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Abstract

We examine the limit properties of the Non-linear Least Squares (NLS) estimator under
functional form misspeci�cation in regression models with a unit root. Our theoretical
framework is the same as that of Park and Phillips, Econometrica 2001. We show that
the limit behaviour of the NLS estimator is largely determined by the relative order of
magnitude of the true and �tted models. If the estimated model is of di¤erent order of
magnitude than the true model, the estimator converges to boundary points. When the
pseudo-true value is on a boundary, standard methods for obtaining rates of convergence
and limit distribution results are not applicable. We provide convergence rates and limit
distribution results, when the pseudo-true value is an interior point. If functional form
misspeci�cation is committed in the presence of stochastic trends, the convergence rates can
be slower and the limit distribution di¤erent than that obtained under correct speci�cation.

This paper is based on Chapter 2 of my Ph.D. thesis at the University of Southampton.
I am deeply indebted to Grant Hillier and Peter Phillips for invaluable advice and encour-
agement. I am grateful to Tassos Magdalinos and Jean-Yves Pitarakis for their support
and for useful comments.
� Previous version, August 2006.
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1 INTRODUCTION

This paper is concerned with the Least Squares (LS) approximation to an unknown func-
tion in a nonstationary context. Standard estimation and inference analysis relies on the
convention that the �tted model is correctly speci�ed. Accepting that any economic model
is an abstraction of reality, rather than a �true�data generating mechanism, it is important
to know what the estimators�properties are in the presence of misspeci�cation. The asymp-
totic properties of the NLS estimator, under functional form misspeci�cation (FFM), have
been studied by White (1981), for independent and identically distributed data (i.i.d.) and
by Domowitz and White (1982) for heterogenous weakly dependent (WD) data (see also
Bierens (1984) for similar results). The purpose of this paper is to explore the limit behav-
iour of the NLS estimator in misspeci�ed models with strongly dependent nonstationary
regressors. In particular, we consider non-linear regressions with unit root covariates. The
results provided here are not only of theoretical interest, but also useful for the development
of speci�cation tests. In order to obtain asymptotic power rates, for certain misspeci�ca-
tion tests e.g. Ramsey (1969), Bierens (1990) (tests without speci�c alternative), knowledge
about the asymptotic behaviour of the estimator under misspeci�cation is necessary. In
addition, to determine the limit distribution of certain model selection statistics under the
null hypothesis, e.g. Cox (1961, 1962), Davidson and MacKinnon (1981) and Voung (1989)
(tests with speci�c alternative), the estimator�s limit distribution about the pseudo-true
value, is required.
In order to address the issue of FFM, we need to depart from the standard linear

framework. The asymptotic properties of estimators for nonlinear models with stationary
and weakly dependent data have been explored twenty �ve years ago (e.g. Hansen (1981),
White and Domowitz (1984)). Nevertheless, no well developed limit distribution theory
existed, for nonlinear models with strongly dependent nonstationary regressors, prior to
the recent development of Park and Phillips (1999, 2001)1. Park and Phillips (2001) (P&P
hereafter) consider nonlinear models with an exogenous unit root covariate and martingale
di¤erence errors. They focus on two classes of nonlinear transformations: integrable and
locally integrable transformations. Our aim is to analyse misspeci�ed models, within the
P&P theoretical framework.
White (1981), Domowitz and White (1982) and Bierens (1984) establish convergence

to some pseudo-true value, using the Jennrich (1969) approach2. Characterising the limit
behaviour of the NLS estimator in the context of misspeci�ed models with unit roots, proves
to be a more challenging task. In the presence of unit roots, the applicability of existing
econometric techniques, for the asymptotic analysis of extremum estimators (e.g. Jennrich,
1969), is limited (see P&P). This is because the NLS objective function involves components
of di¤erent orders of magnitude. The applicability of these techniques is further restricted,
under misspeci�cation, as the �tted model can be of di¤erent order of magnitude than
the true speci�cation. As in Park and Phillips (2001), we employ a variety of econometric
techniques, to obtain asymptotic results. These relate to the work of Jennrich (1969), Wu
(1981) and Wooldridge (1994).
Domowitz and White (1982), show that the NLS estimator has a well de�ned non-

stochastic limit, referred to in the econometric literature as �pseudo-true�value. Moreover,
the NLS estimator about the pseudo-true value and scaled by

p
n (n is the sample size)

has a Gaussian limit distribution. Hence, for weakly dependent misspeci�ed models, the
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limit distribution is still Gaussian, and the rate of convergence is una¤ected.
We show that when the covariate is a unit root process, things may be substantially

di¤erent. In our framework the pseudo-true value can be stochastic. In addition, when the
true model is of di¤erent order of magnitude than the �tted model, the estimator typically
converges to boundary points of the parameter space. When the pseudo-true value is on
a boundary, techniques that involve a linearisation of the objective function, about the
estimator�s limit, e.g. Wooldridge (1994), Andrews (1999) are not applicable. We provide
convergence rates and limit distribution results, when the pseudo-true value is an interior
point. Again the limit behaviour of the NLS estimator is not always analogous to that
reported by Domowitz and White (1982). Sometimes the rates of convergence are slower
and the limit distribution di¤erent than that obtained under correct speci�cation.
As explained earlier, our results are useful for the development of testing procedures

in regression models with unit roots. In addition, our analysis provides guidance for the
adequacy of empirical models. We have mentioned, that if FFM is committed in the P&P
framework, the estimators may diverge or converge to boundary points in the parameter
space. Such behaviour would constitute evidence for misspeci�cation. Therefore, inspect-
ing the behaviour of slope parameters, over di¤erent parameter spaces can provide useful
information about the adequacy of the �tted model.
The rest of this paper is organised as follows: Section 2 speci�es the theoretical frame-

work. Section 3 presents our theoretical results, and Section 4 concludes. Before proceed-
ing to the next section, we introduce some notation. For a vector x = (xi) or a matrix
A = (aij), jxj and jAj denote the vector and matrix respectively of the moduli of their
elements. The maximum of the moduli is denoted as k:k. For a matrix A, A > 0 denotes
positive de�niteness. For a function g : Rp ! R de�ne the arrays

_g =

�
@g

@ai

�
; �g =

�
@2g

@ai@aj

�
;
...
g =

�
@3g

@ai@aj@ak

�
;

which are vectors arranged by the lexicographic ordering of their indices. Sometimes is
more convenient to express the second derivatives of g in matrix form i.e. �G = @2g=@a@a0.

The Borel �eld on a set A is written as B(A) and B, when A = R. As usual, d
= denotes

distributional equality. Finally, 1fAg is the indicator function of a set A.

2 DEFINITIONS AND PRELIMINARY RESULTS

This section provides a set of de�nitions, that specify our theoretical framework and, some
preliminary results. The models we consider are the same as those discussed in P&P. We
assume that the series fytgnt=1 is generated by the model:

yt = f(xt) + ut (1)

where f is an unknown function. The variables xt and ut are a unit root process and a
martingale di¤erence respectively, in some probability space (
;F ;P). The �tted model
is:

yt = g(xt; â) + ût (2)
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where g(:; a) is a transformation of the data that is �di¤erent from f(:)�. This is de�ned
precisely later in this section. The �tted model is estimated by the NLS procedure, i.e.:

â = argmin
a2A

Qn(a); Qn(a) =
nX
t=1

(yt � g(xt; a))
2, (3)

where A is a compact subset of Rp.
Next, we specify the processes that generate the covariates and the errors of the model.

We assume throughout that the sequence fxtgnt=1 is a unit root process generated by

xt = xt�1 + vt; x0 = Op(1):

Further, fvtgnt=1 is the linear process:

vt =  (L)�t =
1X
k=0

 k�t�k;

with  (1) 6= 0 and f�tgnt=1 is a sequence of i.i.d. random variables with mean zero. De�ne
the partial sum processes Vn(r) and Un(r) as:

(Vn(r); Un(r)) =
1p
n

[nr]X
t=1

(vt; ut) , r 2 [0; 1]:

The following assumption is borrowed from P&P and speci�es the properties of xt and ut
in detail.

Assumption 1
(a) (ut;Fn;t) is a martingale di¤erence sequence with E(u2t jFn;t�1) = �2 a.s. for every

t = 1; :::; n and sup1�t�nE(jutj
� jFn;t�1) <1 a.s. for � > 2. The variable xt is adapted to

Fn;t�1 for every t = 1; :::; n:
(b)
P1

k=0 k j kj <1 and E j�tj
p <1 for some p > 2. The variable �t has characteristic

function �(s) such that
R1
�1 j�(s)j

� ds <1, � � 1.
(c) (Un; Vn)

d! (U; V ), where (U; V ) is a vector Brownian motion.

Assumption 1 yields strong approximation results for the empirical Brownian motions
introduced earlier. For instance, under Assumption 1(c) (see P&P, p. 125 and 152), there
is a �ner probability space (
;F ;P)o supporting (U; V ) and the partial sum processes
(U on; V

o
n ) such that:�

U on

�
k

n

�
; V o

n

�
k

n

�
; k = 1; :::; n

�
d
=

�
Un

�
k

n

�
; Vn

�
k

n

�
; k = 1; :::; n

�
(4)

and
sup
0�r�1

k(U on(r); V o
n (r))� (U(r); V (r))k = oa:s:(1)

In addition, for the purpose of the subsequent analysis, we need to introduce the (chrono-
logical) local time process of the Brownian motion V up to time t de�ned as

L(t; s) = lim
�&0

1

2�

Z t

0

1fjV (r)� sj � �gdr:
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The reader is referred to Park and Phillips (2000, 2001) for further discussion about the
local time process and its relevance to econometrics.
Under some weak conditions, it is possible to establish embedding results for the NLS

estimator and to some functionals of the objective function, useful for our asymptotic
analysis. Using the embedding results in P&P, we can construct a copy of the objective
function, Qon(a) say, on (
;F ;P)

o as follows. Set zn = (xt; ut; t = 1; :::; n). It is obvious
from (4) that, for each n, there is a random vector zon = (x

o
t ; u

o
t ; t = 1; :::; n) on (
;F ;P)

o

such that zn
d
= zon. Then de�ne

Qon(a) =

nX
t=1

(yot � g(xot ; a))
2 with yot = f(xot ) + uot

and âo = argmin
a2A

Qon(a). (5)

The objective function Qn(a) and its copy can be seen as empirical processes on A. The
following distributional result holds for any two continuous empirical processes, on some
compact space, that have the same �nite dimensional distributions.

LEMMA 1. Suppose that Gn(a) and Gon(a) are continuous empirical processes on some
compact set A � Rp. If Gn(a) and Gon(a) have the same �nite dimensional distributions,
the following hold:
(i)

inf
a2A

Gn(a)
d
= inf

a2A
Gon(a) and sup

a2A
Gn(a)

d
= sup

a2A
Gon(a):

(ii) Suppose that ~a and ~ao are the unique minimisers of Gn(a) and Gon(a) on A, re-
spectively. Then, we have

~a
d
= ~ao:

Using the P&P Shorokhod construction, we can show that Qn(a), and its copy, have
the same �nite dimensional distributions. Further, under some additional conditions, Qn(a)
and Qon(a) satisfy Lemma 1. These are stated precisely by the subsequent lemma.

LEMMA 2. Suppose that:
(a) Assumption 1 holds.
(b) The objective function Qn(a) is given by (3) and Qon(a) given by (5).
(c) The function f(x) of (1) is B=B-measurable. The function g(x; a) of (2) is B �

B(A)=B-measurable and continuous in a.

Then, for each n 2 N, the following hold:

(i) For d 2 N and any a1; :::; ad 2 A, y1; :::; yd 2 R, and yd+1 2 R2n,

P (Qn(ai) � yi; zn � yd+1; i = 1; :::; d) = P
o (Qon(ai) � yi; z

o
n � yd+1, i = 1; :::; d) :

(ii) For any y1 2 R and y2 2 R2n,

P(inf
a2A

Qn(a) � y1; zn � y2) = P
o(inf
a2A

Qon(a) � y1; z
o
n � y2):
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(iii) Suppose that Qn(a) and Qon(a) have unique minimisers on A. Then, for any
y1 2 Rp and y2 2 R2n,

P(â � y1; zn � y2) = P
o(âo � y1; z

o
n � y2):

Lemma 1(i) postulates thatQn(a) and Qon(a) have the same �nite dimensional distributions.
Lemma 2(ii)-(iii) is a direct consequence of Lemma 1. It provides embedding results for
the extrema of the NLS objective function and its minimiser. Some of the techniques we
employ to establish convergence of the NLS estimator, require limit theory for the extrema
of the objective i.e. infa2AQn(a). Therefore, if infa2AQon(a)

d! infa2AQ(a), we can assert

that infa2AQn(a)
d! infa2AQ(a). In addition, we have â

d! a�, if âo d! a�, when Lemma
2(iii) holds.
Next, we specify the regression functions precisely. The transformations we consider

are typically functions of two arguments i.e. g : R � A ! R. The �rst argument corre-
sponds to some economic variable and the second to some parameter(s). Following P&P we
restrict f(x) and g(x; a) to be members of two families of transformations: I-regular and
H-regular functions. The I-regular family (I) of P&P involves integrable transformations
(with respect to x). On the other hand the H-regular family (H) of P&P involves locally
integrable transformations that exhibit certain homogeneity property.

DEFINITION 1 (I-regular class). The function g : R � A ! R is I-regular on A if the
following hold:

(a) For each ao 2 A, there exist a neighborhood No of ao and T : R! R bounded and in-
tegrable such that kg(x; a)� g(x; ao)k � ka� aokT (x) for all a 2 No and supa2No jg(x; a)j
is integrable.
(b) For some c > 0 and k > 6=(p � 2) with p > 4 given in Assumption (1b),

kg(x; a)� g(y; a)k � c jx� yjk for all a 2 A.

De�nition 1 requires g(x; a) to be integrable and su¢ ciently smooth with respect to x and a.
Before we introduce the H-regular class, we need to de�ne another class of transformations.

DEFINITION 2 (regular class). The function T : R � A ! R is regular on A if the
following hold:

(a) For all a 2 A, T (:; a) is continuous in a neighborhood of in�nity.
(b) For any a 2 A and compact subset K of R given, there exist for each � > 0

continuous functions T �, T �, and �� > 0 such that T �(x; a) � T (y; a) � T �(x; a) for all
jx� yj < �� on K, such that

R
K

�
T � � T �

�
(x; a)dx! 0 as �! 0.

(c) For all x 2 R, T (x; :) is equicontinuous in a neighborhood of x.

The regular class essentially comprises locally integrable functions that are piecewise con-
tinuous with respect to the x argument. Functions with integrable poles e.g. lnx are
not regular. Nonetheless, P&P provide limit theory for "clipped" transformations i.e. se-
quences of regular functions that approximate transformations with integrable poles, in
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large samples. Whenever we employ a regression function with integrable poles, we implic-
itly consider its "clipped" version3.

DEFINITION 3 (H-regular class). The function g : R � A ! R is H-regular on A if the
following hold:

(a) g(�x; a) = kg(�; a)hg(x; a) +Rg(x; �; a) with hg(:; a) regular on A,
(b) jRg(x; �; a)j � ag(�; a)Pg(x; a), with lim sup�!1 supa2A



ag(�; a)k�1g (�; a)

 = 0 or
(c) jRg(x; �)j � bg(�)Pg(x; a)Qg(�x; a), with lim sup�!1 supa2A



bg(�; a)k�1g (�; a)

 <
1,
where
(i) supa2A Pg(:; a) is locally bounded such that for some c > 0, supa2A Pg(x; a) = O(ecjxj)

as jxj ! 1,
(ii) supa2AQg(:; a) is bounded with supa2AQg(x; a) = o(jxj) as jxj ! 1.

It follows from De�nition 3 that an H-regular g is homogenous in the limit i.e.

g(�s; a) � kg(�; a)hg(s; a) for large �.

The functions kg(�; a) and hg(s; a) are the asymptotic order and the limit homogeneous
function of g respectively. For notational brevity, we write the asymptotic order of g as
kg(�) = kg. When that depends on some parameter, a� say, we write kg(�; a�) = k�g . If the
asymptotic order of g does not depend on a parameter, g is referred to as H o-regular (Ho

denotes the particular family). In addition, for H-regular _g (�g) the function _hg (�hg) and _kg
(�kg) are the relevant limit homogeneous functions and asymptotic orders respectively.
We are con�ned to transformations that are integrable or locally integrable (i.e. I-regular

and H-regular). The asymptotic behaviour of non-locally integrable transformations is as
yet unknown (see de Jong and Wang (2002)). de Jong and Wang (2002) provide asymptotic
theory for �nearly non-locally integrable� transformations. Further, Park and Phillips
(1999) develop asymptotic theory for another class of functions. This class comprises
functions that grow with exponential rate (E-regular). Although some of our results may
be extended to these two families of functions, such development is not attempted here.
Finally, before proceeding to the next section, we introduce some de�nitions. The

following de�nition clari�es what we mean by correct/incorrect functional form.

DEFINITION 4. (i) The �tted model is of correct functional form if

f(:) 6= g(:; ao), for some ao 2 A,

on a set of Lebesgue measure zero.
(ii) The �tted model is of incorrect functional form if

f(:) 6= g(:; a), for every a 2 A,

on a set of positive Lebesgue measure.

Remark:
If the functions f(:) and g(:) are equal almost everywhere with respect to Lebesgue

measure, then models (1) and (2) are observationally equivalent. In particular, under
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Assumption 1(b), the unit root process, xt, has absolutely continuous distribution with
respect to Lebesgue measure4, which in turn implies that f(xt) = g(xt) a:s:

As mentioned earlier, the relative asymptotic order of the true and �tted models are
of crucial importance for the asymptotic analysis of the NLS estimator. It is obvious from
the asymptotic theory of P&P that integrable transformations of unit root processes are
of the same order of magnitude (i.e. sample sums of I-regular transformations require
the same normalisation to become convergent). On the other hand, di¤erent H-regular
transformations can be of di¤erent order of magnitude. The following de�nition introduces
a concept of relative asymptotic order for two H-regular regression functions:

DEFINITION 5. Suppose that f(:) is H-regular, and is g(:; a) H-regular on A.
(a) f(:) and g(:; a) are of the same asymptotic order if kf (�) = kg(�; a), for some

a 2 A. This is denoted by f � g:
(b) f(:) and g(:; a) are of di¤erent asymptotic order if kf (�) 6= kg(�; a), for all a 2 A.

This is denoted by f � g.
(c) f(:) is of higher (lower) asymptotic order than g(:; a), if kf (�) > kg(�; a) ( kf (�) <

kg(�; a)) for all a 2 A. This is denoted by f � g (f � g):

3 LIMIT THEORY

3.1 CONVERGENCE TO PSEUDO-TRUE VALUE

This section provides su¢ cient conditions for the convergence of the NLS estimator â,
de�ned by (3), to some pseudo-true value a�. These conditions can be easily checked
for a variety of I-regular and H-regular models. The techniques we employ, to establish
convergence, are similar to those used by P&P. Some results follow from a Jennrich (1969)
type of argument. Jennrich (1969) shows that under certain regularity conditions, the NLS
estimator converges to the (unique) value that minimises Q(a), the probability limit of the
objective function Qn(a). It is more convenient to consider the shifted objective function:

Dn(a; a
�) = Qn(a)�Qn(a

�);with a� 2 A;

For I-regular and H o-regular functions, we establish that the NLS estimator converges in
distribution to some pseudo-true value by verifying the following condition (CN1):

CN1 (van de Vaart and Wellner, 19965): Let vn be a normalising sequence of real num-
bers. Suppose that:
(i) v�1n infa2ADn(a; a

�)
d! infa2AD(a; a

�), as n!1.
(ii) D(a�; a�) < infa2GD(a; a

�) a:s:, for every closed set G � A that does not contain
a�.
Then â d! a�.

Condition CN1 is reminiscent of the Jennrich (1969) technique employed by White (1981).
CN1 postulates that the NLS estimator converges weakly to the minimiser of the limit
objective function. Although CN1 is applicable to I-regular and H o-regular functions, is
not alaways applicable to general H-regular functions, as these functions have di¤erent
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rates for di¤erent values of a. The following condition (CN2) due to Wu (1981) is more
relevant, when the model is determined by some general H-regular function:

CN2 (Wu, 19816): Suppose that lim infn!1 inffa2A:ka�a�k��gDn(a; a
�) > 0 a:s: (in prob.),

for any � > 0, such that fa 2 A : ka� a�k � �g is non-empty. Then â a:s:! a� (in prob.).

The limit theory for general H-regular models follows from CN2.
Our asymptotic results are qualitatively di¤erent than those obtained by White (1981)

in two ways. First, in our framework the limit objective function is stochastic, and therefore
its minimiser can be stochastic as well. Note that this is not true for the correctly speci�ed
models of P&P, as the limit objective function is minimised at the true-parameter in that
case. Secondly, when f � g, the limit objective function is not a complete quadratic form
in f and g, for only the dominant terms feature in the limit. The function Q(a) is often
monotonic in a, when is not a complete quadratic form, and therefore attains its minimum
at some boundary point.
We �rst present limit results for I-regular and H o-regular models. The limit objective

function takes di¤erent forms depending on the relative asymptotic order of f and g.
Therefore, di¤erent conditions are required to guarantee that Q(a) has a unique minimum.
In Theorems 1-3 below, assumption (c) is an identi�cation requirement. It ensures that
the limit objective function has a unique minimum, and in view of CN1 is su¢ cient for the
convergence of the NLS estimator to some pseudo-true value. We start with f , g 2 I.

THEOREM 1: (f , g 2 I) Suppose that:
(a) Assumption 1(a,b) holds and A is compact.
(b) f , g 2 I,
(c) There is an a� 2 A such thatZ 1

�1
[f(s)� g(s; a)]2ds >

Z 1

�1
[f(s)� g(s; a�)]2ds,

for all a 2 A : a 6= a�:
Then,

â
p! a�:

In particular we have

D(a; a�) =

Z 1

�1

�
[f(s)� g(s; a)]2 � [f(s)� g(s; a�)]2

	
dsL(1; 0)

with vn = 4
p
n:

Notice that although D(a; a�) in Theorem 1 is stochastic, its minimiser is deterministic.
Hence, â converges in probability to some pseudo-true value.
Next, we consider H o-regular models of the same order. We have the following theorem:

THEOREM 2: (f , g 2 Ho, f � g) Suppose that:
(a) Assumption 1(a,c) holds and A is compact.
(b) f , g 2 Ho with kf = kg,
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(c) There is an a� 2 A such thatZ 1

�1
[hf (s)� hg(s; a)]

2L(1; s)ds >

Z 1

�1
[hf (s)� hg(s; a

�)]2L(1; s)ds a:s:,

for all a 2 A : a 6= a�:
Then,

â
d! a�:

In particular we have

D(a; a�) =

Z 1

�1

�
[hf (s)� hg(s; a)]

2 � [hf (s)� hg(s; a
�)]2
	
L(1; s)ds

with vn = nkf (
p
n)2:

The pseudo-true value in Theorem 2, can be stochastic. This is demonstrated by the
examples given below:

EXAMPLE 1. (a) Let f(s) = �os
21fs > 0g. The �tted speci�cation is similar to the

Michaelis-Menten model (see Bates and Watts, 1988): g(s; a) = s3(1 + as)�11fs > 0g
with ��1o 2 A � R+. Then, D(a; a�) =

h�
�o � 1

a

�2 � ��o � 1
a�

�2i R1
0
s2L(1; s)ds. Hence

a� = ��1o .
(b) Let f(s) = 1fs > 0g and g(s; a) = a (2� 1fs > 0g+ 1fs < 0g) with [0; 2] � A. It

can be easily checked that

a� = 2

Z 1

�1
1fs > 0gL(1; s)ds

�Z 1

�1
[2� 1fs > 0g+ 1fs < 0g]L(1; s)ds

��1
:

Finally, we provide su¢ cient conditions for CN1, when f and g are H o-regular of dif-
ferent orders. In particular, we consider f � g. We have the following result:

THEOREM 3: (f , g 2 Ho with f � g) Suppose that:
(a) Assumption 1(a,c) holds and A is compact.
(b) f , g 2 Ho with (kfk�1g )(�)!1 as �!1.
(c)
R1
�1 hf (s)hg(s; a)L(1; s)ds <

R1
�1 hf (s)hg(s; a

�)L(1; s)ds a:s: for all a 2 A : a 6= a�:
Then

â
d! a�:

In particular we have

D(a; a�) = 2

Z 1

�1
fhf (s)hg(s; a�)� hf (s)hg(s; a)gL(1; s)ds

with vn = nkf (
p
n)kg(

p
n):

Alike Theorems 1 and 2, in Theorem 3 D(a; a�) is not a complete quadratic form, as the
lower order terms in the objective function vanish in the limit. The subsequent example
shows that in this case, the limit objective function can be strictly monotonic over the
parameter space. As a result, a� is a boundary point.
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EXAMPLE 2. (a) Let f(s) = s2 and g(s; a) = s2(1 + a jsj)�1 with A � R+. Then,
Dn(a; a

�) = 2
�
1
a� �

1
a

� R1
�1 jsj

3 L(1; s)ds. Hence, a� is the lower boundary point of A.
(b) Suppose now that f is as before, but g is signed i.e. g(s; a) = sign(s)s2(1 + a jsj)�1

with A � R+. Then, Dn(a; a
�) = 2

�
1
a� �

1
a

� R1
�1 sign(s) jsj

3 L(1; s)ds. Notice that a� is
stochastic. It alternates between the upper and lower boundary points of A depending on
the realisation of the local time paths. Figure 2 shows the simulated density of â for two
di¤erent choices for the parameter space. In both cases the density is bimodal with picks
at the boundary of the parameter space.

Theorems 1-3 are not exhaustive. When f � g or when one of the models is I-regular and
the other H-regular, the limit results are analogous to those given above and will not to be
discussed here.
Next, we consider general H-regular functions. The convenient characterisation of the

pseudo-true value as the minimiser of some limit criterion function is not possible for this
case, as the Jennrich approach is not applicable. Nonetheless, it is still possible to show that
the NLS estimator has a well de�ned limit. As in P&P, we provide su¢ cient conditions for
CN2, when the parameter appears as an exponent in the model. Again, there is no single
general result. Our conditions vary with the relative orders of f and g. We consider three
cases: g � f , f � g and f � g. The limit behaviour of the NLS estimator is comparable
to that shown for H o-regular models. For f � g, we get convergence to boundary points.
We start with f � g. In Theorem 4 below, the �tted model is correctly speci�ed up some
lower order H-regular component q.

THEOREM 4. (f 2 Ho, g 2 H, f � g) Suppose that:
(a) Assumption 1(a,c) holds and A is a compact subset of R.
(b) f(x) 2 Ho, g(x; a) 2 H, with kf (�) = kg(�; a

�), for some a� 2 A.
(c) f(x)� g(x; a�) = q(x; a�) with q(x; a) 2 H such that kq(�; a�)kg(�; a�)�1

�!1! 0.
Then CN2 holds if:

(i) for any a+ 6= a� and �c; �d > 0, there exist " > 0 and a neighborhood N of a+ such
that as �!1

kq(�; a
�)�1 � inf

jc��cj<"
jd� �dj<"

inf
a2N

jckg(�; a�)� dkg(�; a)j ! 1;

(ii) for all a 2 A and � > 0,
R
jsj�� hg(s; a)

2ds > 0:

Condition (c) speci�es the properties of the true and �tted models, (i) is a regularity
condition similar to that of P&P (Theorem 4.3), while (ii) is an identi�cation requirement.
An example is provided next:

EXAMPLE 3. Suppose that the true speci�cation is given by f(s) = s�o(1+ s)�11fs > 0g.
The �tted model is g(s; a) = sa1fs > 0g with �o � 1 2 A � R+. Theorem 4 holds with
a� = �o � 1.

The subsequent result is for f � g. The NLS estimator converges to the value that
minimises the descrepancy between the asymptotic orders of f and g, which is the value
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that minimises the asymptotic order of g i.e. kg(�; a). Typically, this corresponds to the
lower boundary point of A.

THEOREM 5. (f 2 Ho, g 2 H, f � g) Suppose that:
(a) Assumption 1(a,c) holds and A is a compact subset of R.
(b) f(x) 2 Ho, g(x; a) 2 H.
(c) There is an a� 2 A, such that kg(�; a�)kg(�; a)�1

�!1! 0 for all a 2 A : a 6= a�.
Then CN2 holds if:

(i) for any a+ 6= a� and �c; �d > 0, there exist " > 0 and a neighborhood N of a+ such
that as �!1

kg(�; a
�)�1 � inf

jc��cj<"
jd� �dj<"

inf
a2N

jckg(�; a�)� dkg(�; a)j ! 1;

(ii) for all a 2 A and � > 0,
R
jsj�� hg(s; a)

2ds > 0:

EXAMPLE 4. Theorem 5 holds for f(s) = ln(s)1fs > 0g and g(s; a) = sa1fs > 0g with
a 2 A � R+. In this instance the NLS estimator converges to the lower boundary point of
the parameter space. This is con�rmed by Figure 3 that shows the simulated density of â
for two di¤erent choices for the parameter space.

Finally, we consider f � g. This is the opposite scenario to that of Theorem 5. There-
fore, one would expect that the estimator converges to the value that maximises the asymp-
totic order of g. Alike Theorem 4 however, in this case the leading term of the objective
function is signed in general. The pseudo-true value converges to the value that minimises
or maximises kg, depending on the sign of the dominant term of Qn(a).

THEOREM 6: (f 2 Ho, g 2 H, f � g) Suppose that:
(a) Assumption 1(a,c) holds and A is a compact subset of R.
(b) f(x) 2 Ho, g(x; a) 2 H.
(c) There are a; a 2 A such that kg(�; a)kg(�; a)�1; kg(�; a)kg(�; a)�1

�!1! 1 for all
a 2 A : a 6= a; a.
(d) De�ne a� by

a� =

�
a; if

R1
�1 hg(s; a)hf (s)L(1; s)ds > 0, a:s:

a; if
R1
�1 hg(s; a)hf (s)L(1; s)ds < 0, a:s:

Then CN2 holds if:

(i) for any a+ 6= a� and �c; �d 2 R such that �c �d > 0, there exist " > 0 and a neighborhood
N of a+ such that as �!1

kf (�)kg(�; a)
�2 � inf

jc��cj<"
jd� �dj<"

inf
a2N

(ckg(�; a
�)� dkg(�; a))!1;

(ii) for all a 2 A and � > 0,
R
jsj�� hg(s; a)hf (s)ds > 0 or

R
jsj�� hg(s; a)hf (s)ds < 0.
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Condition (ii) of Theorem 6 is a regularity condition. It requires that the dominant term
in Qn(a) is either positive or negative in the limit. As shown by the subsequent example,
a� corresponds to the upper or lower boundary point of A, depending on the sign of the
integral term in (d).

EXAMPLE 5. (a) Let f(s) = jsj�o and g(s; a) = jsja with a 2 A = [0; �o=3] : Then we have,
a� = �o=3.
(b) Let f(s) = � jsj�o and g(s; a) = jsja with a 2 A = [0; �o=3]. Then we have, a� = 0.

3.2 LIMITDISTRIBUTIONABOUTTHEPSEUDO-TRUEVALUE

This section provides limit distribution theory about some pseudo-true value. To obtain
limit distribution theory, we need to impose stronger conditions than those of the previous
section. In particular, we assume that the �tted response function is di¤erentiable with
respect to a. We have seen earlier, that for f � g, the NLS estimator may converge to
boundary points. Andrews (1999) develops techniques that yield limit distribution results,
when the parameter is on a boundary. The Andrews (1999) approach and other methods
that rely on linearisation of the objective function (e.g. Wooldridge, 1994) are not applicable
in our case. When the pseudo-true value is on a boundary, the limit objective function is
not minimised at a turning point. As a result, _Qn(a�) and �Qn(a�) are of the same order of
magnitude. There is no obvious way of obtaining limit distribution theory or convergence
rates in this case. Hereafter, we rule out boundary points, by focusing on f; g 2 I and, f;
g 2 H with f � g.
The asymptotic theory developed by P&P is not always su¢ cient to yield limit distrib-

ution results under FFM. For certain kinds of misspeci�cation, second order limit theory is
required. Jeganathan (2003) provides second order limit theory for integrable transforma-
tions that is utilised here. Second order limit theory for locally integrable transformations
is yet undeveloped. For this reason, the limit results we provide for the H-regular class,
are limited. Suppose that f , g 2 H, with f � g and set q = f � g. Then, there are two
possibilities:

P1: The �tted model is correctly speci�ed up to some lower order term, i.e.:

kq(�; a
�)=kf (�)! 0, as �!1, for some a� 2 A;

P2: The functions f and g do not agree at all i.e.

kq(�; a)=kf (�)9 0 as �!1, for all a 2 A:

The latter may happen, if the models involve covariates normalised by the sample size.
Consider for example fn(x) = (1 + exp(x=

p
n))

�1 and gn(x; a) = a1fx=
p
n > 1g. These

kind of functions are proposed by Saikkonen and Choi (2004) for modelling transition e¤ects
in regressions with unit roots. Only the �rst scenario is considered here, as for the latter,
second order limit theory for H-regular transformations is required.
To obtain limit distribution results for I-regular models, we follow the P&P approach.

We utilise the convergence result of Theorem 1 and then linearise the objective function.
Limit distribution and convergence rates are the same as those reported by P&P, for cor-
rectly speci�ed integrable models. In this respect, the limit theory for the particular class
of models is analogous to that for stationary misspeci�ed models.
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For H-regular models, we obtain limit distribution results following the Wooldridge
(1994) approach. The aforementioned method is also based on a linearisation of the objec-
tive function. In particular, under suitable conditions we get that:

s�1n v0n(â� a�)
d! � �Q�1 _Q; (6)

where, vn is sequence of normalising matrices, sn a normalising sequence of real numbers,
and _Q, �Q the limits of _Qn, �Qn respectively. By Wooldridge (1994, Theorem 10.1) and de
Jong and Hu (2006, Theorem 1), conditions C1� C5a below are su¢ cient for (6).

C1 :
�
(snvn)

�1 _Qn(a
�); v�1n �Qn(a

�)v0�1n

�
d!
�
_Q; �Q

�
, as n!1:

C2 : �Q > 0 a:s:
C3 : There is a sequence �n such that �nv

�1
n ! 0 as n!1 and

supa2Nn




��1n � �Qn(a)� �Qn(a
�)
�
�0�1n




 = op(1); where Nn = fa : ks�1n �n(a� a�)k � 1g :
C4 : (i) s�1n �n(â� a�) = op(1) or

(ii) Qn(a) is globally convex.
C5a : sn = 1.
C5b : sn !1, with ksnv�1n k ! 0, as n!1:

Condition C5a requires the score being of smaller order than the Hessian. For most prob-
lems sn equals one, leading to the familiar vn-consistency for extremum estimators. If FFM
is committed under nonstationarity, sn can be divergent. Under misspeci�cation, the score
typically is of higher order of magnitude, than what is under correct speci�cation, and as
result the convergence rates are slower. Theorem 10.1 of Wooldridge (1994) and Theorem
1 of de Jong and Hu (2006), can be trivially extended under C5b:

LEMMA 3: Conditions C1� C4 and C5b are su¢ cient for (4).

We utilise Lemma 3, to obtain limit distribution results for misspeci�ed H-regular models.
P&P show that limit distribution for I-regular models, under correct FFM, is mixed

Gaussian and the convergence rate is n1=4. Under FFM the convergence rate is the same
as that attained under correct speci�cation. The limit distribution is mixed Gaussian, but
with two Gaussian components rather than one, which is the case for correctly speci�ed
models. The actual result is given by Theorem 7 next:

THEOREM 7: (f , g 2 I) Suppose that:
(a) f , g, _g, �g 2 I, and the conditions of Theorem 1 hold.
(b) a� is interior in A.
(c)
R1
�1 jsz(s; a

�)j ds <1, where z(s; a�) = _g(s; a�) (f(s)� g(s; a�)).
(d) Let ẑ be the Fourier transform of z. The characteristic function of �t satis�es:

(i) j�(s)j � C1 jsj��, as s!1, for some C1, � > 0 and
(ii) jẑ(s; a�)�(s)j � C2 jsj�(2+
), as s!1, for some C2 > 0, 0 < 
 < 1.
(e)
R1
�1 _g(s; a

�) _g(s; a�)0ds�
R1
�1

�G(s; a�) (f(s; �o)� g(s; a�)) ds > 0.
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Then as n!1,

n1=4 (â� a�)
d!
�Z 1

�1
_g(s; a�) _g(s; a�)0ds�

Z 1

�1
�G(s; a�) (f(s; �o)� g(s; a�)) ds

��1
�L(1; 0)�1=2

"
b1=2W1(1) +

�Z 1

�1
_g(s; a�) _g(s; a�)0ds

�1=2
W2(1)

#
;

where (W1(1);W2(1)=�) is standard bivariate Gaussian independent of L(1; 0), and b is
the constant in Theorem 1 of Jeganathan (2003)7.

Conditions (c) and (d) of Theorem 7 are required for second order limit theory of integrable
transformations (see Jeganathan, 2003). Condition (e) is an identi�cation requirement.
Next, we present limit theory for f , g 2 H. Sometimes it is di¢ cult to check Condition

C4(ii). To establish our results, we provide su¢ cient conditions for C4(i) instead. We
assume that the �tted model is corectly speci�ed up to the lower order component, q (i.e.
P1 holds). P&P show that for correctly speci�ed H-regular models, the convergence rate
is
p
nk _f (

p
n) and the limit distribution determined by stochastic integrals. For the kind of

misspeci�cation under consideration, convergence is slower because the score involves addi-
tional components. In particular, the convergence rate is k _g(

p
n; a�)=kq(

p
n; a�). Further,

the limit distribution involves functionals of Brownian motion, relating to the q term, but
not stochastic integrals. Before proceeding to the next result, we introduce some notation.
Let " > 0 and �n, be a sequence of real numbers. De�ne a neighborhood of a� 2 A � R by

N("; �n; a
�) =

�
a : j�n (a� a�)j � n"=3

	
:

We have the following theorem.

THEOREM 8. (f 2 Ho, g 2 H, f � g) Suppose that:
(a) Assumption 1(a,c) holds with A compact subset of R.
(b) f 2 Ho and g, _g, �g 2 H on A.
(c) There exists an interior point of A, a� such that f(s) � g(s; a�) = q(s; a�) with

q, _g 2 H, and q � g, _g.
(d) There are functions h, h 2 Ho with asymptotic orders k and k respectively such

that �n �
�
k=kkq(a

�)
�
(
p
n)!1 as n!1, and h � supa2A j _gj, h � infa2A _g2.

(e)
R
jsj��

_hg(s; a
�)2ds > 0 for all � > 0,

(f) For any �s > 0, there exists " > 0 such that as n!1,

_kg(
p
n; a�)�2

 
sup
jsj��s

���g(pns; a�)q(pns; a�)��!! 0; (7)

n"��2n kq(
p
n; a�)�1

 
sup
jsj��s

sup
a2N(";�n;a�)

���g(pns; a)��!! 0; (8)

n"��2n kq(
p
n; a�)�1 _kg(

p
n; a�)�1

 
sup
jsj��s

sup
a2N(";�n;a�)

��...g (pns; a)q(pns; a�)��!! 0; (9)

Then as n!1,
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_kg(
p
n; a�)

kq(
p
n; a�)

(â� a�)
d!
�Z 1

0

_hg(V (r); a
�)2dr

��1 Z 1

0

_hghq(V (r); a
�)dr:

Theorem 8 provides su¢ cient conditions for Lemma 3. Condition (c) speci�es the kind of
misspeci�cation under consideration. Condition (d) is su¢ cient for C4(i), (e) is an identi-
�cation requirement and (f) is su¢ cient for C3. Condition (d) is somewhat restrictive for
general H-regular models. It can be checked however for several H o-regular speci�cations8.
Note that for general H-regular models, convergence rates depend on the pseudo-true value
a�. Some examples are provided next.

EXAMPLE 7. (a) Let f(s) = �os
2 and g(s; a) = jsj3 (1 + a jsj)�1 with A � R+. It follows

from Theorem 8 that a� = ��1o and

p
n(â� a�)

d!
�Z 1

0

jV (r)j4 dr
��1 Z 1

0

jV (r)j3 dr:

(b) Let f(s) = jsj�1o (1 + jsj�2o)�1 with �1o > �2o > 0 and �1o > (3�2o � 1) =2 (local
integrability requirement). The empirical model is determined by g(s; a) = jsja withA = [a;
a] � R+. Suppose that 2a > (3�1o � 5�2o) =4+a+ � for some � > 0 (su¢ cient for condition
(c)). It follows from Theorem 8 that a� = �1o � �2o and

n�2o=2 ln
�p

n
�
(â� a�)

d! �
�Z 1

0

jV (r)j2a
�
dr

��1 Z 1

0

jV (r)j2a
���2o dr:

4 CONCLUSION

Accepting that any empirical model is a mere approximation rather a true data generating
mechanism, it is important to know the estimators�limit behaviour under functional form
misspeci�cation. This is exactly the problem we have addressed in this paper. We have
explored the limit behaviour of the NLS estimator, when the true and �tted models involve
a unit root covariate. For nonstationary misspeci�ed models the behaviour of the NLS
estimator depends on the nature of the true and �tted models. We have shown that, when
the �tted regression function is of di¤erent order of magnitude than the true model, the
estimator may converge to boundary points of the parameter space. White (1981) and
Domowitz and White (1982) show that, for stationary models the convergence rates and
the limit distribution theory under misspeci�cation are the same as those obtained under
correct speci�cation. This is not always the case, when the covariate is a unit root process.
We have demonstrated that if FFM is committed, convergence rates can be slower and
limit distribution di¤erent than that obtained for correctly speci�ed models.
Our analysis provides some guidance for the adequacy of estimated models. For exam-

ple, estimates that are close to boundary points constitute evidence for misspeci�cation. In
addition, our results are useful for the development of testing procedures for regression mod-
els with integrated regressors. To obtain power rates for certain speci�cation tests (tests
without speci�c alternative), it is necessary to characterise the limit of the NLS estimator
under misspeci�cation. Further, the implementation of some model selection procedures
(tests with speci�c alternative) requires limit distribution theory about the pseudo-true
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value. Speci�cation testing procedures that exploit the results presented here are under
development by the author.
Our analysis is not exhaustive. To obtain the limit distribution of the least squares

estimator, under certain type of misspeci�cation, second order asymptotic theory for H -
regular transformations is required. In addition, following P&P we have considered models
with a single covariate. Some results for multi-covariate models linear in parameters are
provided by Kasparis (2005). This work shows that analysing single covariate models is in
itself a complicated problem. Therefore, extensions to multi-covariate models nonlinear in
parameters may prove to be a challenging task.

NOTES

1. See also de Jong (2004), Pötscher (2004), Jeganathan (2003, 2004) for some further
developments.
2. Jennrich (1969) considers nonlinear regressions with �xed covariates. For extensions

of this approach see for example Domowitz and White (1982) and the references there in.
3. de Jong (2004) extends the asymptotic theory of P&P for regular functions to a

more general class of transformations. This class comprises locally integrable functions
with �nitely many poles that are continuous and monotone between them. Pötscher (2004)
generalises the limit theory further, making it applicable to all locally integrable functions
under more restrictive assumptions about the errors that drive the unit root processes. The
results of de Jong (2004) and Pötscher (2004) are not readily available for parameterised
regression functions. Extensions to models non-linear in parameter is possible, but that
would divert attention from the main purpose of the paper.
4. See Lemma 3.1 in Pötscher (2004).
5. See Lemma 3.2.1 in van de Vaart and Wellner (1996).
6. See Lemma 1 in Wu (1981).
7. I would like to thank Peter Phillips for pointing out the relevance of Jeganathan�s

work for the proof of this result.
8. When g 2 Ho, the sequence �n simpli�es to _kg(

p
n)=kq(

p
n).
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5 Appendix A (technical results)

For a function f : X ! Y , f�1[A] denotes its inverse image under the set A � Y . In
addition, �A is the closure of the set A.

LEMMA A1. Suppose that the random vector (X; Y ) is de�ned on the probability
space (
;F ;P) and the random vector (X; Y )o on the probability space (
;F ;P)o. If

(X; Y )
d
= (X; Y )o, the following hold:

(a) (X; Y;X + Y )
d
= (X; Y;X + Y )o.

(b) (X;Y;XY ) d
= (X; Y;XY )o.

(c) (X; Y; f(X)) d
= (X;Y; f(X))o, for f(:) B=B-measurable.

Proof of Lemma A1: (a) Suppose that F (x; y) is the distribution function of (X; Y )
and, F o(x; y) is the distribution function of (X; Y )o. Then, for �x, �y, �z 2 R we have

P (X � �x, Y � �y, X + Y � �z) =

Z �x

x=�1

Z min(�y; �z�x)

y=�1
dF (x; y)

= Po (Xo � �x, Y o � �y, Xo + Y o � �z) :

The last equality above follows from the fact that F (x; y) = F o(x; y).
The proof of (b) is similar to that of (a). We show (c). For f measurable and B1, B2,

B3 2 B we have

P
�
Y 2 B1, X 2 B2 \ f�1[B3]

�
= Po

�
Y o 2 B1, Xo 2 B2 \ f�1[B3]

�
,

P (Y 2 B1, X 2 B2, f(X) 2 B3) = Po (Y o 2 B1, Xo 2 B2, f(Xo) 2 B3) ;

as required.�

LEMMA A2. Let G : A � X ! R, where A a compact subset of Rp and X a
measurable space. G(:; x) continuous for each x 2 X. For each a 2 A, G(a; :) is a
measurable function. Suppose that fAkg is an increasing sequence of �nite subsets of A,
whose limit is dense in A. Then,

lim
k!1

inf
a2Ak

G(a; x) = inf
a2A

G(a; x);

everywhere on X:

Proof of Lemma A2: By the compactness of A, there is a�(x) 2 A (which is measur-
able e.g. Jennrich 1969) such that

G(a�(x); x) = inf
a2A

G(a; x)

We can �nd a measurable sequence fak(x)g that satis�es:

ka�(x)� ak(x)k = inf
a2Ak

ka�(x)� ak :

Since A = [k2NAk, for each � > 0,

ka�(x)� a(x)k < �;
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for some a(x) 2 [k2NAk. Clearly, there is some N(�; x) 2 N such that a(x) 2 AN(�;x). In
addition, because fAkg is increasing, we have a(x) 2 Ak for k � N(�; x). Hence,

ka�(x)� ak(x)k < �; for k � N(�; x):

Therefore,
lim
k!1

ak(x) = a�(x),

everywhere on X. In view of this and the continuity of G(:; x) we get

G(a�(x); x) = lim
k!1

G(ak(x); x) � lim
k!1

inf
a2Ak

G(a; x) � G(a�(x); x);

as required.�

6 Appendix B (main results)

Proof of Lemma 1. (i) Suppose that Gn(a) is de�ned on some probability space (
;F ;P)
and Gon(a) on some probability space (
;F ;P)o. Let fAkg be an increasing sequence of
�nite subsets of A, whose limit is dense in A. De�ne the sets C(Ak) and Co(Ak) as

C(Ak) =

�
! 2 
 : inf

a2Ak
Gn(a) > y

�
and Co(Ak) =

�
! 2 
o : inf

a2Ak
Gon(a) > y

�
with y 2 R. Due to the equality of the �nite dimensional distributions we have

P(C(Ak)) = P
o(Co(Ak)) (10)

for all k 2 N. In view of (10) and Lemma A2

P(C(A)) = lim
k!1

P(C(Ak)) = lim
k!1

Po(Co(Ak)) = P
o(Co(A))

as required.
(ii) Next, we show part (ii). Let fAkg � A be an increasing sequence of �nite sets,

whose limit is dense in A. De�ne ~ak and ~aok as

~ak = arg min
a2Ak

Gn(a) and ~aok = arg min
a2Ak

Gon(a)

Then
Gn(~a) = inf

a2A
Gn(a) = lim

k!1
inf
a2Ak

Gn(a) = lim
k!1

Gn(~ak); (11)

where the second equality above is due to Lemma A2. Fix � > 0. Then, by the uniqueness
of ~a, the compactness of A and the continuity of Gn(:) we have

� := inf
fa2A:ka�~ak��g

Gn(a)�Gn(~a) > 0:

Therefore, by (11) for k large enough, we have

Gn(~ak)�Gn(~a) < �) Gn(~ak) < inf
fa2A:ka�~ak��g

Gn(a),
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which in turn implies that
lim
k!1

~ak = ~a: (12)

Similarly,
lim
k!1

~aok = ~a
o: (13)

Choose ~ak as follows. Denote by m(k) the number of points in the set Ak and write
Ak = faj; j = 1; :::;m(k)g. Then de�ne

~ak(!) =

m(k)X
i=1

ai inf
1�j�m(k)

1f! 2 Eijg; Eij =
�
f! 2 
 : Gn(ai) � Gn(aj)g ; i � j
f! 2 
 : Gn(ai) < Gn(aj)g ; i > j

and

~ak(!) =

m(k)X
i=1

ai inf
1�j�m(k)

1f! 2 Eoijg; Eoij =
�
f! 2 
o : Gon(ai) � Gon(aj)g ; i � j
f! 2 
o : Gon(ai) < Gon(aj)g ; i > j

It is easy to check that ~ak and ~aok are measurable minimisers of Qn(a) and Q
o
n(a) on Ak,

respectively. Notice, that for all y 2 Rp,

P (~ak � y) =

m(k)X
i=1

P
�
fai � yg ;\1�j�m(k)Eij

�
(14)

and

P (~aok � y) =

m(k)X
i=1

Po
�
fai � yg ;\1�j�m(k)Eoij

�
: (15)

In view of (14) and (15) and by the equality of the �nite dimensional distributions, we have

~ak
d
= ~aok. Therefore, (12) and (13) give

P (~a � y) = lim
k!1

P (~ak � y) = lim
k!1

Po (~aok � y) = Po (~ao � y) ;

as required.�

Proof of Lemma 2. Part (i) follows from repeated application of Lemma A1. Part
(ii) and (iii) follow from Lemma 1. We shall provide an alternative proof for parts (ii) and
(iii).
We start with the proof of part (ii). Write Qn (a) = �Qn(zn; a) and Qon (a) = �Qn(z

o
n; a)

where �Qn(z; a) is a sequence of functions �Qn : Zn �A! R, with Zn the measurable space
(R2n;B(R2n)). Now, by the compactness of A and the continuity of �Qn(z; :) there is a
measurable function an(z) (c.f. Jennrich, 1969) such that

inf
a2A

�Qn(z; a) = �Qn(z; an(z))

Notice that an(zn)
d
= an(z

o
n). Therefore,

�Qn(zn; an(zn))
d
= �Qn(z

o
n; an(z

o
n));
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as required.
For part (iii) notice that if �Qn(z; :) has a unique minimum for each z 2 Zn, then

â = an(zn) and âo = an(z
o
n) and therefore â

d
= âo.�

Proof of Theorem 1. First we check condition (i) of CN1. By Theorem 3.2 and
Lemma 7 in P&P,

sup
a2A

jDo
n(a; a

�)�D(a; a�)j = op(1)

where D(a; a�) =
R1
�1 f[f(s; �o)� g(s; a)]2 � [f(s; �o)� g(s; a�)]2g dsL(1; 0). Therefore,

infa2AD
o
n(a; a

�)
d! infa2AD(a; a

�) and by Lemma 2(ii), infa2ADn(a; a
�)

d! infa2AD(a; a
�):

Next, we check condition (ii). Let G be a closed subset of A that does not contain
a�. By the continuity of D(a; a�) (Lemma 8b in P&P) and the compactness of G, D(a; a�)
attains a minimum on G. Therefore, it follows from condition (b) of Theorem 1 that
infa2GD(a; a

�) > D(a�; a�) as required.�

Proof of Theorems 2 and 3. Similar to the proof of Theorem 1.�

Proof of Theorem 4. De�ne

m(
p
n; a)2 = 1

nkg(
p
n;a)2

Pn
t=1 g(x

o
t ; a)

2,

m(a)2 =
R1
�1 hg(s; a)

2L(1; s)ds.

It follows from Lemma A6(c) and Theorem 3.3 of P&P that supa2A jm(
p
n; a)�m(a)j =

oa:s:(1). Moreover, m(a) continuous a:s: by Lemma 8(a) of P&P and greater than zero a:s:
due to condition (ii).
Fix � > 0 such that the set Ao = fja� a�j � �g � A, is non-empty. Let a+ be an

arbitrary point in Ao. Set �c = m(a�), d = m(a+) and notice that �c; d > 0 a:s:, since
m > 0 a:s: Fix � > 0. Then, by the continuity of m(:) and P&P (Theorem 3.3), there is a
neighborhood of a+, N say, such that

jm(
p
n; a�)� �cj ; supa2N

��m(pn; a)� d
�� < � a:s:;

for n large enough.
Next, let

An(a) =
1
n

Pn
t=1 (g(x

o
t ; a)� g(xot ; a

�))2 ;
Bn(a) =

1
n

Pn
t=1 (g(x

o
t ; a)� g(xot ; a

�)uot ;
Cn(a) =

1
n

Pn
t=1 (g(x

o
t ; a)� g(xot ; a

�))q(xot ; a
�):

Due to condition (c), the objective function Do
n(a; a

�) can be written as

n�1Do
n(a; a

�) = An(a)� 2Bn(a)� 2Cn(a):

By the backward triangle inequality1, we get

An(a)
1=2 �

��kg(pn; a�)m(pn; a�)� kg(
p
n; a)m(

p
n; a)

��
1 i.e. kx� yk � jkxk � kykj :
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In view of this and condition (i) we have

kq(
p
n; a�)�2 inf

a2N
An(a)

a:s:! 1 and kq(
p
n; a�) sup

a2N
An(a)

�1=2 a:s:! 0 (16)

Further, since

1
n

Pn
t=1 (u

o
t )
2 = Op(1);

1
n

Pn
t=1 q(x

o
t ; a

�)2 = Op (kq(
p
n; a�)2) ;

it follows from the Cauchy-Schwarz inequality that

supa2N An(a)
�1 jBn(a)j � supa2N An(a)�1=2Op(1) = op(1);

supa2N An(a)
�1 jCn(a)j � kq(

p
n; a�) supa2N An(a)

�1=2Op(1) = op(1):
(17)

Now from (16) and (17) we have

n�1 inf
a2N

Do
n(a; a

�) � inf
a2N

(An(a))

�
1� 2 sup

a2N

�
An(a)

�1 jBn(a)j
�
� 2 sup

a2N

�
An(a)

�1 jCn(a)j
��

= inf
a2N

An(a)(1 + op(1))
p!1; (18)

Because Ao is compact, we can �nd a �nite number of open balls, fNig1�i�k2N say, with
centres in Ao, that cover Ao. In view of this and (18)

n�1 inf
a2Ao

Do
n(a; a

�) � n�1 min
1�i�k

inf
a2Ni

Do
n(a; a

�)
p!1 (19)

Therefore by (19) and Lemma 2(ii), for any �; � > 0

P

�
n�1 inf

a2Ao
Dn(a; a

�) > �

�
= Po

�
n�1 inf

a2Ao
Do
n(a; a

�) > �

�
> 1� �;

when n is large enough, and the result follows.�

Proof of Theorem 5. Fix � > 0 such that the set Ao = fja� a�j � �g � A, is
non-empty. Let a+ be an arbitrary point in Ao and let N be a neighborhood of a+ given
in condition (i). Next, de�ne

An(a) =
1
n

Pn
t=1 (g(x

o
t ; a)� g(xot ; a

�))2 ;
Bn(a) =

1
n

Pn
t=1 (g(x

o
t ; a)� g(xot ; a

�))uot ;
Cn(a) =

1
n

Pn
t=1 (g(x

o
t ; a)� g(xot ; a

�)) f(xot );
En(a) = � 1

n

Pn
t=1 (g(x

o
t ; a)� g(xot ; a

�)) g(xot ; a
�):

and note that the objective function Do
n(a; a

�) is

n�1Do
n(a; a

�) = An(a)� 2Bn(a)� 2Cn(a)� 2En(a): (20)

Next, using similar arguments as those in the previous proof we have

kg(
p
n; a�)�2 inf

a2N
An(a)

a:s:! 1 and kg(
p
n; a�) sup

a2N
An(a)

�1=2 a:s:! 0 (21)
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Moreover, since

1
n

Pn
t=1 (u

o
t )
2 = Op(1);

1
n

Pn
t=1 f(x

o
t )
2 = Op (kf (

p
n)2) ;

1
n

Pn
t=1 g(x

o
t ; a

�)2 = Op (kg(
p
n; a�)2) ;

by the Cauchy-Schwarz inequality and (21) we get

sup
a2N

An(a)
�1 jBn(a)j � sup

a2N
An(a)

�1=2Op(1) = op(1); (22)

sup
a2N

An(a)
�1 jCn(a)j � kf (

p
n) sup

a2N
An(a)

�1=2Op(1) = op(1);

sup
a2N

An(a)
�1 jEn(a)j � kg(

p
n; a�) sup

a2N
An(a)

�1=2Op(1) = op(1);

Now from (21) and (22) we have

n�1 inf
a2N

Do
n(a; a

�) � inf
a2N

An(a)��
1� 2 sup

a2N

�
A�1n (a) jBn(a)j

�
� 2 sup

a2N

�
A�1n (a) jCn(a)j

�
� 2 sup

a2N

�
A�1n (a) jEn(a)j

��
= inf

a2N
An(a)(1 + op(1))

p!1:

Using the same arguments as those in the previous proof, we get:

n�1 inf
a2Ao

Dn(a; a
�)

p!1

and the result follows.�

Proof of Theorem 6. First note that Do
n(a; a

�) is determined by (20). Next, let

m(
p
n; a) = 1

nkf (
p
n)kg(

p
n;a)

Pn
t=1 g(x

o
t ; a)f(x

o
t ),

m(a) =
R1
�1 hg(s; a)hf (s)L(1; s)ds.

It follows from Lemma A6(c) and Theorem 3.3 of P&P that supa2A jm(
p
n; a)�m(a)j =

oa:s:(1). Moreover, m(a) continuous a:s: by Lemma 8(a) of P&P and greater than zero a:s:
due to condition (ii).
Fix � > 0 such that the set Ao = fja� a�j � �g � A, is non-empty. Let a+ be an

arbitrary point in Ao. Set �c = m(a�), d = m(a+) and notice that �cd > 0 a:s: by condition
(ii). Fix � > 0. Then, by Theorem 3.3. of P&P and the continuity of m (Lemma A8 in
P&P), there is a neighborhood of a+, N say, such that

jm(
p
n; a�)� �cj ; supa2N

��m(pn; a)� d
�� < � a:s:,

Therefore, for n large enough,

kf (�)� inf
jc��cj<"
jd�dj<"

inf
a2N

(ckg(�; a
�)� dkg(�; a))

� kf (�)�
�
kg(�; a

�)m(
p
n; a�)� kg(�; a)m(

p
n; a)

�
= �Cn(a);
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(Cn is as in the previous proof) and in view of condition (i),

kg(
p
n; �a)�2 inf

a2N
(�Cn(a))

a:s:! 1 and kg(
p
n; �a)2 sup

a2N

�
�Cn(a)�1

� a:s:! 0: (23)

Therefore, by condition (i) and (23),

infa2N (�Cn(a)�1)An(a) �
kg(
p
n; �a)2 infa2N (�Cn(a))�1 (kg(

p
n; �a)�2 supa2N An(a)) = op(1)Op(1) = op(1);

supa2N (�Cn(a)�1) jBn(a)j �
kg(
p
n; �a)2 supa2N (�Cn(a))

�1 kg(
p
n; �a)�2 supa2N Bn(a) = op(1)op(1) = op(1);

supa2N (�Cn(a)�1) jEn(a)j �
kg(
p
n; �a)�2 supa2N (�Cn(a))

�1 kg(
p
n; �a)�2 supa2N En(a) = op(1)op(1) = op(1):

Hence,

n�1Do
n(a; a

�) � �Cn(a)
�
2 + 2Cn(a)

�1 jBn(a)j+ 2Cn(a)�1 jEn(a)j � Cn(a)
�1An(a)

�
� inf

a2N
(�Cn(a))��

2� 2 sup
a2N

�
�Cn(a)�1 jBn(a)j

�
� 2 sup

a2N

�
�Cn(a)�1 jEn(a)j

�
+ inf
a2N

�
�Cn(a)�1An(a)

��
= inf

a2N
(�Cn(a)) (1 + op(1))

p!1:

In view of the above and, the fact that a+ has been chosen arbitrarily, the result follows.
�

Proof of Lemma 3. The proof is the same as the proof of Theorems 8.1, 10.1 in
Wooldridge (1994) and the proof Theorem 1 of de Jong and Hu (2006).�

Proof of Theorem 7. Notice that
R1
�1 z(s; a

�)ds = 0, for a� is interior in A and
supa2A jz(s; a)j integrable (by the de�nition of I-regularity). In view of this, and Theorem
1 of Jeganathan (2003), it follows that

n�1=4 _Qn(a
�)

d! L(1; 0)1=2

"
b1=2W1(1) +

�Z 1

�1
_g(s; a�) _g(s; a�)0ds

�1=2
W2(1)

#
:

The rest of the proof follows easily.�

Proof of Theorem 8. Set sn = n1=2k�n;q and vn = n1=2 _k�n;g. In view of (5), conditions
C1 � C2 can be established easily along the lines of Theorem 5.3 in P&P. Consider the
following modi�cations of C3 and C4(i):

C30 : supa2Nn




zns�1n ��1n

�
�Qn(a)� �Qn(a

�)
�
�0�1n




 = op(1), where zn : kz�1n �nk ! 1 as

n!1 and Nn = fa : kz�1n �n(a� a�)k � 1g.
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C4(i)0 : z�1n �n(â� a�) = op(1).

It is easy to show that Lemma 1 still holds, when C3 and C4(i) are replaced by C30

and C4(i)0. We �rst check C30. De�ne the sequence zn = n1=2 _k�n;g�
�1
n . Fix � such that

0 < � < "=3, and Set �n = n1=2�� _k�n;g with � such that 0 < � < "=3, and kz�1n �nk ! 1 as
n!1. Next, write

�Qn(a)� �Qn(a
�) =

�
�D1n(a) + �D1n(a)

0
�
+ �D2n(a) + �D3n(a) + �D4n(a) + �D5n(a

�);

where

�D1n(a) =

nX
t=1

_g(xt; a
�)( _g(xt; (a)� _g(xt; a�))0; �D2n(a) =

nX
t=1

( _g(xt; a)� _g(xt; a�))( _g(xt; a)� _g(xt; a�))0;

�D3n(a) =
nX
t=1

�G(xt; a)(g(xt; a)� g(xt; a
�)); �D4n(a) =

nX
t=1

�
�G(xt; a

�)� �G(xt; a)
�
q(xt; a

�):

�D5n(a
�) = �

nX
t=1

�
�G(xt; a)� �G(xt; a

�)
�
ut,

and de�ne
�!2in(a) =

���zns�1n ��2n �Din(a)
��� ; i = 1; :::; 6:

Denote by �!2in(a)
o the copies of �!2in(a) on the expanded probability space. Notice that

zns
�1
n = _k�n;g

�
k�n;q�n

��1
. Now using similar arguments as those in P&P, it can be shown

that (6)-(7) are su¢ cient for �!2in(a)
o = oa:s:(1), i = 1; :::; 6; uniformly in Nn. Hence, in view

of Lemma 2 we �!2in(a) = op(1), i = 1; :::; 6; uniformly in Nn. This establishes C30. Finally,
we check C4(i)0. Our exposition is similar to that of de Jong and Hu (2006). Set

An =
nX
t=1

h(xt); and Bn =
nX
t=1

h(xt) j(q(xt; a�) + ut)j :

Fix � > 0 and choose some K� > 0, such that

P
�
Bn=

�
��1n An

�
> K�

�
< �;

for n large enough. Next,

P
�
jâ� a�j > ��1n K�

�
� P

 
inf

fa2A:ja�a�j>K��1n g
Qn(a) � Qn(a

�)

!

� P

 
inf

fa2A:ja�a�j>K��1n g
�
� ja� a�jBn + ja� a�j2An

	
� 0
!

The last expression is minimal for ja� a�j = K��
�1
n , when K��

�1
n � Bn=An. In view of this

the rest of the proof follows along the lines of de Jong and Hu (2006).�
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