l
i,t =

(γi,t−1)(γ̃i,t−1)
γi,t−γ̃i,t

.30

Figure 1 displays the conditional effects on the technology frontiers between labor
and capital as well as between value-added and intermediate inputs. We plot the average
(over country-sector) log-technology frontiers for every three years in our sample. We
focus on the effects of digitalization and keep those of non-digital factors constant (we

30Since ˜̃γi,t depends on several non-technology factors, i.e. m factors, the reduced form estimates can
identify only m − 1 coefficients. Hence the coefficient of the first factor is normalized to one.
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also keep θ constant). Digitalization lowers ω and hence shifts these log-frontiers to the
right and makes them more convex. If we allow θ to vary, the technology frontiers shift
more randomly, but the effects of IT and SoftDB are still the dominant factor (inner plots).

For a given conditional EOS between factors, a higher convexity of the technology
frontier leads to more complementary technologies. Hence the choice of technologies
matters more for the overall substitution between inputs, increasing the unconditional
EOS. This effect holds irrespective of whether the factors are complements or substitutes
in the conditional production function.

Further insights on what drives complementarities in technologies can be gained by
thinking about task assignments for inputs. As we show in Appendix A3, higher com-
plementarity between aggregate productivities of labor and capital can be the result of a
less pronounced comparative advantage of labor over capital in producing (previously)
labor intensive tasks. As an example, consider the case of a hospital, where certain tasks
are only completed by a medical doctor, while others by a combination of a nurse and
equipment. Technological innovation that results into new digital equipment can enable
the nurse to complete some of the tasks that only the medical doctor could previously do,
due to her expertise. In this case, tasks that were previously done by high-skilled labor are
now completed by lower skilled labor together with a more efficient (digital) equipment.
This corroborates the idea that technological innovations are not limited to automation,
but bring in other organizational changes that alter the trade-offs between technologies.

4.5 Further Discussion

The empirical results have some additional implications for understanding technologi-
cally biased technical change and the labor share of income. As can be seen from rear-
ranging the relative demand equations for capital and labor, explaining the decline in the
relative share of value-added by which labor is remunerated falls on either relative pro-
ductivity growth or the decline in the price of investment goods, such as in Karabarbounis
and Neiman (2013).

ln

(
ki,t pk

i,t

li,twi,t

)
= γiln

(
αi

1 − αi

)
+ (1 − γi)ln

(
pk

i,t

wi,t

)
+ (γi − 1)

[
(gk

i − gl
i)t
]

The evidence suggests that productivity gains, at least for the type of digital technol-
ogy we are looking at, are unlikely to contribute to a decline in the labor share as the
effect we find are uniform across labor and capital productivity growth. Nevertheless,
since digitalization increases γi, it unconditionally decreases the labor share through the
first term (as the share parameters are not affected), and at the same time it dampens the
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effects of the decline in the price of investment goods. We believe that this is an additional
source of variation to the labor share that should be taken into account when discussing
the implications of digitalization.31 How much this contributes to the overall effect is of
course an interesting question that goes beyond the scope of this paper. The literature on
the decline of the labor share is vast, and involves several nuances, both theory and mea-
surement related (see e.g. Grossman and Oberfield (2021)). We thus view our evidence
on this debate as suggestive and complementary.

5 Conclusion

We find that digitalization has a significant impact on the macroeconomic production
function. Our endogenous technology choice framework shows that a higher IT intensity
makes input-specific productivities more complementary. The corresponding shifts in the
technology frontier allow firms to re-optimize their production processes with more ap-
propriate technologies, which increases the EOS between value-added and intermediate
goods and the EOS between capital and labor. A higher EOS can be consequential for
both the labor share as well as the propagation of sectoral shocks in the economy.

Further evidence suggests that higher data intensity positively contributes to the growth
rate of Hicks-neutral productivity in value-added. We conclude that different types of
digital intensity matter for alternative components of the production function. It is there-
fore important to disentangle the effects of different types of digital technologies both for
the design of policy measures and the assessment of their likely effects.
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Appendix

A1: Further description of data and transformations

KLEMS (2019) provides data on chain-linked volumes (reference year 2010) for capital
stocks of ten different asset categories per industry: Computing equipment KIT, Commu-
nications equipment KCT, Computer software and databases KSo f tDB, Transport Equip-
ment KTraEq, Machinery and Equipment KOMAchOther, Total Non-residential investment
KOCon, Residential structures KRStruct, Cultivated assets KCult, Research and development
KRD, Other IPP assets KIPP. The total index KGFCG is then constructed using the Törnqvist
index as follows, ∆ln(KGFCG) = ∑i=j..n v̄i∆ln(Kj), where v̄j are the weights given by the
average of current and lagged nominal expenditure shares of each type of capital where
v̄j = 0.5(vj,t + vj,t−1) and ∑j=1..10 v̄j = 1. The measures of digital intensity we use are then

given by KIT
KGFCG

, KCT
KGFCG

,
KSo f tDB
KGFCG

and correspondingly, our measure of R&D intensity is KRD
KGFCG

.

The same approach is followed for investment intensities. Instead of ln
(

KIT
KGFCG

)
, one pos-

sibility would be to use the expenditure share vi,t (which is provided in the KLEMS (2022)
release.). Nevertheless, neither the current nor the lagged expenditure shares are consis-
tent measures of intensity. The former because it incorporates changes in current prices,
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and the latter because they feature lagged quantities. Ideally, one would like to use the ex-
penditure share using current quantities at constant prices. This is then almost equivalent
to utilizing the ratio of the volume index for a particular asset to the total index. The chain
linked volumes for each individual asset type are by construction independent of current
prices, and hence any change in the intensity will be due to a change in the quantity. Cor-
respondingly, since the change of KGFCG from period t − 1 to period t is by construction
a geometric average over the individual asset types, an increase in ln

(
KIT

KGFCG

)
will reflect

an increase in KIT relative to other asset types.

Relation to existing measures of digital intensity

Figure 2: Correlation of IT capital expenditures and the measure of digitalization in Gal-
lipoli and Makridis (2018).

A2: Estimating labor and capital productivities for t > 0

Given the relative growth rate estimates and the normalization of initial relative pro-
ductivity to one, we compute relative productivity: ezi,t = egt. Using the (normalized)
value-added production function, we back out ezl

i,t−z̄l
i and ezk

i,t−z̄k
i :
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and thus, ezl
i,t−z̄l

i = (VAi,t/V̄Ai)/
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l̄i

(
α
(

ezi,t−z̄i ki,t
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k̄i
l̄i

) γ−1
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+ 1 − α

) γ
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. Using ezk

i,t−z̄k
i =

egi(t−t̄)ezl
i,t−z̄l

i , we back out capital productivity. The same approach is followed for backing
out the productivities of valued added and intermediate inputs.

A3: Input Specific Productivity and Task Assignment.

Consider a model of production where final sectoral output is produced using a CES
aggegate of tasks with unit measure:

Y = A
(∫ 1

0
y(j)

ζ−1
ζ dj

) ζ
ζ−1

(18)

Profit maximization yields that demand for task j is pinned down by y(j) = Aζ−1Yp(j)−ζ .
Correspondingly, each task j can be produced with just labor, or a Leontieff form of pro-
duction using labor and capital.

We allow for potentially different types of labor that can accomplish tasks above or
below j. We nevertheless don’t take a stance on whether l and lk correspond to low-skill
or high-skill workers. It can very well be that either low skilled or high skilled labor
complements capital, depending on the available technology.

For a given technology, there is a threshold task j = J ∈ (0, 1) over which tasks are
better produced by labor only,(ln), while for the rest of the tasks the representative firm
uses a fixed combination of labor (lk) and capital (k):

y(j) =

{
ξn(j)ln(j) j > J

min(ξk(j)lk(j), η(j)k(j)) j ≤ J
(19)

We also assume that ξn(j)
η(j) is increasing in j.

An example for this production function would be medical tasks in hospitals, which
could either be done by a doctor (ln) or by a nurse (lk). Digital devices (k) can enable the
nurse to do certain tasks that were previously dependent on the doctor’s decisions (e.g.
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monitoring the heath condition of patients, deciding upon giving drugs based on blood
test results etc.). Once these digital devices have been introduced, the nurse is able to use
the devices in a complementary manner and take the responsibilities for additional tasks.
Consequently, J shifts upward.

Correspondingly, in a competitive setting, the price of each task is set equal to the
minimum unit cost of production which is equal to

p(j) =

{ Wn
ξn(j) j > J

Wk
ξk(j) +

R
η(j) j ≤ J

(20)

Note that the actual threshold determined in equilibrium (J⋆) might be different than J.
The equilibrium threshold takes into account factor prices as well, and hence the unit cost
of production. There is a threshold J̃ : Wn

ξn( J̃) = Wk
ξk( J̃) +

R
η( J̃) , where it is efficient that tasks

j : j > J̃ are produced only with labor. If J̃ > J, the assignment is constrained by existing
technology. Hence, it is understood that J⋆ = min( J̃, J).

For a given quantity of tasks demanded, the demand for each input is as follows:

ln(j) =
y(j)
ξn(j)

=
Y

ξn(j)
Aζ−1

(
Wn

ξn(j)

)−ζ

(21)

lk(j) =
y(j)p(j)

Wn + R ξn(j)
η(j)

= Y(Aξn(j))ζ−1
(

Wk + R
ξn(j)
η(j)

)−ζ

(22)

k(j) = = lk(j)
ξk(j)
η(j)

= Y(Aξn(j))ζ−1
(

Wk + R
ξn(j)
η(j)

)−ζ ξk(j)
η(j)

(23)

Assuming that labor and capital are sector-specific, a local market equilibrium where∫ 1
J⋆ ln(j)dj = Ln,

∫ J⋆

0 lk(j)dj = Lk and
∫ 1

J⋆ k(j)dj = K yields that:

Wn =

(
Y
Ln

) 1
ζ

A1− 1
ζ

(∫ 1

J⋆
ξn(j)ζ−1dj

) 1
ζ

(24)
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Y
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) 1
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A1− 1
ζ

(∫ J⋆

0

(
1 +

Rξk(j)
Wkη(j)

)−ζ

dj

) 1
ζ

(25)

R =

(
Y
K

) 1
ζ

A1− 1
ζ

(∫ J⋆

0

(
Wk
R

+
ξk(j)
η(j)

)−ζ ξk(j)ζ

η(j)
dj

) 1
ζ

(26)

Using that WkLk + WnLn + RK = PY and imposing that the final good is the numeraire,
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yields the price index:

A1−ζ =
∫ 1

J⋆

(
Wn

ξn(j)

)1−ζ

dj+
∫ 1

J⋆

(
Wk

ξn(j)

)1−ζ (
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Wkη(j)

)−ζ

dj+
∫ 1

J⋆

(
R

η(j)

)1−ζ (
1 +

Wkη(j)
Rξn(j)

)−ζ

dj

Combining the equilibrium prices with the price index yields the CES production func-
tion for aggregates:

Y1− 1
ζ = A1− 1

ζ

(∫ 1

J⋆
ξn(j)ζ−1dj

) 1
ζ

L
1− 1

ζ
n +

∫ J⋆
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0
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1
ζ

K1− 1
ζ
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where we can write

Y1− 1
ζ = A1− 1

ζ

(∫ 1

J⋆
ξn(j)ζ−1dj

) 1
ζ

L1− 1
ζ +
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0
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1
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
with L being the CES aggregate of Ln and its efficiency equivalent Lk:

L1− 1
ζ := L

1− 1
ζ

n +


∫ J⋆

0
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Finally, letting

ezL :=
(∫ 1

J⋆
ξn(j)ζ−1dj

) 1
ζ−1

, ezK :=

∫ J⋆

0

 η(j)ζ−1(
1 + Wkη(j)

Rξk(j)

)ζ

 dj


1

ζ−1

yields
Y1− 1

ζ = A1− 1
ζ

[
(ezL L)1− 1

ζ + (ezK K)1− 1
ζ

]
Note that for simplicity, we have assumed away the existence of intermediaries. Never-
theless, this approach could be extended to allow for intermediaries as well.
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A3.1 The implicit Technology Frontier

We are now ready to show how a technology frontier arises in the equilibrium of this
model. In particular, we directly explore the slope of this frontier, whose elasticity will be
related to convexity, and hence complementarity of these technologies. When there is no
technological constraint (Jstar = J̃), the slope of the log-frontier is as follows:

slope
(

zK

zL

)
:=

dzK

dzL
=

dzK
dJ⋆

dzL
dJ⋆

= −
(

ezK

ezL

)1−ζ (ηJ⋆

ξ J⋆

)ζ−1(
1 +

Wkη(J⋆)
Rξk(J⋆)

)−ζ

(27)

= −Ln

K
ξ(J⋆)
η(J⋆)

(28)

where the last line uses that at J⋆, 1 + Wkη(J⋆)
Rξk(J⋆) = Wnη(J⋆)

Rξ(J⋆) , and that Wn
R =

(
K
Ln

) 1
ζ e(zL−zK)

ζ−1
ζ .

The slope of the frontier is negative, which implies that there is a trade-off between the
two aggregate labor and capital productivities. Different equilibrium levels of J⋆ will
determine this trade-off along the frontier. If J⋆ = J, then current technology imposes a
constraint on that frontier. Technological innovations, which include but are not limited
to automation, can induce a shift in J, which will allow obtaining points further along the
same factor frontier. Thus, technical change enables firms to choose new technologies on
another conditional production function. By moving along the technology frontier, the
EOS increases from the conditional towards the unconditional one.

Moreover, a measure of convexity of the log-frontier introduced by León-Ledesma and
Satchi (2019) is the elasticity of the slope of the log-frontier with respect to zK

zL
,

δ :=
slope′

(
zK − zL

)
slope

(
zK − zL

) = −
(

∂(zK − zL)

∂J⋆

)−1
∂ln

(
ξ(J⋆)
η(J⋆)

)
∂J⋆

 (29)

Both the first term and second terms in brackets are positive, as an increase in thresh-
old J⋆ increases zK and decreases zL, while ξn(j)

η(j) is increasing in j by the comparative
advantage of labor (l). Hence, the log-frontier is concave, as is the model of technology
choice we employ in the main body of the paper.

It is then clear that a higher convexity must be the result of the comparative advantage
of ln over k (and hence lk) becoming less pronounced, or the effects on relative produc-
tivity becoming more pronounced. Technological innovations can have such an effect ei-
ther through an explicit shift in J and therefore J⋆, or through other exogenous structural
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changes that affect comparative advantage. This corroborates the idea that technological
innovations are not limited to automation, but bring in other organizational changes that
change the trade-offs between technologies.

In our setting, since we do not employ an analysis at the task level, an equivalent way
of modeling the equilibrium determination of J⋆ is to allow firms to directly choose it
amongst all permissible levels of j along the frontier. The same calculation yields that
convexity in our case is pinned down by:

δ :=
slope′

(
zK − zL

)
slope

(
zK − zL

) =
ωθe(−ω−1)(zK−zL)

−θe−ω(zK−zL)
ezK−zL = −ω (30)
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A4: Explanation of sectors

Code Explanation S

A Agriculture, forestry & fishing
B Mining & quarrying
D-E Electricity, gas & water supply ✓

F Construction
I Accomodation & food service activities ✓

K Financial & insurance activities ✓

L Real estate activities ✓

M-N Professional, scientific, technical, admin. & support service activities ✓

R Arts, entertainment & recreation ✓

S Other service activities ✓

10-12 Food products, beverages & tobacco
13-15 Textiles, wearing apparel, leather & related products
16-18 Wood & paper products; printing & reprod. of recorded media
19 Coke & refined petroleum products
20-21 Chemicals & chemical products
22-23 Rubber & plastics products, & other non-metallic mineral products
24-25 Basic metals & fabricated metal products ( excl. machinery & equip.)
26-27 Electrical & optical equipment
28 Machinery & equipment n.e.c.
29-30 Transport equipment ✓

31-33 Other manufacturing; repair & installation of machinery & equipment ✓

45 Wholesale & retail trade & repair of motor vehicles & motorcycles ✓

46 Wholesale trade, except of motor vehicles & motorcycles ✓

47 Retail trade, except of motor vehicles & motorcycles ✓

49-52 Transport & storage ✓

53 Postal & courier activities ✓

58-60 Publishing, audiovisual & broadcasting activities ✓

61 Telecommunications ✓

62-63 IT & other information services ✓

Table 4: Sector codes, names & classification as service sector (S)
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A5: Shares of digital capital types in overall capital

Intensities

Code Information Technology Communications Technology Databases and Software

A 0,004253 0,0010234 0,0014143

B 0,0077766 0,0039974 0,0053481

C10-C12 0,0107238 0,006219 0,0177819

C13-C15 0,0125911 0,0034936 0,029158

C16-C18 0,0137761 0,0088125 0,0192843

C19 0,0053049 0,0073741 0,0126016

C20 0,0071038 0,0152717 0,0147406

C20-C21 0,0054727 0,012895 0,017749

C21 0,0046682 0,0068411 0,0208358

C22-C23 0,0134607 0,0061375 0,0195104

C24-C25 0,008547 0,0078541 0,0193133

C26 0,0219624 0,0148604 0,0723233

C26-C27 0,0175541 0,012431 0,0646179

C27 0,0111281 0,0105202 0,0467235

C28 0,0107818 0,0096089 0,0510598

C29-C30 0,0064563 0,0118472 0,029536

C31-C33 0,0141074 0,007993 0,0535963

D 0,0061376 0,0116058 0,0091

E 0,0034602 0,002207 0,0064929

F 0,0199727 0,0085336 0,0200736

G45 0,0186795 0,009214 0,0164421

G46 0,0369193 0,0135821 0,0469053

G47 0,0317989 0,0117243 0,0236333

H49 0,0081865 0,0106475 0,0053906

H50 0,0074767 0,005658 0,0033922

H51 0,0112966 0,0172487 0,0181651

H52 0,0049014 0,0102961 0,0053065

H53 0,0230998 0,054194 0,0501782

I 0,0159736 0,0089399 0,0112556

J58-J60 0,0442202 0,0398583 0,139925

J61 0,0248976 0,1979001 0,0556065

J62-J63 0,1406515 0,040945 0,3060345

K 0,0471777 0,0117678 0,1161901

M-N 0,0327934 0,0164067 0,0571099

R 0,0152655 0,0092689 0,0173999

S 0,0199397 0,0067417 0,0460683

Table 5: Average intensities per sector in 2017

36



Country Information Technology Communications Technology Databases and Software

Austria 0.0115 0.0298 0.0313

Belgium 0.0185 0.0311 0.0198

Czechia 0.0162 0.00543 0.0181

Germany 0.0211 0.0203 0.0214

Denmark 0.0203 0.00716 0.0337

EU 0.00581 0.0306 0.0104

Greece 0.0231 0.0271 0.016

Spain 0.00588 0.0246 0.0372

Finland 0.00703 0.0111 0.0331

France 0.00377 0.0183 0.0992

Hungary - - 0.0152

Italy 0.00893 0.0147 0.0519

Latvia 0.0121 0.0128 0.00386

Luxembourg 0.0247 0.0112 0.0105

Netherlands 0.0126 0.00197 0.0496

Serbia 0.00639 0.0256 0.0528

Slovenia 0.00776 0.00376 0.0125

Slovakia 0.0144 0.0135 0.00975

UK 0.00977 0.00618 0.0349

US 0.00792 0.0228 0.0302

Table 6: Average intensities per country in 2017

37



Figure 3: Histogram of Sectoral Intensities (Average over Countries)

Figure 4: Histogram of Country Intensities (Average over Sectors)
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A6: Estimation with a normalized production function

It can be shown that the first order conditions under normalization are

ln
(

ki,t

li,t

)
= (1 − γi,t)ln

(
k̄i,t

l̄i,t

)
− (gk

i − gl
i)t̄ + γi,tln

(
ᾱi,t

1 − ᾱi,t

)
(31)

−γi,tln

(
pk

i,t

wi,t

)
+ (γi,t − 1)

[(
zk

i,0 − zl
i,0

)
+ (gk

i − gl
i)t
]

where (k̄i,t, l̄i,t, ᾱi,t, t̄) are the normalization points. Since in the non-normalized case we
have already controlled for the potential covariates related to the relative share, which
are the same for γi,t, the regression estimates are robust to the presence of the additional
terms (1 − γi,t)ln

(
k̄i,t
l̄i,t

)
− (gk

i − gl
i)t̄.
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A7: Effects of Digital Intensity on Share Parameters

ln
(

α
1−α

)
ln
(

1−λ
λ

)
Constant -0.775 -0.290

[-1.904,0.355] [-0.707,0.128]

IT share 0.328 0.0218
[-0.0520,0.707] [-0.133,0.176]

CT share 0.228 -0.0367
[-0.131,0.588] [-0.116,0.0428]

Inv. share:
R&D 0.0178 0.0249

[-0.114,0.150] [-0.126,0.176]
SoftDb 0.142 -0.104

[-0.0454,0.330] [-0.192,-0.0153]

Cap. share:
R&D 0.0485 0.190

[-0.378,0.475] [-0.0522,0.431]
SoftDb -0.205 -0.105

[-0.477,0.0663] [-0.356,0.146]

No. Observations 2609 2433
Country-Sector F.E. and 4 lags ✓ ✓

Table 7: This table reports the estimation results for the impact of digital intensities on
relative share parameters (α, λ).
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